Overcurrent Protection

SIPROTEC easy 7SJ45 Numerical Overcurrent Protection Relay Powered by CTs	5 /3
SIPROTEC easy 7SJ46 Numerical Overcurrent Protection Relay	5 /11
SIPROTEC 7SJ600 Numerical Overcurrent, Motor and Overload Protection Relay	5 /19
SIPROTEC 7SJ602 Numerical Overcurrent, Motor and Overload Protection Relay	5 /31
SIPROTEC 4 7SJ61 Multifunction Protection Relay	5 /55
SIPROTEC 4 7SJ62 Multifunction Protection Relay	5 /83
SIPROTEC 4 7SJ63 Multifunction Protection Relay	5 /121
SIPROTEC 4 7SJ64 Multifunction Protection Relay with Synchronization	5 /161

.

۲

0

0

ALC: NO

EN

1:11

siemens-russia.com

5

Page

SIPROTEC easy 7SJ45 Numerical Overcurrent Protection Relay Powered by CTs

Fig. 5/1 SIPROTEC easy 7SJ45 numerical overcurrent protectiona rely powered by current transformers (CT)

Description

The SIPROTEC easy 7SJ45 is a numerical overcurrent protection relay which is primarily intended as a radial feeder or transformer protection (backup) in electrical networks. It provides definite-time and inverse-time overcurrent protection according to IEC and ANSI standards. The 7SJ45 relay does not require auxiliary voltage supply. It imports its power supply from the current transformers.

Function overview

- Operation without auxiliary voltage via integrated CT power supply
- Standard current transformers (1 A/5 A)
- Low power consumption: 1.4 VA at *I*_N (of the relay)
- Easy mounting due to compact housing
- Easy connection via screw-type terminals

Protection functions

- 2-stage overcurrent protection
- Definite-time and inverse-time characteristics (IEC/ANSI)
- High-current stage *I*>> or calculated earth-current stage *I*_E> or *I*_{Ep}> selectable
- Trip with pulse output (24 V DC / 0.1 Ws) or relay output (changeover contact)
- Repetition of trip during circuit-breaker failure (relays with pulse output)
- Combination with electromechanical relays is possible due to the emulation algorithm

Monitoring functions

• Hardware and software are continuously monitored during operation

Front design

- Simple setting via DIP switches (self-explaining)
- Settings can be executed without auxiliary voltage no PC
- Integrated mechanical trip indication optionally

Additional features

- Optional version available for most adverse environmental conditions (condensation permissible)
- Flush mounting or surface (rail) mounting

The SIPROTEC easy 7SJ45 is a numerical overcurrent protection relay which is primarily intended as a radial feeder or transformer protection (backup) in electrical networks. It provides definite-time and inverse-time overcurrent protection according to IEC and ANSI standards. The convenient setting with DIP switches is self-explanatory and simple.

The 7SJ45 relay does not require auxiliary voltage supply. It imports its power supply $(1.4 \text{ VA at } I_{\text{N}}, \text{ sum of all phases})$ from the current transformers. Impulse output for low-energy trip release or contact output for additional auxiliary transformer are available. An optional

integrated trip indication shows that a trip occurred.

ANSI	IEC	Protection functions
50	I>>	Instantaneous overcurrent protection
50, 51	I>t, Ip	Time-overcurrent protection (phase)
50N, 51N	I _E >t, I _{Ep}	Time-overcurrent protection (earth)

Within its compact housing the protection relay contains all required components for:

• Operation and indication (without a PC)

• Optional mechanical trip indication Auxiliary supply from current trans-

The housing dimensions of the units are such that the 7SJ45 relays can in general be installed into the existing cutouts in cubicles. Alternative constructions are available (surface mounting and flush mounting). The compact housing permits

easy mounting, and a version for the most adverse environmental conditions, even

• Measuring and processing • Alarm and command output

• Maintenance not necessary

with extreme humidity, is also

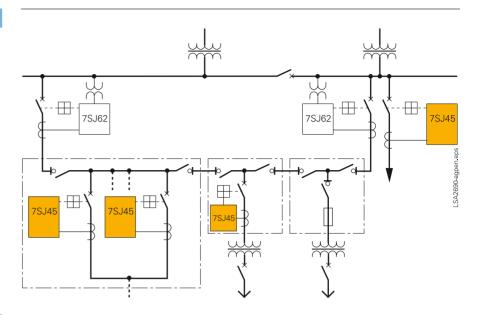


Fig. 5/3 Application in distribution switchgear

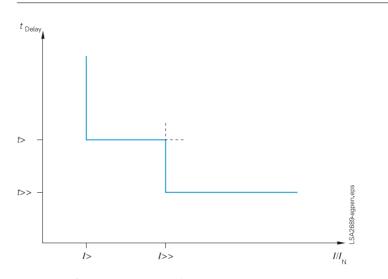
Fig. 5/4 Screw-type terminals

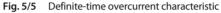
.

formers

available.

Protection functions


The overcurrent function is based on phase-selective measurement of the three phase currents.


The earth (ground) current $I_{\rm E}$ (Gnd) is calculated from the three line currents $I_{\rm L1}$ (A), $I_{\rm L2}$ (B), and $I_{\rm L3}$ (C).

The relay has always a normal stage for phase currents I > (50/51). For the second stage, the user can choose between a high-current stage for phase currents I > (50) or a normal stage for calculated earth currents $I_E > (50N/51N)$.

The inverse-time overcurrent protection with integrating measurement method (disk emulation) emulates the behaviour of electromechanical relays.

The influence of high-frequency transients and transient DC components is largely suppressed by the implementation of numerical measured-value processing.

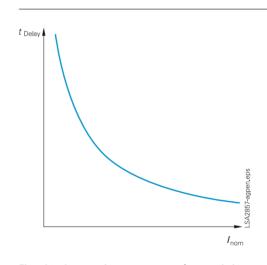


Fig. 5/6 Inverse-time overcurrent characteristic

Available inverse-time characteristics

Characteristics acc. to	ANSI/IEEE	IEC 60255-3
Moderately inverse/normal inverse	•	•
Very inverse	•	•
Extremely inverse	•	•

Connection diagrams

Pulse output or relay output are optionally available.

Pulse output

These relays require a low-energy trip release (24 V DC/0.1 Ws) in the circuitbreaker, and are intended for modern switchgear. In case of circuit-breaker failure, a repetition of the tripping signal is initiated.

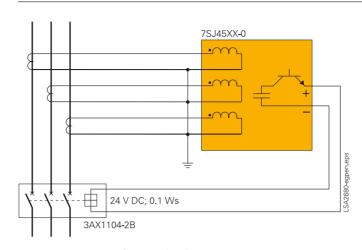
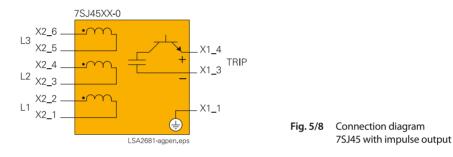



Fig. 5/7 Connection of 3 CTs with pulse output

7SJ45XX-1

Relay output

These relays can be applied with all conventional switchgear. A transformer that provides the trip circuit energy, must be connected in the current transformer circuit.

Buy Holes Constraints of the second s

4AM5070-8AB 4AM5065-2CB

Fig. 5/9 Connection of 3 CTs with trigger transformer and relay output

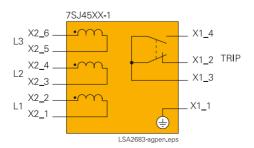


Fig. 5/10 Connection diagram 7SJ45 with relay output

Technical data			
General unit data		EMC tests for interference immunit	y; type tests
Analog input		Standards	IEC 60255-6, IEC 60255-22,
System frequency I _N	50 or 60 Hz (selectable)		EN 50263 (product standards)
Current transformer inputs			EN 50082-2 (generic standard) EN 61000-6-2
Rated current, normal earth current $I_{\rm N}$	1 or 5 A		IEC 61000-4 (basic standards)
Power consumption At $I_N = 1 / 5 A$	Approx. 1.4 VA at $I_{\rm N}$ (relay)	High-frequency test IEC 60255-22-1, class III	2.5 kV (peak); 1 MHz; $\tau = 15$ ms; $R_i = 200 \Omega$; 400 surges/s; duration ≥ 2 s
Rating of current transformer circuit Thermal (r.m.s.)	$50 \cdot I_{\rm N}$ for 1 s	Electrostatic discharge IEC 60255-22-2, class III EN 61000-4-2, class III	4 kV/6 kV contact discharge; 8 kV air discharge; both polarities; 150 pF; $R_i = 330 \Omega$
	$15 \cdot I_{\rm N}$ for 10 s $2 \cdot I_{\rm N}$ continuous	Irradiation with radio-frequency field, amplitude-modulated	10 V/m; 80 to 1000 MHz; 80 %; 1 kHz; AM
Dynamic (peak) Recommended primary current	100 · <i>I</i> _N for half a cycle 10 P 10, 2.5 VA	IEC 60255-22-3 and IEC 61000-4-3, class III	
transformers	or according to the requirements and required tripping power	Irradiation with radio-frequency field, pulse-modulated	10 V/m; 900 MHz; repetition frequency 200 Hz; duty cycle 50 %
Output relays		IEC 61000-4-3/ENV 50204,	30 V/M; 1890 MHz;
Pulse output (7SJ45XX-0*)		class III	repetition frequency 200 Hz; duty cycle 50 %
Number	1 pulse output 24 V DC / 0.1 Ws	Fast transient interference/bursts IEC 60255-22-4 and	4 kV; 5/50 ns; 5 kHz; burst duration = 15 ms; repetition rate 300 ms; both
Relay output (7SJ45XX-1*)		IEC 61000-4-4, class IV	polarities; $R_i = 50 \Omega$; duration 1 min
Number Contact rating	l changeover contact Make 1000 W/VA	High-energy surge voltage, IEC 61000-4-5 installation, class III	Impulse: 1.2/50 µs Circuit groups to earth:
Contact rating	Break 30 VA 40 Wresistive $25 \text{ VA at L/R} \le 50 \text{ ms}$	Measuring inputs, binary outputs	2 kV; 42 Ω, 0.5 μF Across circuit groups: 1 kV; 42 Ω, 0.5 μF
Rated contact voltage	$\leq 250 \text{ V DC or } \leq 240 \text{ V AC}$	Line-conducted HF,	10 V; 150 kHz to 80 MHz; 80 %;
Permissible current per contact	5 A continuous 30 A for 0.5 s (inrush current)	amplitude-modulated, IEC 60255-22-6 and	1 kHz; $R_i = 150 \Omega$
Unit design		IEC 61000-4-6, class III	
Housing	Flush mounting DIN 43700/IEC 61554 Adaptable for rail mounting (recom- mended for local mounting only)	Power frequency magnetic field IEC 61000-4-8, class IV IEC 60255-6	30 A/m continuous; 300 A/m for 5 s; 50 Hz 0.5 mT; 50 Hz
Dimensions (WxHxD) in mm	78.5 x 147 x 205.8 (incl. transparent cover and terminal blocks)	Damped wave IEC 60694, IEC 61000-4-12, class III	2.5 kV (peak, polarity alternating) 100 kHz, 1 MHz, 10 MHz and 50 MHz , $R_i = 200 \Omega$, duration $\ge 2 s$
Weight (mass) approx.	1.5 kg	Oscillatory surge withstand	2.5 to 3 kV (peak); 1 to 1.5 MHz
Degree of protection according to Housing	IEC 60529	capability ANSI/IEEE C37.90.1 Not across open contacts	damped wave; 50 shots per s; duration ≥ 2 s; $R_i = 150 \Omega$ to 200 Ω
Front Rear	IP 51 IP 20	Fast transient surge withstand capability ANSI/IEEE C37.90.1	4 to 5 kV; 10/150 ns; 50 and 120 surges per ≥ 2 s;
Protection of personnel	IP1X	not across open contacts	both polarities; duration ≥ 2 s; $R_i = 80 \Omega$
U _L -listing		Radiated electromagnetic interference ANSI/IEEE C37.90.2	35 V/m; 25 to 1000 MHz amplitude and pulse-modulated
Listed under "69CA".		EMC tests for interference emission	
		Standard	EN 50081-* (generic)
Electrical tests		Interference field strength	30 to 1000 MHz,
Specifications		IEC CISPR 22	class B
Standards	IEC 60255 (product standards) ANSI C37.90.0/.1/.2; UL508 See also standards for individual tests		

SIEMENS siemens-russia.com

Siemens SIP · Edition No. 6

Voltage test (routine test)

across open command contacts

Impulse voltage test (type test)

Voltage test (type test)

all circuits, class III

All circuits except for pulse output-earth

Insulation tests Standards

IEC 60255-5

intervals of 1 s

2.5 kV (r.m.s.), 50 Hz, 1 min

1.0 kV (r.m.s.), 50 Hz, 1 min

5 kV (peak); 1.2/50 μs; 0.5 J; 3 positive and 3 negative impulses in

Mechanical stress tests

Vibration, shock stress and seismic vibration

During operation Standards Vibration IEC 60255-21-1, class II IEC 60068-2-6

Shock IEC 60225-21-2; class I

Seismic vibration IEC 60255-21-3; class I IEC 60068-3-3

During transport (flush mounting) Standards Vibration IEC 60255-21-1, class 2 IEC 60068-2-6

Shock IEC 60255-21-2, class 1 IEC 60068-2-27

Continuous shock IEC 60255-21-2, class 1 IEC 60068-2-29

Climatic stress tests

Temperatures

Temperatures during service

Permissible temperature during storage Permissible temperature during transport

Humidity

Permissible humidity class (standard)

Permissible humidity class (condensation proof)

IEC 60255-21 and IEC 60068-2 Sinusoidal 10 to 60 Hz \pm 0.075 mm amplitude: 60 to 150 Hz; 1 g acceleration Frequency sweep 1 octave/min 20 cycles in 3 perpendicular axes Semi-sinusoidal 5 g acceleration, duration 11 ms, each 3 shocks in both directions of the 3 axes Sinusoidal 1 to 8 Hz: ± 4.0 mm amplitude (horizontal vector) 1 to 8 Hz: \pm 2.0 mm amplitude (vertical vector) 8 to 35 Hz: 1 g acceleration (horizontal vector) 8 to 35 Hz: 0.5 g acceleration (vertical vector) Frequency sweep 1 octave/min 1 cycle in 3 perpendicular axes

IEC 60255-21 and IEC 60068-2 Sinusoidal 5 Hz to 8 Hz: ± 7.5 mm amplitude; 8 Hz to 150 Hz: 2 g acceleration frequency sweep 1 octave/min 20 cycles in 3 perpendicular axes Semi-sinusoidal 15 g acceleration, duration 11 ms, each 3 shocks in both directions of the 3 axes Semi-sinusoidal 10 g acceleration, duration 16 ms, each 1000 shocks in both directions of the 3 axes

-20 °C to +70 °C / -4 °F to +158 °F With continuous current 2I_N: -20 °C to +55 °C / -4 °F to +131 °F -25 °C to +55 °C / -13 °F to +131 °F -25 °C to +85 °C / -13 °F to +185 °F

Annual mean value \leq 75 % relative humidity; on 30 days per year up to 95 % relative humidity; condensation not permissible.

Condensation is permissible according to IEC 60654-1, class III

Functions

Overcurrent protection Definite time (DT O/C ANSI 50/51) Setting range / steps Current pickup *I*>> (phases) 2 IN to 20 IN or deactivated, Current pickup *I*> (phases) 3-phase supply: see note* Current pickup IE> 3-phase supply: see note* Delay times $T_I >>$ Delay times T_{I} > The set time delays are pure delay times. Inverse time (IEC or ANSI 51) Setting range / steps Current pickup *I*_p (phases) 3-phase supply: see note* Current pickup IEp> (earth calculated) 3-phase supply: see note* Delay times T_{Ip} (IEC) Delay times D (ANSI) Trip times Total time delay impulse output Total time delay relay output Reset ratio Tolerances Definite time (DT O/C 50/51) Current pickup I>>, I>, I_E> Delay times T Inverse time (IEC or ANSI 51) Pickup thresholds Time behavior for $2 \le I/I_p \le 20$ Dev as a F 2.5 % 0. F 10 % 0. Н 1 % u D 5 %

step 0.5 IN $0.5 I_{\rm N}$ to $6.2 I_{\rm N}$ or deactivated, step 0.1 $I_{\rm N}$ 0.5 I_N to 6.2 I_N or deactivated, step 0.1 IN 0 to 1575 ms, step 25 ms 0 to 6300 ms, step 100 ms

 $0.5 I_{\rm N}$ to $4 I_{\rm N}$ or deactivated, step 0.1 IN $0.5 I_{\rm N}$ to $4 I_{\rm N}$ or deactivated, step 0.1 IN

0.05 to 3.15 s, step 0.05 s 0.5 to 15.00 s, step 0.25 s

Approx. 32 ms Approx. 38 ms Approx. 0.95 (with definite time) Approx. 0.91 (with inverse time)

5 % of the set value or 5 % of I_N (at threshold < I_N) 1 % or 30 ms

5 % of the set value or 5 % of I_N (at threshold $< I_N$) 5 % or 50 ms

riation of the measured values result of various interferences	
Frequency in the range of $0.95 < f/f_N < 1.05$	< 2
Frequency in the range of $1.9 < f/f_N < 1.1$	< 1
Harmonics pp to 10 % 3 rd and 5 th harmonic	< 1
OC components	< 5
Cemperature in the range of 5 °C to 70 °C / 23 °F to 158 °F	< 0

Т

0.5 %/10 K

Note: The device allows minimum setting values of 0.5 I_N (3-phase). With single supply, operation is ensured from 0.8 I_N (7SJ45XX-0*; pulse output) or 1.3 I_N (7SJ45XX-1*; relay output) onwards (printed on the front).

CE conformity

This product is in conformity with the Directives of the European Communities on the harmonization of the laws of the Member States relating to electromagnetic compatibility (EMC Council Directive 89/336/EEC).

This unit conforms to the international standard IEC 60255.

The unit has been developed and manufactured for application in an industrial environment according to the EMC standards.

This conformity is the result of a test that was performed by Siemens AG in accordance with Article 10 of the Council Directive complying with the generic standards EN 50081-2 and EN 50082-2.

Selection and ordering data

Description	Order No.
SIPROTEC easy 7SJ45	
numerical overcurrent protection relay powered by CTs	7SJ450□– □□□00 – □AA□
Current transformer I _N	
1 A	1
5 A	5
Trip	
Pulse output (for further details refer to "Accessories")	0
Relay output (for further details refer to "Accessories")	1
Unit design	
For rail mounting	B
For panel flush mounting	E
Region-specific functions	
Region World, 50/60 Hz; standard	A
Region World, 50/60 Hz; condensation-proof	В
IEC/ANSI	
IEC	0
ANSI	1
Indication (flag)	
Without	0
With	1

Protection relay with pulse output

Low energy trip release	3AX1104-2B
Protection relay with relay output	
Auxiliary transformers for the trip circuit	it (30 VA CTs recommended)
1 A	4AM5065-2CB00-0AN2
5 A	4AM5070-8AB00-0AN2

Current transformer-operated trip release

0.5 A (rated operating current)	3AX1102-2A
1 A (rated operating current)	3AX1102-2B

SIEMENS

siemens-russia.com

5 Overcurrent Protection / 7SJ45

SIPROTEC easy 7SJ46 Numerical Overcurrent Protection Relay

Fig. 5/11 SIPROTEC easy 7SJ46 numerical overcurrent protection relay

Description

The SIPROTEC easy 7SJ46 is a numerical overcurrent protection relay which is primarily intended as a radial feeder or transformer protection (backup) in electrical networks. It provides definite-time and inverse-time overcurrent protection according to IEC and ANSI standards. The 7SJ46 relay has an AC and DC auxiliary power supply with a wide range allowing a high degree of flexibility in its application.

Function overview

- Universal application due to integrated wide range AC/DC power supply.
- Standard current transformers (1 A/5 A)
- Easy mounting due to compact housing
- Easy connection via screw-type terminals

Protection functions

- 2-stage overcurrent protection Definite-time and inverse-time
- characteristics (IEC/ANSI)
- High-current stage *I*>> or calculated earth-current stage *I*_E> or *I*_{Ep}> selectable
- Two command outputs for "trip" or "pickup"
- Combination with electromechanical relays is possible due to the emulation algorithm

Monitoring functions

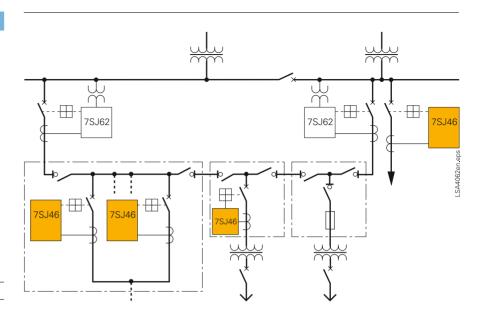
- One live contact for monitoring
- Hardware and software are continuously monitored during operation

Front design

- Simple setting via DIP switches (self-explaining)
- Settings can be executed without auxiliary voltage no PC
- Individual phase pickup indication with stored or not stored LEDs
- Trip indication with separate LED

Additional features

- Optional version available for most adverse environmental conditions (condensation permissible)
- Flush mounting or surface (rail) mounting


Application

The SIPROTEC easy 7SJ46 is a numerical overcurrent protection relay which is primarily intended as a radial feeder or transformer protection (backup) in electrical networks.

It provides definite-time and inverse-time overcurrent protection according to IEC and ANSI standards. The convenient setting with DIP switches is self-explanatory and simple.

The 7SJ46 relay has an AC and DC auxiliary power supply with a wide range allowing a high degree of flexibility in its application. Phase-selective indication of protection pickup is indicated with LEDs.

ection functions
ection functions
intaneous overcurrent ection
e-overcurrent ection (phase)
e-overcurrent ection (earth)

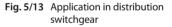


Fig. 5/14 Screw-type terminals

Construction

Within its compact housing the protection relay contains all required components for:

- Measuring and processing
- Pickup and command output
- Operation and indication (without a PC)
- Wide range AC/DC power supply
- Maintenance not necessary (no battery)

The housing dimensions of the units are such that the 7SJ46 relays can in general be installed into the existing panel cutouts. Alternative constructions are available (rail mounting and flush mounting). The compact housing permits easy mounting, and a version for the most adverse environmental conditions, even with extreme humidity, is also available.

Protection functions

The overcurrent function is based on phase-selective measurement of the three phase currents.

The earth (ground) current $I_{\rm E}$ (Gnd) is calculated from the three line currents $I_{\rm L1}$ (A), $I_{\rm L2}$ (B), and $I_{\rm L3}$ (C).

The relay has always a normal stage for phase currents I > (50/51).

For the second stage, the user can choose between a high-current stage for phase currents I >> (50) or a normal stage for calculated earth currents $I \ge (50N/51N)$.

The inverse-time overcurrent protection with integrating measurement method (disk emulation) emulates the behavior of electromechanical relays.

The influence of high frequency transients and transient DC components is largely suppressed by the implementation of numerical measured-value processing.

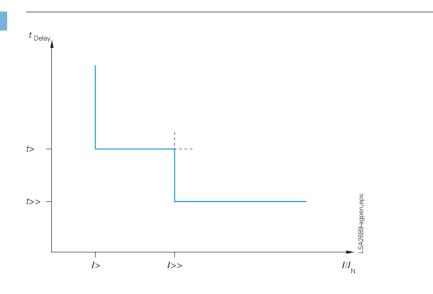


Fig. 5/15 Definite-time overcurrent characteristic

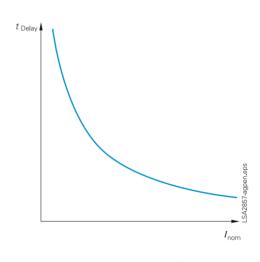
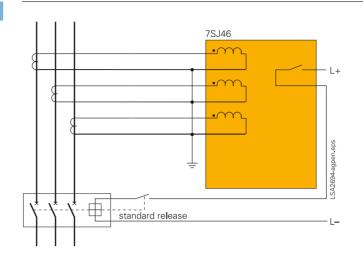
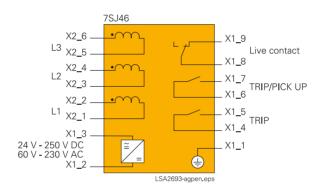


Fig. 5/16 Inverse-time overcurrent characteristic


Available inverse-time characteristics

Characteristics acc. to	ANSI/IEEE	IEC 60255-3
Moderately inverse/normal inverse	•	•
Very inverse	•	•
Extremely inverse	•	•



Connection diagrams

The 7SJ46 has a trip contact, a contact which is adjustable for trip or pickup, and a live contact for the self-monitoring function.

Fig. 5/17 Connection of 3 CTs

General unit data	
Analog input	
System frequency f_N	50 or 60 Hz (selectable)
Current transformer inputs	
Rated current, normal earth current $I_{\rm N}$	1 or 5 A
Power consumption Per phase at $I_N = 1$ A Per phase at $I_N = 5$ A	Approx. 0.01 VA at $I_{\rm N}$ Approx. 0.2 VA at $I_{\rm N}$ (relay)
Rating of current transformer circuit Thermal (r.m.s.)	$100 \cdot I_{\rm N}$ for 1 s 30 $\cdot I_{\rm N}$ for 10 s
	$4 \cdot I_{\rm N}$ continuous
Dynamic (peak)	$250 \cdot I_{\rm N}$ for half a cycle
Auxiliary voltage AC/DC powered	
Input voltage range	24 to 250 V DC (± 20 %) 60 to 230 V AC (-20 %, +15 %)
Power consumption	DC – power supply: Approx. 1.5 W AC – power supply: Approx. 3 VA at 110 V approx. 5.5 VA at 230 V
Output relays	
Number	2 (normally open), 1 live contact
Contact rating	Make 1000 W/VA Break 30 VA 40 W resistive 25 VA at L/R ≤ 50 ms
Rated contact voltage	$\leq 250 \text{ V DC or} \leq 240 \text{ V AC}$
Permissible current per contact	5 A continuous 30 A for 0.5 s (inrush current)
Unit design	
Housing	Flush mounting DIN 43700/IEC 61554 Adaptable for rail mounting recommended for local mounting only
Dimensions (WxHxD) in mm	78.5 x 147 x 205.8 (incl. transparent cover and terminal blocks)
Weight (mass) approx.	1 kg
Degree of protection according to IE	C 60529
Housing	
Front	IP 51
Rear	IP 20
Protection of personnel	IP 1X
U _L -listing	
Listed under "69CA".	
Flastvical tasts	
Electrical tests	
Specifications	

Standards

Insulation tests

Standards	IE
Voltage test (routine test) all circuits except auxiliary supply	2.
Voltage test (routine test) auxiliary supply	3.
Voltage test (type test) Across open contacts Across open live contact	1. 1.

IEC 60255 (product standards) ANSI C37.90.0/.1/.2; UL508 See also standards for individual tests

IEC 60255-5 2.5 kV (r.m.s.), 50 Hz; 1 min

3.5 kV DC; 30 s; both polarities

1.5 kV (r.m.s.), 50 Hz; 1 min 1.0 kV (r.m.s.), 50 Hz; 1 min

Impulse voltage test (type test)	5 kV (peak); 1.2/50 μs; 0.5 J;
all circuits, class III	3 positive and 3 negative impulses in intervals of 1 s
EMC tests for interference immunity	r; type tests
Standards	IEC 60255-6, IEC 60255-22, EN 50263 (product standards) EN 50082-2 (generic standard) EN 61000-6-2 IEC 61000-4 (generic standards)
High-frequency tests IEC 60255-22-1, class III	2.5 kV (peak); 1 MHz; $\tau = 15$ ms; $R_i = 200 \Omega$; 400 surges/s; duration ≥ 2 s
Electrostatic discharge IEC 60255-22-2, class III EN 61000-4-2, class III	$\begin{array}{l} 4 \text{ kV/6 kV contact discharge; 8 kV air} \\ \text{discharge; both polarities;} \\ 150 \text{ pF; } R_i = 330 \ \Omega \end{array}$
Irradiation with radio-frequency field, amplitude-modulated IEC 60255-22-3 and IEC 61000-4-3, class III	10 V/m; 80 to 1000 MHz; 80 %; 1 kHz; AM
Irradiation with radio-frequency field, pulse-modulated IEC 61000-4-3/ENV 50204, class III	10 V/m; 900 MHz; repetition frequency 200 Hz; duty cycle 50 % 30 V/m 1810 MHz; repetition frequency 200 Hz; duty cycle 50 %
Fast transient interference/bursts IEC 60255-22-4 and IEC 61000-4-4, class IV	4 kV; 5/50 ns; 5 kHz; burst length = 15 ms; repetition rate 300 ms; both polarities; $R_i = 50 \Omega$; duration 1 min
High-energy surge voltage, IEC 61000-4-5 installation class III	Impulse: 1.2/50 µs
Auxiliary voltage	circuit groups to earth: 2 kV; 12 Ω, 9 μF between circuit groups: 1 kV; 2 Ω, 18 μF
Measuring inputs, binary outputs	circuit groups to earth: 2 kV; 42 Ω, 0.5 μF between circuit groups: 1 kV; 42 Ω, 0.5 μF
Line-conducted HF, amplitude-modulated. IEC 60255-22-6 and IEC 61000-4-6, class III	10 V; 150 kHz to 80 MHz; 80 %; 1 kHz; AM; $R_{\rm i}$ = 150 Ω
Power frequency magnetic field IEC 61000-4-8, class IV IEC 60255-6	30 A/m continuous; 300 A/m for 5 s; 50 Hz 0.5 mT; 50 Hz
Damped wave IEC 60694, IEC 61000-4-12, class III	2.5 kV (peak, polarity alternating) 100 kHz, 1 MHz, 10 MHz and 50 MHz, $R_i = 200 \Omega$, duration $\ge 2 s$
Oscillatory surge withstand capability ANSI/IEEE C37.90.1 not across open contacts	2.5 to 3 kV (peak); 1 to 1.5 MHz damped wave; 50 shots per s; duration ≥ 2 s; $R_i = 150 \Omega$ to 200 Ω
Fast transient surge withstand capability ANSI/IEEE C37.90.1 not across open contacts	4 kV to 5 kV; 10/150 ns; 50 and 120 surges per s; both polari- ties; duration ≥ 2 s; $R_i = 80 \Omega$
Radiated electromagnetic inter- ference ANSI/IEEE C37.90.2	35 V/m 25 MHz to 1000 MHz amplitude and pulse-modulated
EMC tests for interference emission;	type test
Standard	EN 50081-* (generic)
Conducted interference voltage, auxiliary voltage IEC CISPR 22, EN 55022, DIN EN VDE 0878 Part 22	150 kHz to 30 MHz, class B
Interference field strength IEC CISPR 22	30 MHz to 1000 MHz, class B

SIEMENS

siemens-russia.com

Mechanical stress test

Vibration, shock and seismic vibration

During operation Standards Vibration IEC 60255-21-1, class II IEC 60068-2-6

Shock IEC 60225-21-2; class I

Seismic vibration IEC 60255-21-3; class I IEC 60068-3-3

During transport (flush mounting) Standards Vibration IEC 60255-21-1, class 2 IEC 60068-2-6

Shock IEC 60255-21-2, class 1 IEC 60068-2-27

Continuous shock IEC 60255-21-2, class 1 IEC 60068-2-29

Climatic stress tests

Temperatures

Temperatures during service

Maximum temperature during storage

Maximum temperature during transport

Humidity

Permissible humidity class (standard)

Permissible humidity class (condensation proof)

- IEC 60255-21 and IEC 60068-2 Sinusoidal 10 to 60 Hz. \pm 0.075 mm amplitude; 60 to 150 Hz; 1 g acceleration Frequency sweep 1 octave/min 20 cycles in 3 perpendicular axes Semi-sinusoidal 5 g acceleration, duration 11 ms, each 3 shocks in both directions of the 3 axes Sinusoidal 1 to 8 Hz: \pm 4.0 mm amplitude (horizontal vector) 1 to 8 Hz: \pm 2.0 mm amplitude (vertical vector) 8 to 35 Hz: 1 g acceleration (horizontal vector) 8 to 35 Hz: 0.5 g acceleration (vertical vector) Frequeny sweep 1 octave/min 1 cycle in 3 perpendicular axes
- IEC 60255-21 and IEC 60068-2 Sinusoidal 5 Hz to 8 Hz: \pm 7.5 mm amplitude; 8 Hz to 150 Hz: 2 *g* acceleration frequency sweep 1 octave/min 20 cycles in 3 perpendicular axes Semi-sinusoidal 15 *g* acceleration, duration 11 ms, each 3 shocks in both directions of the 3 axes Semi-sinusoidal 10 *g* acceleration, duration 16 ms, each 1000 shocks in both directions of the 3 axes
- -20 °C to +70 °C / −4 °F to +158 °F with continuous current 4 *I*_N: -20 °C to +55 °C / −4 °F to +131 °F -25 °C to +55 °C / −13 °F to +131 °F -25 °C to +85 °C / −13 °F to +185 °F

Annual mean value \leq 75 % relative humidity; on 30 days per year up to 95 % relative humidity; condensation not permissible.

Condensation is permissible according to IEC 60654-1, class III

Functions

Overcurrent protection Definite time (DT O/C ANSI 50/51) Setting range / steps Current pickup *I*>> (phases) 2 IN to 20 IN or deactivated, step 0.5 IN Current pickup *I*> (phases) 0.5 IN to 6.2 IN or deactivated, step 0.1 IN Current pickup IE> 0.5 IN to 6.2 IN or deactivated, step 0.1 IN (earth calculated) Delay times $T_I >>$ 0 to 1575 ms, step 25 ms Delay times $T_{\rm I}$ > 0 to 6300 ms, step 100 ms The set time delays are pure delay times. Inverse time (IEC or ANSI 51) Current pickup Ip (phases) 0.5 IN to 4 IN or deactivated, step 0.1 IN Current pickup IEp> 0.5 IN to 4 IN or deactivated, step 0.1 IN (earth calculated) 0.05 to 3.15 s, step 0.05 s Delay times T_{Ip} (IEC) Delay times D (ANSI) 0.5 to 15.00 s, step 0.25 s Trip times Switch on to fault, relay output Approx. 38 ms Reset ratio Approx. 0.95 (with definite time) Approx. 0.91 (with inverse time) Tolerances Definite time (DT O/C 50/51) 5 % of the set value or Current pickup I>>, I>, IE> 5 % of I_N (at threshold < I_N) Delay times T 1 % or 30 ms Inverse time (IEC or ANSI 51) Pickup thresholds 5 % of the set value or 5 % of I_N (at threshold < I_N) Time behaviour for $2 \le I/I_p \le 20$ 5 % or 50 ms Deviation of the measured values as a result of various interferences Frequency in the range of < 2.5 % $0.95 < f/f_N < 1.05$ Frequency in the range of < 10 % $0.9 < f/f_N < 1.1$ Harmonics < 1 % up to 10 % 3rd and 5th harmonic DC components < 5 % Auxiliary supply voltage DC in < 1 % the range of $0.8 \le V_{aux}/V_{aux N} \le 1.2$ Auxiliary supply voltage AC in the < 1 %range of $0.8 \le V_{\text{aux}}/V_{\text{aux N}} \le 1.15$

< 0.5 %/10 K

CE conformity

Temperature in the range of

-5 °C to 70 °C / 23 °F to 158 °F

This product is in conformity with the Directives of the European Communities on the harmonization of the laws of the Member States relating to electromagnetic compatibility (EMC Council Directive 89/336/EEC).

This unit conforms to the international standard IEC 60255.

The unit has been developed and manufactured for application in an industrial environment according to the EMC standards.

This conformity is the result of a test that was performed by Siemens AG in accordance with Article 10 of the Council Directive complying with the generic standards EN 50081-2 and EN 50082-2.

Selection and ordering data

Description	Order No.
SIPROTEC easy 7SJ46 numerical overcurrent protection relay	7SJ460□– 1□□00–□AA0
Current transformer I _N	
1 A	1
5 A	5
Unit design	
For rail mounting	В
For panel-flush mounting	E
Region-specific/functions	
Region World, 50/60 Hz; standard	A
Region World, 50/60 Hz; condensation-proof	В
IEC/ANSI	
IEC	0
ANSI	1

5 Overcurrent Protection / 7SJ46

SIPROTEC 7SJ600 Numerical Overcurrent, Motor and Overload Protection Relay

Description

The SIPROTEC 7SJ600 is a numerical overcurrent relay which, in addition to its primary use in radial distribution networks and motor protection, can also be employed as backup for feeder, transformer and generator differential protection.

The SIPROTEC 7SJ600 provides definitetime and inverse-time overcurrent protection along with overload and negativesequence protection for a very comprehensive relay package. In this way, equipment such as motors can be protected against asymmetric and excessive loading. Asymmetric short-circuits with currents that can be smaller than the largest possible load currents or phase interruptions are reliably detected.

Function overview

Feeder protection

- Overcurrent-time protection
- Earth-fault protection
- · Overload protection
- Negative-sequence protection
- Cold load pickup
- Auto-reclosure
- Trip circuit supervision

Motor protection

- Starting time supervision
- Locked rotor

Control functions

- Commands for control of a circuitbreaker
- Control via keyboard, DIGSI 4 or SCADA system

Measuring functions

• Operational measured values I

Monitoring functions

- Fault event logging with time stamp (buffered)
- 8 oscillographic fault records
- Continuous self-monitoring

Communication

- Via personal computer and DIGSI 3 or DIGSI 4 (≥ 4.3)
- Via RS232 RS485 converter
- Via modem
- IEC 60870-5-103 protocol, 2 kV-isolated
- RS485 interface

Hardware

- 3 current transformers
- 3 binary inputs
- 3 output relays
- 1 live status contact

Application

Wide range of applications

The SIPROTEC 7SJ600 is a numerical overcurrent relay which, in addition to its primary use in radial distribution networks and motor protection, can also be employed as backup for feeder, transformer and generator differential protection.

The SIPROTEC 7SJ600 provides definite-time and inverse-time overcurrent protection along with overload and negative-sequence protection for a very comprehensive relay package. In this way, equipment such as motors can be protected against asymmetric and excessive loading. Asymmetric short-circuits with currents that can be smaller than the largest possible load currents or phase interruptions are reliably detected.

The integrated control function allows simple control of a circuit-breaker or disconnector (electrically operated/motorized switch) via the integrated HMI, DIGSI 3 or DIGSI 4 (\geq 4.3) or SCADA (IEC 60870-5-103 protocol).

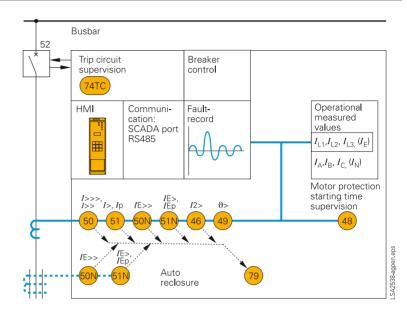


Fig. 5/20 Function diagram

ANSI	IEC	Protection functions
50, 50N	I>, I>>, I>>> I _E >, I _E >>	Definite time-overcurrent protection (phase/neutral)
51, 51N	I _p , I _{Ep}	Inverse time-overcurrent protection (phase/neutral)
79		Auto-reclosure
46)	<i>I</i> ₂ >	Phase-balance current protection (negative-sequence protection)
49)	ϑ>	Thermal overload protection
48)		Starting time supervision
74TC)		Trip circuit supervision breaker control

The definite-time overcurrent protection

overcurrent element (I>>) and a high-set

Intentional trip delays can be parameteriz-

instantaneous-tripping element (I>>>).

ed from 0.00 to 60.00 seconds for the

elements. The instantaneous zone I>>>

trips without any intentional delay. The

definite-time overcurrent protection for

the earth (ground) current has a low-set

overcurrent element $(I_E>)$ and a high-set

low-set and high-set overcurrent

for the 3 phase currents has a low-set overcurrent element (I>), a high-set

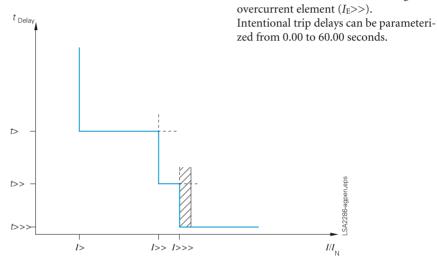
Construction

The relay contains all the components needed for

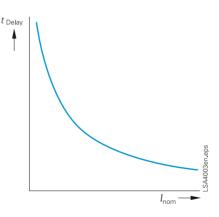
- Acquisition and evaluation of measured values
- Operation and display
- Output of signals and trip commands
- Input and evaluation of binary signals
- SCADA interface (RS485)
- Power supply.

The rated CT currents applied to the SIPROTEC 7SJ600 can be 1 or 5 A. This is selectable via a jumper inside the relay.

Two different housings are available. The flush-mounting/cubicle-mounting version has terminals accessible from the rear. The surface-mounting version has terminals accessible from the front.


Fig. 5/21 Rear view of flush-mounting housing

Protection functions


Definite-time characteristics

The definite-time overcurrent function is based on phase-selective measurement of the three phase currents and/or earth current.

Optionally, the earth (ground) current I_E (Gnd) is calculated or measured from the three line currents $I_{L1}(I_A)$, $I_{L2}(I_B)$ and $I_{L3}(I_C)$.

Inverse-time characteristics

In addition, invese-time overcurrent protection characteristics (IDMTL) can be activated.

Fig. 5/23 Inverse-time overcurrent characteristic

Available inverse-time characteristic

Characteristics acc.to	ANSI / IEEE	IEC 60255-3
Inverse	•	•
Short inverse	•	
Long inverse	•	•
Moderately inverse	•	
Very inverse	•	•
Extremely inverse	•	•
Definite inverse	•	
I squared T	•	

siemens-russia.com

Protection functions

Thermal overload protection (ANSI 49)

The thermal overload protection function provides tripping or alarming based on a thermal model calculated from phase currents.

Thermal overload protection without preload

For thermal overload protection without consideration of the preload current, the following tripping characteristic applies only when

 $I \geq 1.1 \cdot I_{\rm L}$

For different thermal time constants T_{L} , the tripping time *t* is calculated in accordance with the following equation:

$$t = \frac{35}{\left(\frac{I}{I_{\rm L}}\right)^2 - 1} \cdot T_{\rm I}$$

I = Load current

 I_2 = Pickup current

 $T_{\rm L}$ = Time multiplier

The reset threshold is above $1.03125 \cdot I/I_N$

Thermal overload protection with preload

The thermal overload protection with consideration of preload current constantly updates the thermal model calculation regardless of the magnitude of the phase currents. The tripping time t is calculated in accordance with the following tripping characteristic (complete memory in accordance with IEC 60255-8).

$$t = \tau \cdot \ln \frac{\left(\frac{I}{\mathbf{k} \cdot I_{\mathbf{N}}}\right)^2 - \left(\frac{I_{\text{pre}}}{\mathbf{k} \cdot I_{\mathbf{N}}}\right)^2}{\left(\frac{I}{\mathbf{k} \cdot I_{\mathbf{N}}}\right)^2 - 1}$$

- t = Tripping time after beginning of the thermal overload
- $\tau = 35.5 \cdot T_{\rm L}$
- $I_{\rm pre} = {\rm Pre-load\ current}$
- $T_{\rm L}$ = Time multiplier
- *I* = Load current
- k = k factor (in accordance with IEC 60255-8)
- ln = Natural logarithm
- $I_{\rm N}$ = Rated (nominal) current

For further details please refer to part 2 "Overview".

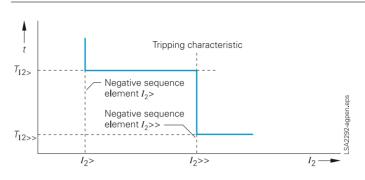


Fig. 5/24 Tripping characteristic of the negative-sequence protection function

Negative-sequence protection (*I*₂>>, *I*₂>/ANSI 46 Unbalanced-load protection)

The negative-sequence protection (see Fig. 5/24) detects a phase failure or load unbalance due to network asymmetry. Interruptions, short-circuits or crossed connections to the current transformers are detected.

Furthermore, low level single-phase and two-phase short-circuits (such as faults beyond a transformer) as well as phase interruptions can be detected.

This function is especially useful for motors since negative sequence currents cause impermissible overheating of the rotor.

In order to detect the unbalanced load, the ratio of negative phase-sequence current to rated current is evaluated.

 I_2 = Negative-sequence current T_{12} = Tripping time

Transformer protection

The high-set element permits current coordination where the overcurrent element functions as a backup for the lower-level protection relays, and the overload function protects the transformer from thermal overload. Low-current single-phase faults on the low voltage side that result in negative phase-sequence current on the highvoltage side can be detected with the negative-sequence protection.

Cold load pickup

By means of a binary input which can be wired from a manual close contact, it is possible to switch the overcurrent pickup settings to less sensitive settings for a programmable duration of time. After the set time has expired, the pickup settings automatically return to their original setting. This can compensate for initial inrush when energizing a circuit without compromising the sensitivity of the overcurrent elements during steady state conditions.

3-pole multishot auto-reclosure (AR, ANSI 79)

Auto-reclosure (AR) enables 3-phase autoreclosing of a feeder which has previously been disconnected by time-overcurrent protection.

Trip circuit supervision (ANSI 74TC)

One or two binary inputs can be used for the trip circuit monitoring.

Control

The relay permits circuit-breakers to be opened and closed without command feedback. The circuit-breaker/disconnector may be controlled by DIGSI, or by the integrated HMI, or by the LSA/SCADA equipment connected to the interface.

Protection functions

Switch-onto-fault protection

If switched onto a fault, instantaneous tripping can be effected. If the internal control function is used (local or via serial interface), the manual closing function is available without any additional wiring. If the control switch is connected to a circuitbreaker bypassing the internal control function, manual detection using a binary input is implemented.

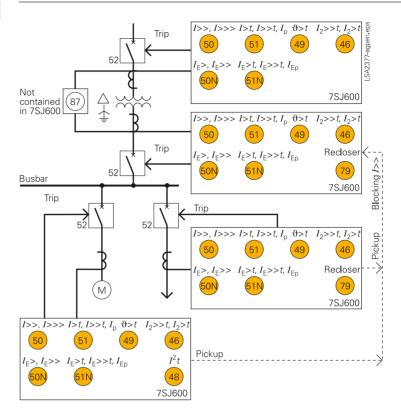
Busbar protection (Reverse interlocking)

Binary inputs can be used to block any of the six current stages. Parameters are assigned to decide whether the input circuit is to operate in open-circuit or closed-circuit mode. In this case, reverse interlocking provides high-speed busbar protection in radial or ring power systems that are opened at one point. The reverse interlocking principle is used, for example, in medium-voltage power systems and in switchgear for power plants, where a high-voltage system transformer feeds a busbar section with several mediumvoltage outgoing feeders.

Motor protection

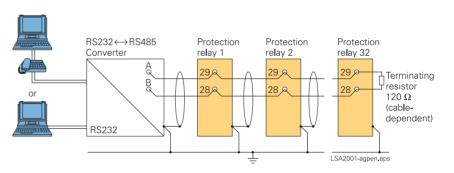
For short-circuit protection, e.g. elements I >> (50) and $I_E (50N)$ are available. The stator is protected against thermal overload by $\vartheta_s > (49)$, the rotor by $I_2 > (46)$, starting time supervision (48).

Motor starting time supervision (ANSI 48)


The start-up monitor protects the motor against excessively long starting. This can occur, for example, if the rotor is blocked, if excessive voltage drops occur when the motor is switched on or if excessive load torques occur. The tripping time depends on the current.

$$t_{\rm TRIP} = \left(\frac{I_{\rm start}}{I_{\rm rms}}\right)^2 \cdot t_{\rm start\,max}$$

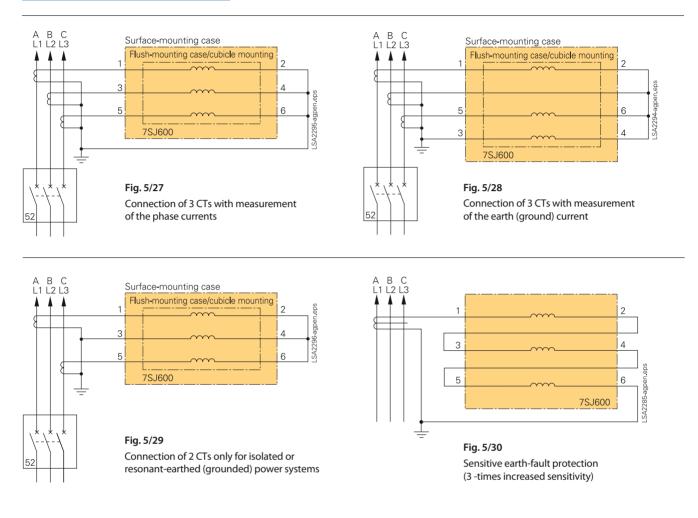
for
$$I_{\rm rms} > I_{\rm start}$$
, reset ratio $\frac{I_{\rm N}}{I_{\rm start}}$


approx. 0.94

- t_{TRIP} = Tripping time
- I_{start} = Start-up current of the motor
- $t_{\text{start max}}$ = Maximum permissible starting
- time
- $I_{\rm rms}$ = Actual current flowing

Fig. 5/25 Reverse interlocking

Features


Fig. 5/26 Wiring communication For convenient wiring of the RS485 bus, use bus cable system 7XV5103 (see part 15 of this catalog).

Serial data transmission

A PC can be connected to ease setup of the relay using the Windows-based program DIGSI which runs under MS-Windows. It can also be used to evaluate up to 8 oscillographic fault records, 8 fault logs and 1 event log containing up to 30 operational indications. The SIPROTEC 7SJ600 transmits a subset of data via IEC 60870-5-103 protocol:

- General fault detection
- General trip
- Phase current *I*_{L2}
- User-defined message
- Breaker control
- Oscillographic fault recording

Connection diagrams

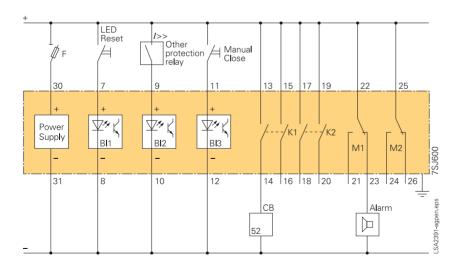


Fig. 5/31 Example of typical wiring

General unit data	
CT circuits	
Rated current I _N	1 or 5 A
Rated frequency $f_{\rm N}$	50/60 Hz (selectable)
Overload capability current path Thermal (r.m.s.)	$100 \ge I_N$ for $\le 1 \le$ $30 \ge I_N$ for $\le 10 \le$ $4 \ge I_N$ continuous
Dynamic (pulse current)	$250 \times I_N$ one half cycle
Power consumption Current input at $I_N = 1$ A at $I_N = 5$ A	< 0.1 VA < 0.2 VA
Power supply via integrated DC/DC c	onverter
Rated auxiliary voltage <i>V</i> _{aux} / permissible variations	24, 48 V DC/± 20 % 60, 110/125 V DC/± 20 % 220, 250 V DC/± 20 % 115 V AC/-20 % +15 % 230 V AC/-20 % +15 %
Superimposed AC voltage, peak-to-peak at rated voltage at limits of admissible voltage	≤ 12 % ≤ 6 %
Power consumption Quiescent Energized	Approx. 2 W Approx. 4 W
Bridging time during failure/ short-circuit of auxiliary voltage	\geq 50 ms at $V_{aux} \geq$ 110 V DC \geq 20 ms at $V_{aux} \geq$ 24 V DC
Binary inputs	
Number	3 (marshallable)
Operating voltage	24 to 250 V DC
Current consumption, independent of operating voltage	Approx. 2.5 mA
Pickup threshold, reconnectable by solder bridges Rated aux. voltage	
24/48/60 V DC V _{pickup} V _{drop-out} 110/125/220/250 V DC	$\geq 17 \text{ V DC}$ < 8 V DC
$V_{ m pickup}$ $V_{ m drop-out}$	≥ 74 V DC < 45 V DC
Signal contacts	
Signal/alarm relays	2 (marshallable)
Contacts per relay	1 CO
Switching capacity Make	1000 W / VA
Break Societalia acceltante	30 W / VA
Switching voltage	250 V
Permissible current	5 A

Heavy-duty (command) contacts	
Trip relays, number	2 (marshallable)
Contacts per relay	2 NO
Switching capacity Make Break	1000 W / VA 30 W / VA
Switching voltage	250 V
Permissible current Continuous For 0.5 s	5 A 30 A
Design	
Housing 7XP20	Refer to part 15 for dimension drawings
Weight Flush mounting /cubicle mount- ing Surface mounting	Approx. 4 kg Approx. 4.5 kg
Degree of protection acc. to EN 60529	-PProve no Kg
Housing Terminals	IP51 IP21
Cartalistan	
Serial interface	
Interface, serial; isolated	20.00
Standard	RS485
Test voltage	2.8 kV DC for 1 min
Connection	Data cable at housing terminals, tw data wires, one frame reference, for connection of a personal computer or similar; core pairs with individua and common screening, screen mu- be earthed (grounded), communica- tion possible via modem
Transmission speed	As delivered 9600 baud min. 1200 baud, max. 19200 baud
Electrical tests	
Specifications	
Standards	IEC 60255-5; ANSI/IEEE C37.90.0
Insulation test	
Standards	IEC 60255-5, ANSI/IEEE C37.90.0
High-voltage test (routine test) Except DC voltage supply input and RS485	2 kV (r.m.s.), 50 Hz
Only DC voltage supply input and RS485	2.8 kV DC
High-voltage test (type test) Between open contacts of trip relays	1.5 kV (r.m.s.), 50 Hz
/ 0	1 kV (r.m.s.), 50 Hz
Between open contacts of alarm relays	

SIEMENS

siemens-russia.com

Standards

EMC tests for interference immunity; type tests

High-frequency test

IEC 60255-22-1, class III Electrostatic discharge

IEC 60255-22-2, class III and IEC 61000-4-2, class III

Irradiation with radio-frequency field

Non-modulated. IEC 60255-22-3 (report) class III Amplitude modulated, IEC 61000-4-3, class III Pulse modulated. IEC 61000-4-3, class III

Fast transient interference/bursts IEC 60255-22-4 and IEC 61000-4-4, class III

Conducted disturbances induced by radio-frequency fields, amplitude modulated IEC 601000-4-6, class III

Power frequency magnetic field IEC 61000-4-8, class IV IEC 60255-6

Oscillatory surge withstand capability ANSI/IEEE C37.90.1 (common mode)

Fast transient surge withstand capability ANSI/IEEE C37.90.1 (commom mode)

Radiated electromagnetic interference, ANSI/IEEE C37.90.2

High-frequency test Document 17C (SEC) 102

EMC tests for interference emission; type tests

Standard

Conducted interference voltage, aux. 150 kHz to 30 MHz voltage CISPR 22, EN 55022, DIN VDE 0878 Part 22, limit value class B

Interference field strength CISPR 11, EN 55011, DIN VDE 0875 Part 11, limit value class A

IEC 60255-6; IEC 60255-22 (product standard) EN 50082-2 (generic standard), DIN VDE 0435 Part 303

2.5 kV (peak), 1 MHz, $\tau = 15 \,\mu s$, 400 surges/s, duration 2 s 4 kV/6 kV contact discharge,

8 kV air discharge, both polarities, 150 pF, R_i =330 Ω

10 V/m, 27 to 500 MHz

10 V/m, 80 to 1000 MHz, 80 % AM, 1 kHz 10 V/m, 900 MHz, repetition frequency, 200 Hz, duty cycle 50 %

2 kV, 5/50 ns, 5 kHz, burst length 15 ms, repetition rate 300 ms, both polarities, $R_i = 50 \Omega$, duration 1 min

10 V, 150 kHz to 80 MHz, 80 % AM, 1 kHz

30 A/m continuous, 50 Hz 300 A/m for 3 s, 50 Hz 0.5 mT; 50 Hz 2.5 to 3 kV (peak), 1 MHz to 1.5 MHz, decaying oscillation, 50 shots per s, duration 2 s, $R_i = 150 \Omega$ to 200 Ω

4 to 5 kV, 10/150 ns, 50 surges per s, both polarities, duration 2 s, $R_i = 80 \Omega$

10 to 20 V/m, 25 to 1000 MHz, amplitude and pulse-modulated

2.5 kV (peak, alternating polarity), 100 kHz, 1 MHz, 10 MHz and 50 MHz, decaying oscillation, $R_i = 50 \Omega$

EN 50081-* (generic standard)

30 to 1000 MHz

Mechanical stress tests

Vibration, shock and seismic vibration

During operation Standards

Vibration IEC 60255-21-1, class1 IEC 60068-2-6

Shock IEC 60255-21-2, class 1

Seismic vibration IEC 60255-21-3, class 1, IEC 60068-3-3

During transport

Vibration IEC 60255-21-1, class 2 IEC 60068-2-6

Shock IEC 60255-21-2, class 1 IEC 60068-2-27

Continuous shock IEC 60255-21-2, class 1 IEC 60068-2-29

Climatic stress tests

Temperatures

Recommended temperature during operation

Permissible temperature during operation during storage during transport (Storage and transport with standard works packaging)

Humidity

Acc. to IEC 60255-2-1 and IEC 60068-2

Sinusoidal 10 to 60 Hz: \pm 0.035 mm amplitude, 60 to 150 Hz: 0.5 g acceleration Sweep rate 1 octave/min 20 cycles in 3 orthogonal axes

Half-sine, acceleration 5 g, duration 11 ms, 3 shocks in each direction of 3 orthogonal axes

Sinusoidal 1 to 8 Hz: ± 3.5 mm amplitude (horizontal axis) 1 to 8 Hz: \pm 1.5 mm amplitude (vertical axis) 8 to 35 Hz: 1 g acceleration (horizontal axis) 8 to 35 Hz: 0.5 g acceleration (vertical axis) Sweep rate 1 octave/min 1 cycle in 3 orthogonal axes

Sinusoidal 5 to 8 Hz: \pm 7.5 mm amplitude; 8 to 150 Hz: 2 g acceleration Sweep rate 1 octave/min 20 cycles in 3 orthogonal axes

Half-sine, acceleration 15 g, duration 11 ms, 3 shocks in each direction of 3 orthogonal axes

Half-sine, acceleration 10 g duration 16 ms, 1000 shocks in each direction of 3 orthogonal axes

-5 °C to +55 °C / +23 °F to +131 °F > 55 °C decreased display contrast

–20 °C to +70 °C / –4 °F to +158 °F -25 °C to +55 °C / -13 °F to +131 °F -25 °C to +70 °C / -13 °F to +158 °F

Mean value per year \leq 75 % relative humidity, on 30 days per year 95 % relative humidity, condensation not permissible

ent protectio	n (ANSI	150, 50N)
phase <i>I</i> > earth <i>I</i> _E > phase <i>I</i> >> earth <i>I</i> _E >> phase <i>I</i> >>>	I/I _N I/I _N I/I _N	= 0.1 to 25 (steps 0.1), or ∞ = 0.05 to 25 (steps 0.01), or ∞ = 0.1 to 25 (steps 0.1), or ∞ = 0.05 to 25 (steps 0.01), or ∞ = 0.3 to 12.5 (steps 0.1), or ∞
, $I_{\rm E}$ >, I >> delay times	0 s to	60 s (steps 0.01 s)
without	Appro	ox. 35 ms
with meas.	Appro	ox. 50 ms
> at 2 x	Appro	ox. 20 ms
, <i>I</i> _E >		ox. 35 ms ox. 65 ms
	Appro	ox. 0.95
	Appro	ox. 25 ms
>, I>>>,	5 % o	f setting value
	1 % o	f setting value or 10 ms
nge: 1.2	≤1%	6
C	≤ 0.5	%/10 K
	≤ 1.5	
	≤ 2.5	%
rmonic rmonic	$ \leq 1 \% \\ \leq 1 \% $	
	phase <i>I</i> > earth <i>I</i> _E > phase <i>I</i> >> earth <i>I</i> _E >> phase <i>I</i> >>> , <i>I</i> _E >, <i>I</i> _E >, without with meas. >> at 2 x , <i>I</i> _E > >, <i>I</i> _E >>, , <i>I</i> _E > >, <i>I</i> _C rmonic	earth $I_E>$ phase $I>>$ I/I_N earth $I_E>>$ phase $I>>>$ I/I_N $0 s todelay timesE>, I_E>>withoutApproxeenApproxe$

	Setting range/steps Overcurrent pickup phase I _p earth I _{Ep}	$I/I_{\rm N} = 0.1 \text{ to } 4 \text{ (steps } 0.1\text{)}$ = 0.05 to 4 (steps 0.01)
	Time multiplier for $I_{\rm p}$, $I_{\rm Ep}$ $T_{\rm p}$	(IEC charac.) 0.05 to 3.2 s (steps 0.01 s) (ANSI charac.) 0.5 to 15 s (steps 0.1 s)
	Overcurrent pickup phase <i>I>></i> phase <i>I>>></i> earth <i>I</i> _E >>	= 0.3 to 12.5 (steps 0.1), or ∞
	Delay time <i>T</i> for <i>I</i> >>, I_E >>	0 s to 60 s (steps 0.01 s)
	Tripping time characteristics acc. to I	EC
	Pickup threshold Drop-out threshold Drop-out time	Approx. 1.1 x I_p Approx. 1.03 x I_p Approx. 35 ms
Tripping time characteristics acc. to ANSI / IEEE		ANSI / IEEE
	Pickup threshold Drop-out threshold, alternatively: disk emulation	Approx. 1.06 x I_p Approx. 1.03 x I_p

Tolerances Pickup values Delay time for $2 \le I/I_p \le 20$ and $0.5 \le I/I_N \le 24$	5 % 5 % of theoretical value ± 2 % current tolerance, at least 30 ms
Influencing variables Auxiliary voltage, range:	$\leq 1\%$
$0.8 \le V_{aux}/V_{auxN} \le 1.2$ Temperature, range: $-5 \text{ °C} \le \Theta_{amb} \le 40 \text{ °C}$	≤ 0.5 %/10 K
+23 °F $\leq \Theta_{amb} \leq 104$ °F Frequency, range:	\leq 8 % referred to theoretical time
$0.95 \le f/f_{\rm N} \le 1.05$	value
Negative-sequence overcurrent prof Setting range/steps	(ANSI 40)
Tripping stage I_2 > in steps of 1 %	8 % to 80 % of $I_{ m N}$ 8 % to 80 % of $I_{ m N}$
$I_2>>$ in steps of 1 % Time delays $T(I_2>)$, $T(I_2>>)$ in steps of 0.01s	0.00 s to 60.00 s
Lower function limit	At least one phase current $\geq 0.1 \text{ x } I_{\text{N}}$
Pickup times Tripping stage <i>I</i> ₂ >, tripping stage <i>I</i> ₂ >>	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
But with currents <i>I</i> / <i>I</i> _N >1.5 (overcurrent case) or negative-sequence current < (set value +0.1 x <i>I</i> _N)	Approx. 200 ms 310 ms
Reset times	At $f_{\rm N} = 50$ Hz 60 Hz
Tripping stage $I_2>$, tripping stage $I_2>>$	$\begin{array}{ccc} \text{Approx. 35 ms} & \text{42 ms} \end{array}$
Reset ratios Tripping stage <i>I</i> ₂ >, tripping stage <i>I</i> ₂ >>	Approx. 0.95 to 0.01 x $I_{\rm N}$
Tolerances Pickup values I_2 , I_2 >> with current $I/I_N \le 1.5$ with current $I/I_N > 1.5$ Stage delay times	\pm 1 % of $I_{\rm N}$ \pm 5 % of set value \pm 5 % of $I_{\rm N}$ \pm 5 % of set value \pm 1 % or 10 ms
Influence variables Auxiliary DC voltage, range: $0.8 \leq V_{\rm ev} = 1.2$	≤ 1 %
$0.8 \le V_{aux} / V_{auxN} \le 1.2$ Temperature, range: $-5 ^{\circ}\text{C} \le \Theta_{amb} \le +40 ^{\circ}\text{C}$	≤ 0.5 %/10 K
$+23 \text{ °F} \leq \Theta_{amb} \leq +104 \text{ °F}$ Frequency,	
range: $0.98 \le f/f_N \le 1.02$ range: $0.95 \le f/f_N \le 1.05$	$\leq 2 \% \text{ of } I_{\text{N}}$ $\leq 5 \% \text{ of } I_{\text{N}}$
Auto-reclosure (option) (ANSI 79)	
Number of possible shots Auto-reclose modes	l up to 9 3-pole
Dead times for 1^{st} to 3^{rd} shot for 4^{th} and any further shot	0.05 s to 1800 s (steps 0.01 s) 0.05 s to 1800 s (steps 0.01 s)
Reclaim time after successful AR	0.05 s to 320 s (steps 0.01 s)
Lock-out time after unsuccessful AR	0.05 s to 320 s (steps 0.01 s)
Reclaim time after manual close	0.50 s to 320 s (steps 0.01 s)
Duration of RECLOSE command	0.01s to 60 s (steps 0.01 s)
Control	
Number of devices Evaluation of breaker control	l None

Thermal overload protection with memory (ANSI 49) (total memory according to IEC 60255-8)

$\begin{array}{l} \mbox{Setting ranges} \\ \mbox{Factor k acc. to IEC 60255-8} \\ \mbox{Thermal time constant } \tau_{th} \\ \mbox{Thermal alarm stage } \Theta_{alarm} / \Theta_{trip} \\ \mbox{Prolongation factor at motor} \\ \mbox{stand-still } k_{\tau} \end{array}$	0.40 to 2 (steps 0.01) 1 to 999.9 min (steps 0.1 min) 50 to 99 % referred to trip tempera- ture rise (steps 1 %) 1 to 10 (steps 0.01)
Reset ratios	
$\Theta/\Theta_{\text{trip}}$	Reset below Θ_{alarm}
Θ/Θ_{alarm}	
- / - (((())))	Approx. 0.99
Tolerances	
Referring to k \cdot $I_{\rm N}$	\pm 5 % (class 5 % acc. to
	IEC 60255-8)
Referring to trip time	\pm 5 % \pm 2 s (class 5 % acc. to
	IEC 60255-8)
Influence variables referred to $k \cdot I_N$ Auxiliary DC voltage in the range of $0.8 \le V_{aux} / V_{auxN} \le 1.2$	≤ 1 %
Temperature, range: $-5 ^{\circ}\text{C} \le \Theta_{\text{amb}} \le +40 ^{\circ}\text{C}$	\leq 0.5 % / 10 K
$+23 \text{ °F} \le \Theta_{\text{amb}} \le +104 \text{ °F}$	- 1.0/
Frequency, range:	$\leq 1 \%$
$0.95 \le f/f_{\rm N} \le 1.05$	
Without pickup value $I_{\rm L}$ / $I_{\rm N}$	0.4 to 4 (steps 0.1)
Memory time multiplier $T_{\rm L}$ (= t_6 -time)	1 to 120 s (steps 0,1 s)
Reset ratio <i>I</i> / <i>I</i> _L	Approx. 0.94
Tolerances	
Referring to pickup threshold	± 5 %
$1.1 \cdot I_{\rm L}$	_ 0 ,0
Referring to trip time	$\pm 5\% \pm 2 s$
Influence variables	- 1.0/
, 0 0	$\leq 1\%$
of $0.8 \le V_{\text{aux}} / V_{\text{auxN}} \le 1.2$	-0.50/100V
Temperature, range: 5%	$\leq 0.5 \%/10 \text{ K}$
$-5 ^{\circ}\text{C} \le \Theta_{\text{amb}} \le +40 ^{\circ}\text{C}$	
$+23 \text{ °F} \le \Theta_{\text{amb}} \le +104 \text{ °F}$	- 1.0/
Frequency, range: $0.05 \neq 0.05$	$\leq 1\%$
$0.95 \le f/f_{\rm N} \le 1.05$	

Starting time supervision (motor protection)

Setting ranges Permissible starting current $I_{\text{Start}}/I_{\text{N}}$	0.4 to 20 (steps 0.1)
Permissible starting time <i>t</i> _{Start}	1 to 360 s (steps 0.1 s)
Tripping characteristic	$t = \left(\frac{I_{\text{Start}}}{I_{\text{rms}}}\right)^2 \cdot t \text{ for } I_{\text{rms}} > I_{\text{Start}}$
Reset ratio Irms / IStart	Approx. 0.94

Tolerances Pickup value Delay time

5 % 5 % of setting value or 330 ms

Fault recording	
Measured values	$I_{\rm L1}, I_{\rm L2}, I_{\rm L3}$
Start signal	Trip, start release, binary input
Fault storage Total storage time (fault detec- tion or trip command = 0 ms) Max. storage period per fault event T_{max} Pre-trigger time T_{pre} Post-fault time T_{post} Sampling rate	Max. 8 fault records Max. 5 s, incl. 35 power-fail safe selectable pre-trigger and post-fault time 0.30 to 5.00 s (steps 0.01 s) 0.05 to 0.50 s (steps 0.01 s) 0.05 to 0.50 s (steps 0.01 s) 1 instantaneous value per ms at 50 Hz 1 instantaneous value per 0.83 ms at 60 Hz
Additional functions	
Operational measured values	
Operating currents Measuring range Tolerance	I _{L1} , I _{L2} , I _{L3} 0 % to 240 % I _N 3 % of rated value
Thermal overload values	
Calculated temperature rise Measuring range Tolerance	Θ/Θ _{trip} 0 % to 300 % 5 % referred to Θ _{trip}
Fault event logging	
Storage of indications of the last 8 faults	
Time assignment	
Resolution for operational indications Resolution for fault event indications Max. time deviation	1 s 1 ms 0.01 %
Trip circuit supervision	
With one or two binary inputs	
Circuit-breaker trip test	
With live trip or trip/reclose cycle (version with auto-reclosure)	

CE conformity

Equit recording

This product is in conformity with the Directives of the European Communities on the harmonization of the laws of the Member States relating to electromagnetic compatibility (EMC Council Directive 89/336/EEC) and electrical equipment designed for use within certain voltage limits (Council Directive 73/23/EEC).

This unit conforms to the international standard IEC 60255, and the German standard DIN 57435/Part 303 (corresponding to VDE 0435/Part 303).

The unit has been developed and manufactured for application in an industrial environment according to the EMC standards.

This conformity is the result of a test that was performed by Siemens AG in accordance with Article 10 of the Council Directive complying with the generic standards EN 50081-2 and EN 50082-2 for the EMC Directive and standard EN 60255-6 for the "low-voltage Directive".

ring data	Description	Order No.
	7SJ600 numerical overcurrent, motor and overload protection relay	7SJ600🗆 – 🗆 🗖 🗛 🗆 🖉 – 🗆 🖉 🗆
	Binary input voltage 24 to 250 V DC with isolated RS485 port	
	Rated current at 50/60 Hz	
	$\frac{1}{1} A^{(1)}$	
	5 A ¹⁾	5
	Rated auxiliary voltage	
	24, 48 V DC	2
	$\frac{24,46 \text{ V DC}}{60,110,125 \text{ V DC}^{2)}}$	4
	$\frac{60, 110, 125 \text{ V DC}}{220, 250 \text{ V DC}, 115 \text{ V AC}^{2)}}$	5
	$\frac{220,250 \text{ V DC},115 \text{ V AC}}{230 \text{ V AC}^{3}}$	6
	230 V AC 7	0
	Unit design	
	For panel surface mounting, terminals on the side	В
	Terminal connection on top and bottom	
	For panel flush mounting/cubicle mounting	E
	Languages	
	English, German, Spanish, French, Russian	0
	Auto-reclosure (option)	
	Without	0
	With	1
	Control	
	Without	A
	With	В
	U _L -Listing	
	Without UL-listing	0
	Without UL-listing	0

Converter RS232 (V.24) - RS485*

Converter (5252 (V.24) (15465	
With communication cable for the	
7SJ600 numerical overcurrent, motor and overload protection	relay
Length 1 m	
PC adapter	
With power supply unit 230 V AC	<i>7XV5700- 0</i> □□00 ⁴⁾
With power supply unit 110 V AC	<i>7XV5700-</i> 1□□00 ⁴⁾

Converter, full-duplex,

Auxiliary voltage 24 to 250 V DC and 110/230 V AC	7XV5650-0BA00
Mounting rail for 19" rack	C73165-A63-C200-1
Manual for 7SJ600	
English	C53000-G1176-C106-7
Spanish	C53000-G1178-C106-1
French	C53000-G1177-C106-3

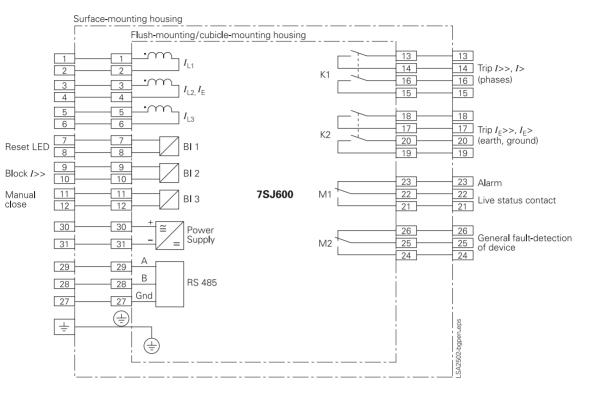
1) Rated current can be selected by means of jumpers.

Mounting rail

- 2) Transition between the two auxiliary voltage ranges can be selected by means of jumpers.
- 3) Only when position 16 is not "1" (with U_L -listing).

SP2289-afp

- 4) Possible versions see part 13.
- RS485 bus system up to 115 kbaud RS485 bus cable and adaptor 7XV5103-□AA□□; see part 13.


Aounting rail for 19" rack	C73165-A63-C200-1	
Nanual for 7SJ600		
nglish	C53000-G1176-C106-7	
panish	C53000-G1178-C106-1	_
rench	C53000-G1177-C106-3	_
ample order SJ600, 1 A, 60 - 125 V, flush mounting, ARC	75J6001-4EA00-1DA0	

7SJ600, 1 A, 60 - 125 V, flush mounting, ARC	7SJ6001-4EA00-1DA0
Converter V.24 -RS485, 230 V AC	7XV5700-0AA00
Manual, English	C53000-G1176-C106-7
or visit www.siemens.com/sinrotec	

or visit www.siemens.com/siprotec

Connection diagram

SIPROTEC 7SJ602 Multifunction Overcurrent and Motor Protection Relay

Fig. 5/33 SIPROTEC 7SJ602 multifunction protection relay

Description

The SIPROTEC 7SJ602 is a numerical overcurrent relay which, in addition to its primary use in radial distribution networks and motor protection, can also be employed as backup for line, transformer and generator differential protection. The SIPROTEC 7SJ602 provides definite-time and inverse-time overcurrent protection along with overload and unbalanced-load (negative-sequence) protection for a very comprehensive relay package.

For applications with earth-current detection two versions are available: One version with four current transformer inputs for nondirectional earth (ground) fault detection and a second version with three current inputs (2 phase, 1 earth/ground) and one voltage input for <u>directional</u> earth (ground) fault detection.

The flexible communication interfaces are open for modern communication architectures with control systems.

Function overview

Feeder protection

- Overcurrent-time protection
- Sensitive earth-fault detection
- Directional sensitive earth-fault detection
- Displacement voltage
- Disk emulation
- Overload protection
- Breaker failure protection
- Negative-sequence protection
- · Cold load pickup
- Auto-reclosure
- Trip circuit supervision

Motor protection

- Starting time supervision
- Locked rotor
- Restart inhibit
- Undercurrent monitoring
- Temperature monitoring

Control functions

- Commands for control of a circuitbreaker
- Control via keyboard, DIGSI 4 or SCADA system

Measuring functions

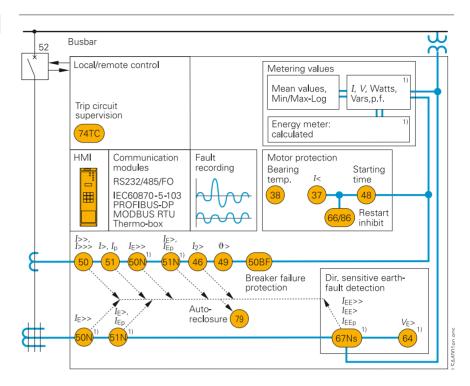
- Operational measured values *I*, *V*
- Power measurement P, Q, S, W_p, W_q
- Slavepointer
- Mean values
- Monitoring functions
- Fault event logging with time stamp (buffered)
- 8 oscillographic fault records
- Continuous self-monitoring

Communication interfaces

- System interface
- IEC 60870-5-103 protocol– PROFIBUS-DP
- MODBUS RTU/ASCII
- Front interface for DIGSI 4

Hardware

- 4 current transformers or
- 3 current + 1 voltage transformers
- 3 binary inputs
- 4 output relays
- 1 live status contact


Application

Wide range of applications

The SIPROTEC 7SJ602 is a numerical overcurrent relay which, in addition to its primary use in radial distribution networks and motor protection, can also be employed as backup for feeder, transformer and generator differential protection.

The SIPROTEC 7SJ602 provides definite-time and inverse-time overcurrent protection along with overload and negative sequence protection for a very comprehensive relay package. In this way, equipment such as motors can be protected against asymmetric and excessive loading. Asymmetric shortcircuits with currents that can be smaller than the largest possible load currents or phase interruptions are reliably detected.

The integrated control function allows simple control of a circuit-breaker or disconnector (electrically operated/motorized switch) via the integrated HMI, DIGSI or SCADA.

1) alternatively; see "Selection and ordering data" for details Fig. 5/34 Function diagram

ANSI No.	IEC	Protection functions
(50, 50N)	I>, I>>, I>>> $I_{\rm E}>, I_{\rm E}>>$	Definite-time overcurrent protection (phase/neutral)
(51, 51N)	I _p , I _{Ep}	Inverse-time overcurrent protection (phase/neutral)
67Ns/50Ns	$I_{\rm EE}$ >, $I_{\rm EE}$ >>, $I_{\rm EEp}$	Directional/non-directional sensitive earth-fault detection
64	$V_{\rm E}>$	Displacement voltage
50BF		Breaker failure protection
79		Auto-reclosure
46	$I_2>$	Phase-balance current protection (negative-sequence protection)
49	ϑ>	Thermal overload protection
48		Starting time supervision
66/86		Restart inhibit
37)	I<	Undercurrent monitoring
38		Temperature monitoring via external device, e.g. bearing temperature monitoring
74TC		Trip circuit supervision breaker control

Construction

The relay contains all the components needed for

- Acquisition and evaluation of measured values
- Operation and display
- Output of signals and trip commands
- Input and evaluation of binary signals
- SCADA interface (RS485, RS232, fiber-optic)
- Power supply.

The rated CT currents applied to the SIPROTEC 7SJ602 can be 1 A or 5 A. This is selectable via a jumper inside the relay.

Two different housings are available. The flush-mounting version has terminals accessible from the rear. The surface-mounting version has terminals accessible from the front. Retrofitting of a communication module, or replacement of an existing communication module with a new one are both possible.

Fig. 5/35 Rear view of flush-mounting housing

Fig. 5/36 View from below showing system interface (SCADA) with FO connection (for remote communications)

Protection functions

Definite-time characteristics

The definite-time overcurrent function is based on phase-selective evaluation of the three phase currents and earth current.

The definite-time overcurrent protection for the 3 phase currents has a low-set overcurrent element (I>), a high-set overcurrent element (I>>) and a high-set instantaneous element (I>>>). Intentional trip delays can be set from 0 to 60 seconds for all three overcurrent elements.

The definite-time overcurrent protection for the earth (ground) current has a low-set overcurrent element (I_E >) and a high-set overcurrent element (I_E >>). Intentional trip delays can be parameterized from 0 to 60 seconds.

Inverse-time characteristics

In addition, inverse-time overcurrent protection characteristics (IDMTL) can be activated.

Reset characteristics

For easier time coordination with electromechanical relays, reset characteristics according to ANSI C37.112 and IEC 60255-3 / BS 142 standards are applied. When using the reset characteristic (disk emulation), a reset process is initiated after the fault current has disappeared.

This reset process corresponds to the reverse movement of the Ferraris disk of an electromechanical relay (thus: disk emulation).

t Delay

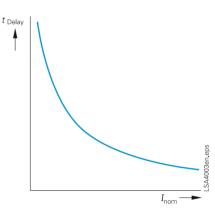


Fig. 5/38 Inverse-time overcurrent characteristic

Available inverse-time characteristics

Characteristics acc. to	ANSI/IEEE	IEC 60255-3
Inverse	•	•
Short inverse	•	
Long inverse	•	•
Moderately inverse	•	
Very inverse	•	•
Extremely inverse	•	•
Definite inverse	•	
squared T	•	
RI/RD-type		

Protection function

(Sensitive) directional earth-fault detection (ANSI 64, 67Ns)

The direction of power flow in the zero sequence is calculated from the zero-sequence current I_0 and zero-sequence voltage V_0 . For networks with an isolated neutral, the reactive current component is evaluated; for compensated networks the active current component or residual resistive current is evaluated. For special network conditions, e.g. high-resistance earthed networks with ohmic-capacitive earth-fault current or low-resistance earthed networks with ohmic-inductive current, the tripping characteristics can be rotated approximately \pm 45 degrees (cosine/sinus).

Two modes of earth-fault direction detection can be implemented: tripping or in "signalling only mode".

It has the following functions:

- TRIP via the displacement voltage $V_{\rm E}$.
- Two instantaneous elements or one instantaneous plus one inverse characteristic.
- Each element can be set in forward, reverse, or non-directional.

(Sensitive) earth-fault detection (ANSI 50Ns, 51Ns / 50N, 51N)

For high-resistance earthed networks, a sensitive input transformer is connected to a phase-balance neutral current transformer (also called core-balance CT).

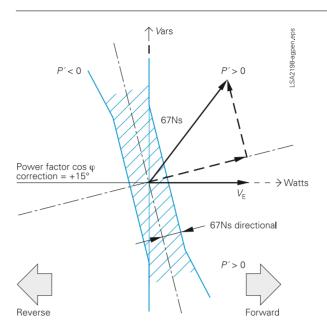


Fig. 5/39 Directional determination using cosine measurements

Thermal overload protection (ANSI 49)

The thermal overload protection function provides tripping or alarming based on a thermal model calculated from phase currents.

The ambient temperature or the temperature of the coolant can be detected serially via an external temperature monitoring box (also called thermo-box). If there is no thermobox it is assumed that the ambient temperatures are constant.

Thermal overload protection without preload:

For thermal overload protection without consideration of the preload current, the following tripping characteristic applies only when

 $I \ge 1.1 \cdot I_{\rm L}$

For different thermal time constants T_L , the tripping time *t* is calculated in accordance with the following equation:

$$t = \frac{35}{\left(\frac{I}{I_{\rm L}}\right)^2 - 1} \cdot T_{\rm L}$$

- *I* = Load current
- $I_{\rm L}$ = Pickup current
- $T_{\rm L}$ = Time multiplier

The reset threshold is above $1.03125 \cdot I/I_N$

Thermal overload protection with preload

The thermal overload protection with consideration of preload current constantly updates the thermal model calculation regardless of the magnitude of the phase currents. The tripping time t is calculated in accordance with the following tripping characteristic (complete memory in accordance with IEC 60255-8).

$$t = \tau \cdot \ln \frac{\left(\frac{I}{\mathbf{k} \cdot I_{\mathbf{N}}}\right)^2 - \left(\frac{I_{\text{pre}}}{\mathbf{k} \cdot I_{\mathbf{N}}}\right)^2}{\left(\frac{I}{\mathbf{k} \cdot I_{\mathbf{N}}}\right)^2 - 1}$$

- *t* = Tripping time after beginning of the thermal overload
- $= 35.5 \cdot T_{\rm L}$
- I_{pre} = Preload current
- I = Load current
- k = k factor (in accordance
- with IEC 60255-8) $\ln = Natural logarithm$
- $T_{\rm L} = \text{Time multiplier}$
- $I_{\rm N}$ = Rated (nominal) current

Protection functions

Breaker failure protection (ANSI 50BF)

If a faulted portion of the electrical circuit is not disconnected upon issuance of a trip command, another command can be initiated using the breaker failure protection which operates the circuit-breaker, e.g. of an upstream (higher-level) protection relay. Breaker failure is detected if after a trip command, current is still flowing in the faulted circuit. As an option it is possible to make use of the circuit-breaker position indication.

Negative-sequence protection (I₂>>, I₂>/ANSI 46 Unbalanced-load protection)

The negative-sequence protection (see Fig. 5/40) detects a phase failure or load unbalance due to network asymmetry. Interruptions, short-circuits or crossed connections to the current transformers are detected.

Furthermore, low level single-phase and two-phase short-circuits (such as faults beyond a transformer) as well as phase interruptions can be detected.

This function is especially useful for motors since negative-sequence currents cause impermissible overheating of the rotor.

In order to detect the unbalanced load, the ratio of negative phase-sequence current to rated current is evaluated.

 I_2 = negative-sequence current T_{12} = tripping time

Transformer protection

The high-set element permits current coordination where the overcurrent element functions as a backup for the lower-level protection relays, and the overload function protects the transformer from thermal overload. Low-current single-phase faults on the low voltage side that result in negative phase-sequence current on the high-voltage side can be detected with the negativesequence protection.

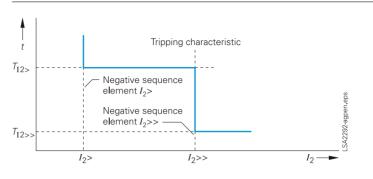


Fig. 5/40 Tripping characteristics of the negative-sequence protection function

Cold load pickup

By means of a binary input which can be wired from a manual close contact, it is possible to switch the overcurrent pickup settings to less sensitive settings for a programmable duration of time. After the set time has expired, the pickup settings automatically return to their original setting. This can compensate for initial inrush when energizing a circuit without compromising the sensitivity of the overcurrent elements during steady state conditions.

3-pole multishot auto-reclosure (AR, ANSI 79)

Auto-reclosure (AR) enables 3-phase autoreclosing of a feeder which has previously been disconnected by time-overcurrent protection.

Trip circuit supervision (ANSI 74TC)

One or two binary inputs can be used for trip circuit monitoring.

Control

The relay permits circuit-breakers to be opened and closed without command feedback. The circuit-breaker/disconnector may be controlled by DIGSI, or by the integrated HMI, or by the LSA/SCADA equipment connected to the interface.

Protection functions

Switch-onto-fault protection

If switched onto a fault, instantaneous tripping can be effected. If the internal control function is used (local or via serial interface), the manual closing function is available without any additional wiring. If the control switch is connected to a circuitbreaker by-passing the internal control function, manual detection using a binary input is implemented.

Busbar protection (Reverse interlocking)

Binary inputs can be used to block any of the six current stages. Parameters are assigned to decide whether the input circuit is to operate in open-circuit or closed-circuit mode. In this case, reverse interlocking provides highspeed busbar protection in radial or ring power systems that are opened at one point. The reverse interlocking principle is used, for example, in medium-voltage power systems and in switchgear for power plants, where a high-voltage system transformer feeds a busbar section with several medium-voltage outgoing feeders.

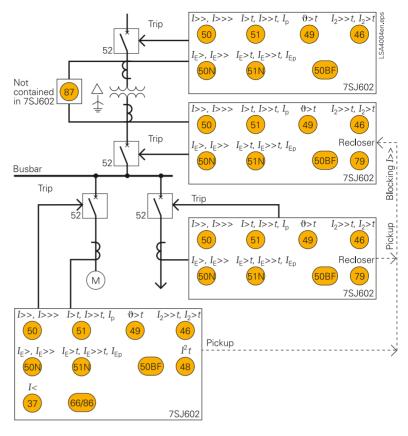


Fig. 5/41 Reserve interlocking

5/36

Motor protection

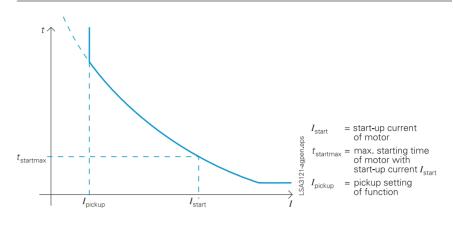
Starting time supervision (ANSI 48)

Starting time supervision protects the motor against long unwanted start-ups that might occur when excessive load torque occurs, excessive voltage drops occur within the motor or if the rotor is locked. Rotor temperature is calculated from measured stator current. The tripping time is calculated according to the following equation:

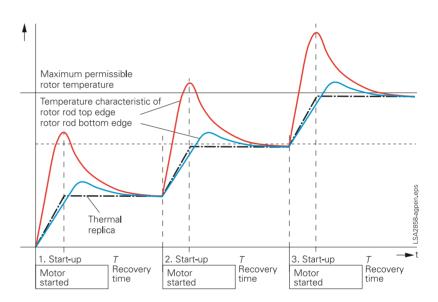
$$t_{\text{TRIP}} = \left(\frac{I_{\text{start}}}{I_{\text{rms}}}\right)^2 \cdot t_{\text{start max}}$$

for $I_{\text{rms}} > I_{\text{start}}$, reset ratio $\frac{I_{\text{N}}}{I_{\text{start}}}$ approx. 0.94

$$I_{\text{start}}$$
 = start-up current of the motor


- $t_{\text{start max}} = \max \min \text{permissible starting}$ time
- $I_{\rm rms}$ = actual current flowing

Restart inhibit (ANSI 66/86)


If a motor is started up too many times in succession, the rotor can be subject to thermal overload, especially the upper edges of the bars. The rotor temperature is calculated from the stator current and the temperature characteristic is shown in a schematic diagram. The reclosing lockout only permits startup of the motor if the rotor has sufficient thermal reserves for a complete start-up.

Undercurrent monitoring (ANSI 37)

With this function, a sudden drop in current, which may occur due to a reduced motor load, is detected. This can cause shaft breakage, no-load operation of pumps or fan failure.

Fig. 5/42 Starting time supervision

Fig. 5/43 Restart inhibit

Temperature monitoring (ANSI 38)

A temperature monitoring box with a total of 6 measuring sensors can be used for temperature monitoring and detection by the protection relay. The thermal status of motors, generators and transformers can be monitored with this device. Additionally, the temperature of the bearings of rotating machines are monitored for limit value violation. The temperatures are measured with the help of temperature detectors at various locations of the device to be protected. This data is transmitted to the protection relay via a temperature monitoring box (also called thermo-box or RTD-box) (see "Accessories").

Additional functions

Measured values

The r.m.s. values are calculated from the acquired current and voltage along with the power factor, active and reactive power. The following functions are available for measured value processing:

- Currents I_{L1} , I_{L2} , I_{L3} , I_{E} , I_{EE} (67Ns)
- Voltages $V_{\rm LI}$, $V_{\rm E}$ (67N_s) if existing
- Power Watts, Vars, VA/P, Q, S
- Power factor $(\cos \varphi)$,
- Energy \pm kWh, \pm kVarh, forward and reverse power flow
- Mean as well as minimum and maximum current, voltage and power values

Communicatior

With respect to communication, particular emphasis has been placed on high levels of flexibility, data integrity and utilization of standards common in energy automation. The design of the communication modules permits interchangeability.

Local PC interface

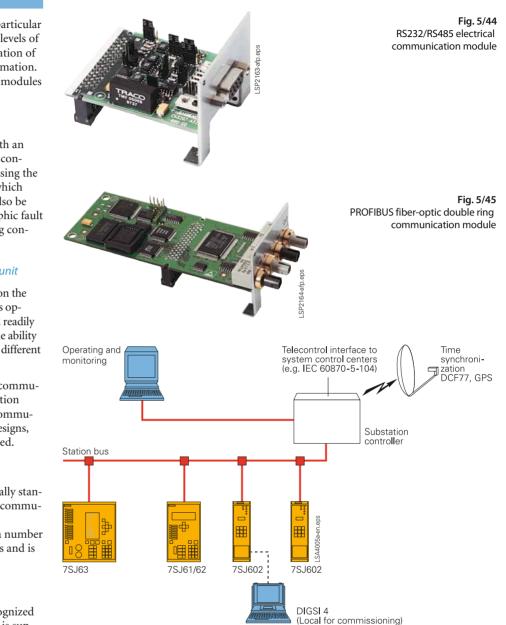
The SIPROTEC 7SJ602 is fitted with an RS232 PC front port. A PC can be connected to ease set-up of the relay using the Windows-based program DIGSI which runs under MS-Windows. It can also be used to evaluate up to 8 oscillographic fault records, 8 fault logs and 1 event log containing up to 30 events.

System interface on bottom of the unit

A communication module located on the bottom part of the unit incorporates optional equipment complements and readily permits retrofitting. It guarantees the ability to comply with the requirements of different communication interfaces.

This interface is used to carry out communication with a control or a protection system and supports a variety of communication protocols and interface designs, depending on the module connected.

IEC 60870-5-103 protocol

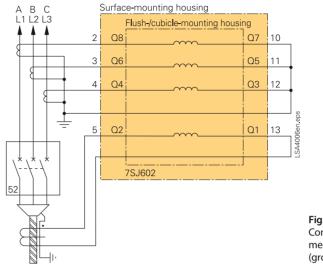

IEC 60870-5-103 is an internationally standardized protocol for the efficient communication in the protected area. IEC 60870-5-103 is supported by a number of protection device manufacturers and is used worldwide.

PROFIBUS-DP

PROFIBUS-DP is an industry-recognized standard for communications and is supported by a number of PLC and protection device manufacturers.

MODBUS RTU

MODBUS RTU is an industry-recognized standard for communications and is supported by a number of PLC and protection device manufacturers.


Typical connections

CT connections

Fig. 5/47 Standard

- Phase current measured
- Earth current measured (e. g. core balance CT)
- (e. g
- Fig. 5/48 Standard connection • Connection of 3 CTs with residual connection for neutral fault
- Fig. 5/49 Isolated networks only

7SJ6021/7SJ6025

Fig. 5/47 Connection of 4 CTs with measurement of the earth (ground) current

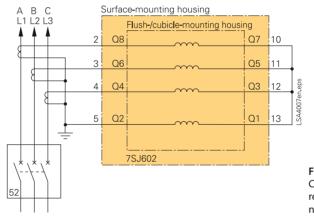
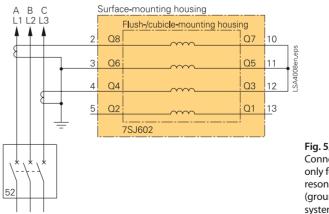
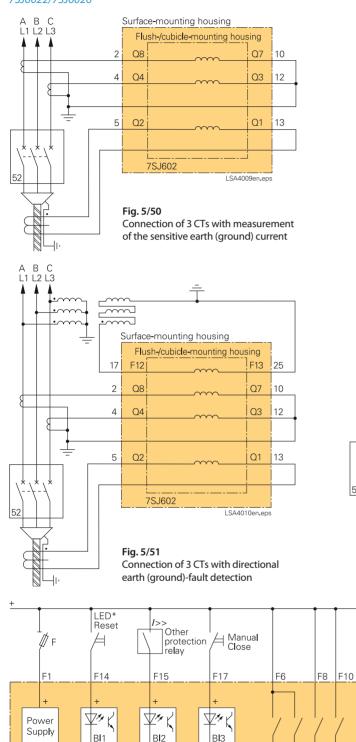


Fig. 5/48 Connection of 3 CTs with residual connection for neutral fault

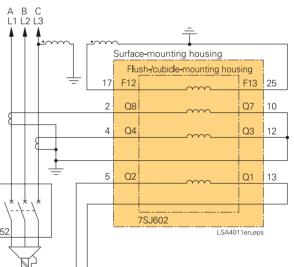



Fig. 5/49 Connection of 2 CTs only for isolated or resonant-earthed (grounded) power systems

5

Typical connections

7SJ6022/7SJ6026



_

F18

_

F16

-11

F4

F3

___Alarm

F5 F7 F9 F11

СВ

52

7SJ602

-SA2592-agpen eps

Fig. 5/52 Connection of 3 CTs and 1 VT with measurement of the earth (ground) current and one phase voltage

Fig. 5/53 Example of typical wiring

siemens-russia.com

5/40

F2

F16

General unit data

CT circuits Rated current IN Option: sensitive earth-fault CT Rated frequency fN Power consumption Current input at $I_{\rm N} = 1$ A at $I_{\rm N} = 5$ A For sensitive earth-fault detection at 1 A Overload capability Thermal (r.m.s)

Dynamic (pulse current) Overload capability if equipped with sensitive earth-fault current transformer Thermal (r.m.s.)

Dynamic (impulse current)

Voltage transformer

Rated voltage V_N Power consumption at $V_{\rm N} = 100 \, \text{V}$ < 0.3 VA per phase Overload capability in voltage

path (phase-neutral voltage) Thermal (r.m.s.)

Power supply

Power supply via integrated DC/DC converter Rated auxiliary voltage Vaux / permissible variations

Superimposed AC voltage, peak-to-peak At rated voltage At limits of admissible voltage Power consumption

Bridging time during failure/ short-circuit of auxiliary voltage

Binary outputs

Trip relays

Contacts per relay

Switching capacity Make Break

Switching voltage Permissible current Continuous For 0.5 s Permissible total current For common potential: Continuous For 0.5 s

1 or 5 A (settable) $I_{\rm EE}$ < 1.6 A or < 8 A (settable) 50/60 Hz (selectable)

< 0.1 VA < 0.3 VA Approx. 0.05 VA

100 x $I_{\rm N}$ for 1 s $30 \ge I_N$ for $10 \le$ $4 \ge I_N$ continuous 250 x I_N one half cycle

300 A for 1 s 100 A for 10 s 15 A continuous 750 A (half cycle)

100 to 125 V

230 V continuous

24/48 V DC/± 20 % 60/110 V DC/± 20 % 110/125/220/250 V DC/± 20 % 115 V AC/- 20 %, + 15 % 230 V AC/- 20 %, + 15 %

≤ 12 % $\leq 6\%$ Approx. 3 to 6 W, depending on operational status and selected auxiliary voltage \geq 50 ms at $V_{aux} \geq$ 110 V AC/DC \geq 20 ms at $V_{aux} \geq$ 24 V DC

4 (configurable) 1 NO/form A (Two contacts changeable to NC/form B, via jumpers)

1000 W/VA 30 VA, 40 W resistive 25 VA with L/R \leq 50 ms 250 V 5 A

30 A

Alarm relays	1
Contacts per relay	1 NO/NC (form A/B)
Switching capacity	
Make Break	1000 W/VA
DIEak	30 VA, 40 W resistive 25 VA with $L/R \le 50$ ms
Switching voltage	250 V
Permissible current	5 A continuous
Binary inputs	
Number	3 (configurable)
Operating voltage	24 to 250 V DC
Current consumption,	Approx. 1.8 mA
independent of operating voltage	Арргох. 1.8 ша
Pickup threshold, selectable via	
bridges	
Rated aux. voltage 24/48/60/110 V DC V _{pickup}	≥ 19 V DC
24/48/60/110 V DC V _{pickup} 110/125/220/250 V DC V _{pickup}	\geq 19 V DC \geq 88 V DC
Permissible maximum voltage	300 V DC
Connection (with screws)	
Current terminals	
Connection ring cable lugs	$W_{\rm max} = 11 \text{ mm}, d_1 = 5 \text{ mm}$
Wire size	$2.0 - 5.3 \text{ mm}^2$ (AWG 14-10)
Direct connection	Solid conductor, flexible lead,
	connector sleeve
Wire size	2.0 - 5.3 mm ² (AWG 14-10)
Voltage terminals	
Connection ring cable lugs Wire size	$W_{\text{max}} = 10 \text{ mm}, d_1 = 4 \text{ mm}$ 0.5 - 3.3 mm ² (AWG 20-12)
Direct connection	Solid conductor, flexible lead,
	connector sleeve
Wire size	0.5 - 3.3 mm ² (AWG 20-12)
Unit design	
Housing 7XP20	For dimensions please refer
	to dimension drawings, part 15
Degree of protection	
acc. to EN 60529 For the device	
in surface-mounting housing	IP 51
in flush-mounting housing	
front rear	IP 51 IP 20
For personal safety	IP 2x with closed protection cover
Weight	in 2x with closed protection cover
Flush mounting/	Approx. 4 kg
cubicle mounting	
Surface mounting	Approx. 4.5 kg
6	
Serial interfaces	
Operating interface	
Connection	At front side, non-isolated, RS232 9-pin subminiature connector
Operation	With DIGSI 4.3 or higher

Distance

Transmission speed

With DIGSI 4.3 or higher As delivered 19200 baud, parity: 8E1 Min. 1200 baud Max. 19200 baud 15 m

SIEMENS

siemens-russia.com

System interface (bottom of unit)

IEC 60870-5-103 protocol Connection Transmission rate

RS232/RS485 acc. to ordered version Connection

Test voltage RS232 maximum distance RS485 maximum distance Fiber-optic Connector type

Optical wavelength Laser class 1 acc. to EN 60825-1/-2 Permissible path attenuation Bridgeable distance No character position

PROFIBUS-DP

Isolated interface for data transfer to a control center Transmission rate Transmission reliability <u>RS485</u> Connection Distance Test voltage Fiber optic Connection fiber-optic cable Optical wavelength Laser class 1 acc. to EN 60825-1-2 $\,$ For glass fiber 50/125 μm

Permissible path attenuation Distance

Idle state of interface

Isolated interface for data transmission Min. 1200 baud, max. 19200 baud As delivered 9600 baud

9-pin subminiature connector on the bottom part of the housing 500 V AC 15 m

1000 m

ST connector on the bottom part of the housing $\lambda = 820 \text{ nm}$ For glass fiber 50/125 µm or 62.5/125 µm Max. 8 dB, for glass fiber 62.5/125 µm Max. 1.5 km Selectable, setting as supplied "light off"

Up to 1.5 Mbaud
Hamming distance $d = 4$
9-pin subminiature connector

 $1000 \text{ m}/3300 \text{ ft} \le 93.75 \text{ kbaud};$ $500 \text{ m}/1500 \text{ ft} \le 187.5 \text{ kbaud};$ 200 m/600 ft ≤ 1.5 Mbaud 500 V AC against earth

Integrated ST connector for fiberoptic connection $\lambda = 820 \text{ nm}$ or 62.5/125 µm Max. 8 dB, for glass fiber 62.5/125 µm 500 kB/s 1.6 km/0.99 miles 1500 kB/s 530 m/0.33 miles Settable, setting as supplied "light off"

System interface (bottom of unit), cont'd MODBUS RTU / ASCII Isolated interface for data transfer to a control center Transmission rate Up to 19200 baud Transmission reliability Hamming distance d = 4RS485 Connection 9-pin subminiature connector Max. 1 km/3300 ft max. 32 units Distance recommended Test voltage 500 V AC against earth Fiber-optic Connection fiber-optic cable Integrated ST connector for fiberoptic connection Optical wavelength 820 nm Laser class 1 acc. to EN 60825-1-2 For glass fiber 50/125 µm or 62.5/125 µm Max. 8 dB, for glass fiber 62.5/125 μm Permissible path attenuation Distance Max. 1.5 km/0.9 miles Idle state of interface "Light off"

Electrical tests

Specifications	
Standards	IEC 60255-5; ANSI/IEEE C37.90.0
Insulation tests	
High-voltage tests (routine test) all circuits except for auxiliary voltage, binary inputs and communication interfaces	2.5 kV (r.m.s. value), 50 Hz
High-voltage tests (routine test) Auxiliary voltage and binary in- puts	3.5 kV DC
High-voltage tests (routine test) only isolated communication interfaces	500 V (r.m.s. value); 50 Hz
Impulse voltage tests (type test) all circuits, except communication interfaces	5 kV (peak value), 1.2/50 μs , 0.5 J, 3 positive and 3 negative impulses at intervals of 5 s
EMC tests for interference immun	ity; type tests
EMC tests for interference immun Standards	ity; type tests IEC 60255-6; IEC 60255-22, (product standard) EN 50082-2 (generic standard) DIN 57435 Part 303
	IEC 60255-6; IEC 60255-22, (product standard) EN 50082-2 (generic standard)
Standards High-frequency test IEC 60255-22-1, class III	IEC 60255-6; IEC 60255-22, (product standard) EN 50082-2 (generic standard) DIN 57435 Part 303 2.5 kV (peak value); 1 MHz, $\tau = 15 \mu$ s; 400 surges per s;
Standards High-frequency test IEC 60255-22-1, class III and VDE 0435 Part 303, class III Electrostatic discharge IEC 60255-22-2 class IV	IEC 60255-6; IEC 60255-22, (product standard) EN 50082-2 (generic standard) DIN 57435 Part 303 2.5 kV (peak value); 1 MHz, $\tau = 15 \mu$ s; 400 surges per s; test duration 2 s; $R_i = 200 \Omega$ 8 kV contact discharge, 15 kV air gap discharge,

Irradiation with radio-frequency field, pulse-modulated IEC 61000-4-3/ENV 50204, class III duty cycle 50 % PM

10 V/m, 900 MHz, repetition frequency 200 Hz

5/42

EMC tests for interference immunity; type tests, (cont'd)

Fast transients interference/bursts IEC 60255-22-4 and IEC 61000-4-4, class IV

Surge voltage IEC 61000-4-5, class III Pulse: 1.2/50 µs Auxiliary voltage From circuit to

Measuring inputs, binary inputs/outputs

Conducted RF amplitude-modulated IEC 61000-4-6, class III

Power frequency magnetic field IEC 61000-4-8, class IV IEC 60255-6

Oscillatory surge withstand capability ANSI/IEEE C37.90.1

Fast transient surge withstand capability ANSI/IEEE C37.90.1

Radiated electromagnetic interference ANSI/IEEE Std C37.90.2

Damped wave IEC 60694/ IEC 61000-4-12 4 kV; 5/50 ns; 5 kHz; burst length = 15 ms; repetition rate 300 ms; both polarities; $R_i = 50 \Omega$; test duration 1 min

Pulse: 1.2/50 µs From circuit to circuit (common mode): 2 kV, 12 Ω, 9 µF; Across contacts (diff. mode): 1 kV, 2 Ω, 18 µF

From circuit to circuit (common mode): 2 kV, 42 Ω , 0.5 µF; Across contacts (diff. mode): 1 kV, 42 Ω , 0.5 µF 10 V; 150 kHz to 80 MHz; AM 80 %; 1 kHz

30 A/m continuous 300 A/m for 3 s, 50 Hz 0.5 mT, 50 Hz

2.5 to 3 kV (peak value), 1 to 1.5 MHz damped wave; 50 surges per s; duration 2 s $R_i = 150$ to 200 Ω ;

4 to 5 kV, 10/150 ns, 50 surges per s, both polarities; duration 2 s, $R_i = 80 \Omega$; 35 V/m; 25 to 1000 MHz; amplitude and pulse-modulated

2.5 kV (peak value), polarity alternating 100 kHz, 1 MHz, 10 and 50 MHz, $R_i = 200 \Omega$;

EMC tests interference emission; type tests

Standard

Conducted interferences, only auxiliary voltage IEC/CISPR 22

Radio interference field strength IEC/CISPR 22

Harmonic currents on incoming lines of system at 230 V AC IEC 61000-3-2

Voltage fluctuation and flicker range on incoming lines of system at 230 V AC IEC 61000-3-3 EN 50081-* (generic specification) 150 kHz to 30 MHz limit class B

30 to 1000 MHz limit class B

Unit belongs to class D (applies only to units with > 50 VA power consumption)

Limit values are adhered to

Mechanical stress tests

Vibration, shock and seismic vibration

During operation Standards

Vibration IEC 60255-21-1, class I IEC 60068-2-6

Shock IEC 60255-21-2, class I

Seismic vibration IEC 60255-21-3, class I IEC 60068-3-3

During transportation Standards

Vibration IEC 60255-21-1, class II IEC 60068-2-6

Shock IEC 60255-21-2, class I IEC 60068-2-27

Continuous shock IEC 60255-21-2, class I IEC 60068-2-29

Climatic stress tests

Temperatures

Recommended temperature During operation

Limit temperature During operation During storage During transport (Storage and transport with standard works packaging)

Humidity

Permissible humidity stress: It is recommended to arrange the units in such a way that they are not exposed to direct sunlight or pronounced temperature changes that could cause condensation.

Acc. to IEC 60255-21 and IEC 60068-2 Sinusoidal 10 to 60 Hz: ± 0.035 mm amplitude: 60 to 150 Hz: 0.5 g acceleration Sweep rate 1 octave/min 20 cycles in 3 orthogonal axes Half-sine, acceleration 5 g, duration 11 ms, 3 shocks in each direction of 3 orthogonal axes Sinusoidal 1 to 8 Hz: ± 3.5 mm amplitude (horizontal axis) 1 to 8 Hz: ± 1.5 mm amplitude

1 to 8 Hz: \pm 1.5 mm amplitud (vertical axis) 8 to 35 Hz: 1 g acceleration (horizontal axis) 8 to 35 Hz: 0.5 g acceleration (vertical axis) Sweep rate 1 octave/min 1 cycle in 3 orthogonal axes

Acc. to IEC 60255-21 and IEC 60068-2

Sinusoidal 5 to 8 Hz: ± 7.5 mm amplitude; 8 to 150 Hz: 2 g acceleration Sweep rate 1 octave/min 20 cycles in 3 orthogonal axes

Half-sine, acceleration 15 g, duration 11 ms; 3 shocks in each direction of 3 orthogonal axes

Half-sine, acceleration 10 g, duration 16 ms, 1000 shocks in each direction of 3 orthogonal axes

-5 °C to +55 °C /23 °F to 131 °F, (> 55 °C decreased display contrast)

-20 °C to +70 °C /-4 °F to 158 °F -25 °C to +55 °C /-13 °F to 131 °F -25 °C to +70 °C /-13 °F to 158 °F

Annual average: $\leq 75 \%$ relative humidity, on 56 days per year 95 % relative humidity, condensation not permissible!

Functions

Definite-time overcurrent protection (ANSI 50, 50N)

· · · · · · · · · · · · · · · · · · ·	
Setting ranges/steps Low-set overcurrent element Phase <i>I></i> Earth <i>I</i> _E >	$I/I_{\rm N} = 0.1$ to 25 (steps 0.1); or ∞ $I/I_{\rm N} = 0.05$ to 25 (steps 0.01); or ∞
High-set overcurrent element Phase I>>	$I/I_{\rm N} = 0.05$ to 25 (steps 0.01); or ∞ $I/I_{\rm N} = 0.1$ to 25 (steps 0.1); or ∞
Earth <i>I</i> _E >>	$I/I_{\rm N} = 0.05$ to 25 (steps 0.01); or ∞
Instantaneous tripping Phase <i>I</i> >>>	$I/I_{\rm N}$ = 0.3 to 12.5 (steps 0.1); or ∞
Delay times <i>T</i> for <i>I</i> >, I_E >, <i>I</i> >>, I_E >> and <i>I</i> >>> The set times are pure delay times	0 to 60 s (steps 0.01 s)
Pickup times <i>I</i> >, <i>I</i> >>, <i>I</i> _E >, <i>I</i> _E >> At 2 x setting value, without meas. repetition	Approx. 25 ms
At 2 x setting value, with meas. repetition	Approx. 35 ms
Pickup times for <i>I</i> >>> at 2 x setting value	Approx. 15 ms
Reset times <i>I</i> >, <i>I</i> >>, <i>I</i> _E >, <i>I</i> _E >> Reset time <i>I</i> >>>	Approx. 40 ms Approx. 50 ms
Reset ratios	Approx. 0.95
Overshot time	Approx. 55 ms
Tolerances Pickup values <i>I</i> >, <i>I</i> >>>, <i>I</i> >>>, <i>I</i> _E >, <i>I</i> _E >> Delay times <i>T</i>	5 % of setting value or 5 % of rated value 1 % of setting value or 10 ms
Influencing variables Auxiliary voltage, range: $0.8 \le V_{aux}/V_{auxN} \le 1.2$	≤ 1 %
Temperature, range: $-5 \text{ °C} \le \Theta_{\text{amb}} \le 40 \text{ °C} /$ $23 \text{ °F} \le \Theta_{\text{amb}} \le 104 \text{ °F}$	$\leq 0.5 \%/10 \text{ K}$
Frequency, range $0.98 \le f f_N \le 1.02$ $0.95 \le f f_N \le 1.05$	≤ 1.5 % ≤ 2.5 %
Harmonics Up to 10 % of 3 rd harmonic Up to 10 % of 5 th harmonic	$ \leq 1\% \\ \leq 1\% $

Inverse-time overcurrent protection	n (ANSI 51/51N)
Setting ranges/steps	
Low-set overcurrent element	
Phase I _p Earth I _{Ep}	$I/I_{\rm N} = 0.1$ to 4 (steps 0.1) $I/I_{\rm N} = 0.05$ to 4 (steps 0.01)
Time multiplier for $I_{\rm p}$, $I_{\rm Ep}$ (IEC charac.)	$T_{\rm p} = 0.05$ to 3.2 s (steps 0.01 s)
Time multiplier for $I_{\rm p}$, $I_{\rm Ep}$ (ANSI charac.)	D = 0.5 to 15 s (steps 0.1 s)
High-set overcurrent element Phase <i>I>></i> Earth <i>I</i> _E >>	$I/I_{\rm N} = 0.1$ to 25 (steps 0.1); or ∞ $I/I_{\rm N} = 0.05$ to 25 (steps 0.01); or ∞
Instantaneous tripping Phase <i>I</i> >>>	$I/I_{\rm N} = 0.3$ to 12.5 (steps 0.1); or ∞
Delay time $T_{\rm I} >>$	0 to 60 s (steps 0.01 s)
Tripping time characteristic acc. to IEC	See page 5/33
Pickup threshold	Approx. 1.1 x $I_{\rm p}$
Reset threshold, alternatively disk emulation	Approx. 1.03 x I_p
Dropout time	
50 Hz 60 HZ	Approx. 50 ms Approx. 60 ms
Tolerances	
Pickup values	5 % of setting value or 5 % of rated value
Timing period for $2 \le I/I_p \le 20$ and $0.5 \le I/I_p \le 24$	5 % of theoretical value ± 2 % current tolerance; at least 30 ms
Influencing variables	
Auxiliary voltage, range: $0.8 \le V_{aux}/V_{auxN} \le 1.2$	≤ 1 %
Temperature, range: -5 °C $\leq \Theta_{amb} \leq 40$ °C / -23 °F $\leq \Theta_{amb} \leq 104$ °F	≤ 0.5 %/10 K
Frequency, range: $0.95 \le f/f_N \le 1.05$	\leq 8 %, referred to theoretical time value
Tripping characteristic acc. to ANSI/IEEE	See page 5/33
Pickup threshold	Approx. 1.06 x I_p
Dropout threshold, alternatively disk emulation	Approx. 1.03 x I_p
Tolerances	
Pickup threshold	5 % of setting value or 5 % of rated value
Timing period for $2 \le I/I_p \le 20$ and $0.5 \le I/I_p \le 24$	5 % of theoretical value ± 2 % current tolerance; at least 30 ms
Influencing variables	
Auxiliary voltage, range: $0.8 \le V_{aux}/V_{auxN} \le 1.2$	≤ 1 %
Temperature, range: $-5 \text{ °C} \le \Theta_{\text{amb}} \le 40 \text{ °C} /$ $23 \text{ °F} \le \Theta_{\text{amb}} \le 104 \text{ °F}$	≤ 0.5 %/10 K
Frequency, range: $0.95 \le f/f_{\rm N} \le 1.05$	\leq 8 %, referred to theoretical time value

(Sensitive) earth-fault protection (directional/non-directional) Definite-time earth-fault protection (ANSI 50Ns)

Definite-time earth-fault protection	(AINSI SUINS)
Setting ranges/steps Low-set element $I_{\rm EE}>$	$I/I_{\text{EEN}} = 0.003 \text{ to } 1.5 \text{ (steps } 0.001\text{);}$ or ∞ (deactivated)
High-set element $I_{\rm EE}>>$	$I/I_{\text{EEN}} = 0.003 \text{ to } 1.5 \text{ (steps } 0.001\text{);}$ or ∞ (deactivated)
Delay times T for $I_{\rm EE}$ > and $I_{\rm EE}$ >>	0 to 60 s (steps 0.01 s)
Pickup times $I_{\rm EE}$, $I_{\rm EE}$ >>	
At 2 x setting value without meas. repetition	Approx. 35 ms
At 2 x setting value with meas. repetition	Approx. 55 ms
Reset times I_{EE} , I_{EE} >> At 50 Hz	Approx. 65 ms
At 60 Hz	Approx. 95 ms
Reset ratios	Approx. 0.95
Overshot time	Approx. 55 ms
Tolerances	
Pickup values I_{EE} >, I_{EE} >>	5 % of setting value or 5 % of rated value
Delay times T	1 % of setting value or 10 ms
Influencing variables	
Auxiliary voltage, range: $0.8 \le V_{aux}/V_{auxN} \le 1.2$	≤ 1 %
Temperature, range: $-5 \text{ °C} \le \Theta_{\text{amb}} \le 40 \text{ °C} /$ $23 \text{ °F} \le \Theta_{\text{amb}} \le 104 \text{ °F}$	≤ 0.5 %/10 K
Frequency, ranges: $0.98 \le f/f_N \le 1.02$ $0.95 \le f/f_N \le 1.05$	≤ 1.5 % ≤ 2.5 %
Harmonics Up to 10 % of 3 rd harmonic Up to 10 % of 5 rd harmonic	$\leq 1\%$ $\leq 1\%$
Inverse-time earth-fault protection	(ANSI 51Ns)
Setting ranges/steps Low-set element <i>I</i> _{EEp}	$I/I_{\rm EEN} = 0.003$ to 1.4 (steps 0.001)
Time multiplier for I_{EEp} (IEC characteristic)	$T_{\rm p} = 0.05$ to 3.2 s (steps 0.01 s)
Time multiplier for <i>I</i> _{EEp} (ANSI characteristic)	<i>D</i> = 0.5 to 15 s (steps 0.1 s)
High-set element $I_{\rm EE}>>$	$I/I_{\text{EEN}} = 0.003 \text{ to } 1.5 \text{ (steps } 0.001\text{);}$ or ∞ (deactivated)
Delay time <i>T</i> for $I_{\text{EE}} >>$	0 to 60 s (steps 0.01 s)
<u>Tripping time characteristic</u> acc. to IEC	See page 5/33
Pickup threshold	Approx. 1.1 x I_{EEp}
Reset threshold alternatively disk emulation	Approx. 1.03 x I_{EEp}
Dropout time	
50 Hz 60 Hz	Approx. 50 ms Approx. 60 ms
Tolerances	
Pickup values	5 % of setting value or 5 % of rated value
Timing period for $2 \le I/I_{\text{EEp}} \le 20$ and $0.5 \le I/I_{\text{EEN}} \le 24$	5 % of theoretical value ± 2 % current tolerance; at least 30 ms
Influencing variables Auxiliary voltage, range: $0.8 \le V_{vor}/V_{vort} \le 1.2$	< 1%

 $\leq 1\%$

Inverse-time earth-fault protection (ANSI 51Ns), cont'd

Temperature, range: $-5 \,^{\circ}\text{C} \le \Theta_{amb} \le 40 \,^{\circ}\text{C} / 23 \,^{\circ}\text{F} \le \Theta_{amb} \le 104 \,^{\circ}\text{F}$ Frequency, range: $0.95 \le f/f_{\text{N}} \le 1.05$ <u>Tripping characteristic acc. to</u> <u>ANSI/IEEE</u> Pickup threshold Dropout threshold, alternatively disk emulation Tolerances Pickup threshold

Timing period for $2 \le I/I_{EEp} \le 20$ and $0.5 \le I/I_{EEN} \le 24$

 $\begin{array}{l} \mbox{Influencing variables} \\ \mbox{Auxiliary voltage, range:} \\ \mbox{0.8} \leq V_{aux}/V_{auxN} \leq 1.2 \\ \mbox{Temperature, range:} \\ \mbox{-5 °C} \leq \Theta_{amb} \leq 40 °C / \\ \mbox{23 °F} \leq \Theta_{amb} \leq 104 °F \\ \mbox{Frequency, range:} \\ \mbox{0.95} \leq ff_{fN} \leq 1.05 \end{array}$

Direction detection (ANSI 67Ns)

Direction measurement Measuring principle Measuring enable For sensitive input

Reset ratio Measuring method Direction vector Dropout delay $T_{\text{Reset Delay}}$ Angle correction for cable converter (for resonant-earthed system) Angle correction F1, F2 Current values I_1, I_2 For sensitive input

Measuring tolerance acc. to DIN 57435 Angle tolerance

Displacement voltage (ANSI 64)

Displacement voltage, measured Measuring time Pickup delay time Time delay Dropout ratio Measuring tolerance $V_{\rm E}$ (measured) Operating time tolerances The set times are pure delay times

≤ 0.5 %/10 K

 \leq 8 %, referred to theoretical time value

See page 5/33 Approx. 1.06 x *I*_{EEp} Approx. 1.03 x *I*_{EEp}

5 % of setting value or 5 % of rated value

5 % of theoretical value ± 2 % current tolerance; at least 30 ms

 $\leq 1\%$

\leq 0.5 %/10 K

 \leq 8 %, referred to theoretical time value

*I*_E, *V*_E (measured) Active/reactive measurement

 $\begin{array}{l} I/I_{\rm EEN} = 0.003 \ {\rm to} \ 1.2 \\ ({\rm in \ steps \ of} \ 0.001 \ I/I_{\rm EEN}) \\ {\rm Approx.} \ 0.8 \\ \cos \varphi \ {\rm and} \ \sin \varphi \\ -45 \ ^{\rm o} \ {\rm to} \ +45 \ ^{\rm o} \ ({\rm in \ steps \ of} \ 0.1 \ ^{\rm o}) \\ 1 \ {\rm to} \ 60 \ {\rm s} \ ({\rm steps \ 1 \ s}) \\ {\rm In \ 2 \ operating \ points \ F1 \ and \ F2} \end{array}$

0 ° to 5 ° (in steps of 0.1 °)

 $I/I_{\text{EEN}} = 0.003 \text{ to } 1.6$ (in steps of 0.001 I/I_{EEN}) 2 % of the setting value or 1 mA

3 °

 $V_{\rm E} > /V_{\rm N} = 0.02$ to 1.3 (steps 0.001) Approx. 60 ms 0.04 to 320 s or ∞ (steps 0.01 s) 0.1 to 40000 s or ∞ (steps 0.01 s) 0.95 or (pickup value -0.6 V)

3 % of setting value, or 0.3 V 1 % of setting value, or 10 ms

 $0.8 \leq V_{\rm aux}/V_{\rm auxN} \leq 1.2$

Thermal overload protection with memory (ANSI 49) with preload

octing ranges	Setting	ranges
---------------	---------	--------

0 0	
Factor k according to IEC 60255-8	0.40 to 2 (steps 0.01)
Thermal time constant $ au_{ m th}$	1 to 999.9 min (steps 0.1 min)
Thermal warning stage $\Theta_{alarm}/\Theta_{trip}$	50 to 99 % referred to trip temperature rise (steps 1 %)
Prolongation factor at motor stand-still $k au$	1 to 10 (steps 0.01)
Reset ratios	
$\Theta/\Theta_{\rm trip}$	Reset below 0.99 Θ_{alarm}
Θ/Θ_{alarm}	Approx. 0.99
Tolerances	
Referring to $\mathbf{k} \cdot I_{\mathrm{N}}$	± 5 %
Referring to trip time	(class 5 % acc. to IEC 60255-8) ± 5 % ± 2 s (class 5 % acc. to IEC 60255-8)
Influencing variables	
Auxiliary DC voltage, range $0.8 \le V_{aux}/V_{auxN} \le 1.2$	≤ 1 %
Temperature, range $-5 \text{ °C} \le \Theta_{\text{amb}} \le +40 \text{ °C} /$ $23 \text{ °F} \le \Theta_{\text{amb}} \le 104 \text{ °F}$	$\leq 0.5 \% / 10 \text{ K}$
Frequency, range $0.95 \le f/f_N \le 1.05$	≤ 1 %

Thermal overload protection without memory (ANSI 49) without preload

Setting ranges	
Pickup value	$I_{\rm L}/I_{\rm N}=0.4$ to 4 (st
Time multiplier t_L (= t_6 -time)	1 to 120 s (steps 0
Reset ratio I/IL	Approx. 0.94
Tolerances	
Referring to pickup threshold 1.1 <i>I</i> L	\pm 5 % of setting v of rated value
Referring to trip time	\pm 5 % \pm 2 s
Influencing variables	
Auxiliary DC voltage, range $0.8 \le V_{aux}/V_{auxN} \le 1.2$	≤ 1 %
Temperature, range - 5 °C $\leq \Theta_{amb} \leq + 40$ °C / 23 °F $\leq \Theta_{amb} \leq 104$ °F	≤ 0.5 %/10 K
Frequency, range $0.95 \le f/f_{\rm N} \le 1.05$	≤ 1 %

Breaker failure protection

Setting ranges/steps
Pickup of current element
Delay time
Pickup times (with internal start) (via control) (with external start)
Dropout time
Tolerances
Pickup value
Delay time

steps 0.1) 0.1 s)

alue or 5 %

CB $I > I_{\rm N} = 0.04$ to 1.0 (steps 0.01) 0.06 to 60 s or ∞ (steps 0.01 s) is contained in the delay time is contained in the delay time is contained in the delay time Approx. 25 ms 2 % of setting value

1 % or 20 ms

Negative-sequence protection (ANSI 46)

Negative-sequence protection (ANS)	146)
Setting ranges/steps	
Tripping stages I_2 and I_2 >>	8 to 80 % to $I_{\rm N}$ (steps 1 %)
Delay times $T(I_2>), T(I_2>>)$	0 to 60 s (steps 0.01 s)
Lower function limit	At least one phase current $\geq 0.1 \text{ x } I_{\text{N}}$
Pickup times	$\underline{\text{at } f_{\text{N}} = 50 \text{ Hz}} \qquad \underline{\text{at } f_{\text{N}} = 60 \text{ Hz}}$
Tripping stages I_2 > and I_2 >> But with currents $I/I_N > 1.5$ (overcurrent case) or negative- sequence current < (set value	Approx. 60 ms Approx. 75 ms
$+0.1 \text{ x} I_{\text{N}})$	Approx. 200 ms Approx. 310 ms
Reset times	
Tripping stages <i>I</i> ₂ > and <i>I</i> ₂ >>	Approx. 35 ms Approx. 42 ms
Reset ratios	
Tripping stages I_2 and I_2 >>	Approx. 0.9 to 0.01 x $I_{\rm N}$
Tolerances	
Pickup values $I_2 >, I_2 >>$	
Current $I/I_{\rm N} \le 1.5$ Current $I/I_{\rm N} > 1.5$	\pm 1 % of $I_{\rm N} \pm$ 5 % of set value \pm 5 % of $I_{\rm N} \pm$ 5 % of set value
Delay times $T(I_2>)$ and $T(I_2>>)$	± 1 % but min. 10 ms
Influencing variables	
Auxiliary DC voltage, range $0.8 \le V_{aux}/V_{auxN} \le 1.2$	≤ 1 %
Temperature, range $-5 \text{ °C} \le \Theta_{\text{amb}} +40 \text{ °C} /$ $23 \text{ °F} \le \Theta_{\text{amb}} \le 104 \text{ °F}$	≤ 0.5 %/10 K
Frequency, range $0.98 \le f/f_N \le 1.02$ $0.95 \le f/f_N \le 1.05$	$\leq 1 \% \text{ of } I_{\text{N}}$ $\leq 5 \% \text{ of } I_{\text{N}}$
Auto-reclosure (ANSI 79)	
Number of possible shots	1 to 9, configurable
Auto-reclosure modes	3-pole
Dead times for 1 st and any further shot	0.05 s to 1800 s (steps 0.01 s)
Blocking time after successful AR	0.05 s to 320 s (steps 0.01 s)
Lock-out time after unsuccessful AR	0.05 s to 320 s (steps 0.01 s)
Reclaim time after manual close	0.50 s to 320 s (steps 0.01 s)
Duration of reclose command	0.01 s to 60 s (steps 0.01 s)
Trip circuit supervision (ANSI 74TC)	
Trip circuit supervision	With one or two binary inputs
Circuit-breaker trip test	Trip/reclosure cycle
Control	
Number of devices	1
Evaluation of breaker contact	None

Setting ranges/steps Rated motor current/ transformer rated current Start-up current of the motor Permissible start-up time <i>t</i> _{start max} <i>Starting time supervision (ANSI 48)</i> Setting ranges/steps Pickup threshold Tripping time characteristic	$\begin{split} &I_{\text{motor}}/I_{\text{N}} = 0.2 \text{ to } 1.2 \\ &(\text{in steps of } 0.1) \\ &I_{\text{start}}/I_{\text{motor}} = 0.4 \text{ to } 20 \\ &(\text{in steps of } 0.1) \\ &1 \text{ to } 360 \text{ s (in steps of } 0.1 \text{ s)} \\ \end{split}$	Number of temperature sensors Type of measuring Installation drawing Limit values for indications For each measuring detector Warning temperature (stage 1) Alarm temperature (stage 2) Additional functions Operational measured values For currents Range Tolerance For voltages	Max. 6 Pt 100 Ω or Ni 100 Ω or Ni 120 Ω "Oil" or "Environment" or "Stator or "Bearing" or "Other" -50 °C to 250 °C (in steps of 1 °C) -58 °F to 482 °F (in steps of 1 °F) or ∞ (no indication) -50 °C to 250 °C (in steps of 1 °C) -58 °F to 482 °F (in steps of 1 °C) -58 °F to 482 °F (in steps of 1 °C) -58 °F to 482 °F (in steps of 1 °C) -58 °F to 482 °F (in steps of 1 °F) or ∞ (no indication) Image: the step of the step o
transformer rated current Start-up current of the motor Permissible start-up time <i>t</i> _{start max} Starting time supervision (ANSI 48) Setting ranges/steps Pickup threshold	(in steps of 0.1) $I_{start}/I_{motor} = 0.4$ to 20 (in steps of 0.1) 1 to 360 s (in steps of 0.1 s) $I_{pickup}/I_{motor} = 0.4$ to 20 (in steps of 0.1) $t_{TRIP} = \left(\frac{I_{start}}{I_{rms}}\right)^2 \cdot t_{start max}$ For $I_{rms} > I_{pickup}$ $I_{start} = Start-up current of the motor I_{rms} = Current actually flowingI_{pickup} = Pickup threshold, from which the motor start-up is detected$	Installation drawing Limit values for indications For each measuring detector Warning temperature (stage 1) Alarm temperature (stage 2) Additional functions Operational measured values For currents Range Tolerance	"Oil" or "Environment" or "States or "Bearing" or "Other" -50 °C to 250 °C (in steps of 1 °C) -58 °F to 482 °F (in steps of 1 °F) or ∞ (no indication) -50 °C to 250 °C (in steps of 1 °C) -58 °F to 482 °F (in steps of 1 °C) or ∞ (no indication) $I_{L1}, I_{L2}, I_{L3}, I_E$ in A (Amps) primary or in % I_N 10 to 240 % I_N
Start-up current of the motor Permissible start-up time <i>t</i> _{start max} Starting time supervision (ANSI 48) Setting ranges/steps Pickup threshold	(in steps of 0.1) $I_{start}/I_{motor} = 0.4$ to 20 (in steps of 0.1) 1 to 360 s (in steps of 0.1 s) $I_{pickup}/I_{motor} = 0.4$ to 20 (in steps of 0.1) $t_{TRIP} = \left(\frac{I_{start}}{I_{rms}}\right)^2 \cdot t_{start max}$ For $I_{rms} > I_{pickup}$ $I_{start} = Start-up current of the motor I_{rms} = Current actually flowingI_{pickup} = Pickup threshold, from which the motor start-up is detected$	Limit values for indications For each measuring detector Warning temperature (stage 1) Alarm temperature (stage 2) Additional functions Operational measured values For currents Range Tolerance	or "Bearing" or "Other" -50 °C to 250 °C (in steps of 1 °C) -58 °F to 482 °F (in steps of 1 °F) or ∞ (no indication) -50 °C to 250 °C (in steps of 1 °C) -58 °F to 482 °F (in steps of 1 °F) or ∞ (no indication)
Permissible start-up time <i>t</i> _{start max} Starting time supervision (ANSI 48) Setting ranges/steps Pickup threshold	(in steps of 0.1) 1 to 360 s (in steps of 0.1 s) $I_{pickup}/I_{motor} = 0.4 \text{ to } 20$ (in steps of 0.1) $t_{TRIP} = \left(\frac{I_{start}}{I_{rms}}\right)^2 \cdot t_{start max}$ For $I_{rms} > I_{pickup}$ $I_{start} = Start-up current of the motor$ $I_{rms} = Current actually flowing$ $I_{pickup} = Pickup threshold, from which the motor start-up is detected$	For each measuring detector Warning temperature (stage 1) Alarm temperature (stage 2) Additional functions Operational measured values For currents Range Tolerance	$\begin{array}{c} -58 \ ^\circ F \ to \ 482 \ ^\circ F \ (in \ steps \ of \ 1 \ ^\circ F) \\ or \ \infty \ (no \ indication) \\ -50 \ ^\circ C \ to \ 250 \ ^\circ C \ (in \ steps \ of \ 1 \ ^\circ C) \\ -58 \ ^\circ F \ to \ 482 \ ^\circ F \ (in \ steps \ of \ 1 \ ^\circ F) \\ or \ \infty \ (no \ indication) \\ \end{array}$
Starting time supervision (ANSI 48) Setting ranges/steps Pickup threshold	$I_{\text{pickup}}/I_{\text{motor}} = 0.4 \text{ to } 20$ (in steps of 0.1) $t_{\text{TRP}} = \left(\frac{I_{\text{start}}}{I_{\text{rms}}}\right)^2 \cdot t_{\text{start max}}$ For $I_{\text{rms}} > I_{\text{pickup}}$ $I_{\text{start}} = \text{Start-up current of the motor}$ $I_{\text{rms}} = \text{Current actually flowing}$ $I_{\text{pickup}} = \text{Pickup threshold, from which the motor start-up is detected}$	Warning temperature (stage 1) Alarm temperature (stage 2) Additional functions Operational measured values For currents Range Tolerance	$\begin{array}{c} -58 \ ^\circ F \ to \ 482 \ ^\circ F \ (in \ steps \ of \ 1 \ ^\circ F) \\ or \ \infty \ (no \ indication) \\ -50 \ ^\circ C \ to \ 250 \ ^\circ C \ (in \ steps \ of \ 1 \ ^\circ C) \\ -58 \ ^\circ F \ to \ 482 \ ^\circ F \ (in \ steps \ of \ 1 \ ^\circ F) \\ or \ \infty \ (no \ indication) \\ \end{array}$
Setting ranges/steps Pickup threshold	(in steps of 0.1) $t_{\text{TRIP}} = \left(\frac{I_{\text{start}}}{I_{\text{rms}}}\right)^2 \cdot t_{\text{start max}}$ For $I_{\text{rms}} > I_{\text{pickup}}$ $I_{\text{start}} = \text{Start-up current of the motor}$ $I_{\text{rms}} = \text{Current actually flowing}$ $I_{\text{pickup}} = \text{Pickup threshold, from which the motor start-up is detected}$	Alarm temperature (stage 2) Additional functions Operational measured values For currents Range Tolerance	or ∞ (no indication) -50 °C to 250 °C (in steps of 1 °C) -58 °F to 482 °F (in steps of 1 °F) or ∞ (no indication) $I_{L1}, I_{L2}, I_{L3}, I_E$ in A (Amps) primary or in % I_N 10 to 240 % I_N
Pickup threshold	(in steps of 0.1) $t_{\text{TRIP}} = \left(\frac{I_{\text{start}}}{I_{\text{rms}}}\right)^2 \cdot t_{\text{start max}}$ For $I_{\text{rms}} > I_{\text{pickup}}$ $I_{\text{start}} = \text{Start-up current of the motor}$ $I_{\text{rms}} = \text{Current actually flowing}$ $I_{\text{pickup}} = \text{Pickup threshold, from which the motor start-up is detected}$	(stage 2) Additional functions Operational measured values For currents Range Tolerance	-58 °F to 482 °F (in steps of 1 °F) or ∞ (no indication) $I_{L1}, I_{L2}, I_{L3}, I_E$ in A (Amps) primary or in % I_N 10 to 240 % I_N
Tripping time characteristic	For $I_{rms} > I_{pickup}$ $I_{start} = Start-up$ current of the motor $I_{rms} = Current actually flowing$ $I_{pickup} = Pickup threshold, from which the motor start-up is detected$	Operational measured values For currents Range Tolerance	in A (Amps) primary or in % $I_{\rm N}$ 10 to 240 % $I_{\rm N}$
	For $I_{rms} > I_{pickup}$ $I_{start} = Start-up$ current of the motor $I_{rms} = Current actually flowing$ $I_{pickup} = Pickup threshold, from which the motor start-up is detected$	Operational measured values For currents Range Tolerance	in A (Amps) primary or in % $I_{\rm N}$ 10 to 240 % $I_{\rm N}$
	Istart = Start-up current of the motor Irms = Current actually flowing Ipickup = Pickup threshold, from which the motor start-up is detected	For currents Range Tolerance	in A (Amps) primary or in % $I_{\rm N}$ 10 to 240 % $I_{\rm N}$
	Istart = Start-up current of the motor Irms = Current actually flowing Ipickup = Pickup threshold, from which the motor start-up is detected	Range Tolerance	in A (Amps) primary or in % $I_{\rm N}$ 10 to 240 % $I_{\rm N}$
	<i>I</i> _{pickup} = Pickup threshold, from which the motor start-up is detected	Tolerance	
	which the motor start-up is detected	For voltages	5 % of measured value
		101 voltages	V _{L1-E} , in kV primary or in %
		Range Tolerance	10 to 120 % of $V_{\rm N} \leq 3$ % of measured value
	starting time	For sensitive earth-current	
	t_{TRIP} = Tripping time	detection	<i>I</i> _{EE} , <i>I</i> _{EEac} , <i>I</i> _{EEreac} (r.m.s., active and reactive current
Reset ratio Irms/Ipickup	Approx. 0.94	Descent	in A (kA) primary, or in %
Tolerances Pickup values	5 % of setting value or 5 % rated	Range Tolerance	0 to 160 % I_{EEN} \leq 3 % of measured value
Tickup values	value	Power/work	
Delay time	5 % or 330 ms	S Apparent power	in kVA, MVA, GVA
Restart inhibit for motors (ANSI 66/8 Setting ranges/steps	86)	S/VA (apparent power)	For V/V_N , $I/I_N = 50$ to 120 % typically < 6 %
	0 to 60 min (in steps of 0.1min)	P Active power,	in kW, MW, GW
time T_{COMP} Minimum restart inhibit time T_{restart}	0.2 to 120 min (in steps of 0.1 min)	P/Watts (active power)	For $ \cos \varphi = 0.707$ to 1, typically < 6 %, for V/V_N , $I/I_N = 50$ to 120 %
Maximum permissible number	1 to 4 (in steps of 1)	Q Reactive power,	In kvar, Mvar, Gvar
of warm starts n_w Difference between cold and	1 to 2 (in steps of 1)	Q/Var (reactive power)	For $ \sin \varphi = 0.707$ to 1, typically < 6 %, for V/V_N , $I/I_N = 50$ to 120 %
warm start $n_c - n_w$		$\cos \varphi$, total and phase-selective	-1 to +1
Extension factor for cooling simulation of the rotor (running and stop)	1 to 10 (in steps of 0.1)	Power factor $\cos \varphi$	For $ \cos \varphi = 0.707$ to 1, typically < 5 %
Restarting limit	$\Theta_{\text{restart}} = \Theta_{\text{rot max perm}} \cdot \frac{n_{\text{c}} - 1}{n}$	Metering	
	n _c	+ W _p kWh	In kWh, MWh, GWh forward
	Θ _{restart} = Temperature limit below which restarting	- W _p kWh + W _q kvarh - W _g kvarh	In kWh reverse In kvarh inductive In kvarh, Mvarh, Gvarh capacitive
	is possible $\Theta_{rot max perm} = Maximum permissible$	Long-term mean values	,
	rotor overtemperature	Mean values	15, 30, 60 minutes mean values
	(= 100 % in operational measured value	$I_{L1 dmd}$ in A, kA	$P_{\rm dmd}$ in kW
	$\Theta_{rot}/\Theta_{rot trip}$) n_c = Number of permissible start-ups from cold state	$I_{L2 \text{ dmd}} \qquad \text{in } A, \text{ kA}$ $I_{L2 \text{ dmd}} \qquad \text{in } A, \text{ kA}$ $I_{L3 \text{ dmd}} \qquad \text{in } A, \text{ kA}$	Q _{dmd} in kvar S _{dmd} in kVA
Undercurrent monitoring (ANSI 37)			
Threshold	$I_{\rm L} < /I_{\rm N} = 0.1$ to 4 (in steps of 0.01)		
Delay time for $I_{\rm L}$ <	0 to 320 s (in steps of 0.1 s)		

	or (no marcation)
ional functions	
ational measured values	
nrrents nge erance	I_{L1} , I_{L2} , I_{L3} , I_E in A (Amps) primary or in % I_N 10 to 240 % I_N 3 % of measured value
oltages nge erance	$V_{\text{L1-E}}$, in kV primary or in % 10 to 120 % of $V_{\text{N}} \leq 3$ % of measured value
nsitive earth-current ion nge erance	I_{EE} , I_{EEac} , I_{EFereac} (r.m.s., active and reactive current) in A (kA) primary, or in % 0 to 160 % I_{EEN} ≤ 3 % of measured value
r/work	
arent power	in kVA, MVA, GVA
(apparent power)	For V/V_N , $I/I_N = 50$ to 120 % typically < 6 %
ve power,	in kW, MW, GW
tts (active power)	For $ \cos \varphi = 0.707$ to 1, typically < 6 %, for <i>V</i> / <i>V</i> _N , <i>I</i> / <i>I</i> _N = 50 to 120 %
ctive power,	In kvar, Mvar, Gvar
r (reactive power)	For $ \sin \varphi = 0.707$ to 1, typically < 6 %, for <i>V</i> / <i>V</i> _N , <i>I</i> / <i>I</i> _N = 50 to 120 %
total and phase-selective	-1 to +1
factor $\cos \varphi$	For $ \cos \varphi = 0.707$ to 1, typically < 5 %
ing	
kWh	In kWh, MWh, GWh forward

Technical data

Min/max. LOG (memory)	
Measured values	With date and time
Reset automatic	Time of day (settable in minutes) Time range (settable in days; 1 to 365, ∞)
Reset manual	Via binary input Via keyboard Via communication
Min./max. values of primary cur- rents	$I_{L1}; I_{L2}; I_{L3}$
Min./max. values of primary volt- ages	V_{L1-E}
Min./max. values of power	S Apparent Power P Active power Q Reactive power Power factor $\cos \varphi$
Min./max. values of primary cur- rents mean values	IL1dmd, IL2dmd, IL3dmd
Min./max. values of power mean value	Pdmd, Qdmd, Sdmd
Fault event log	
Storage	Storage of the last 8 faults
Time assignment	
Resolution for operational indications	1 s
Resolution for fault event indications	l ms
Max. time deviation	0.01 %
Fault recording	
Storage	Storage of max. 8 fault events
Total storage time (fault detection or trip command = 0 ms)	Max. 5 s, selectable pre-trigger and post-fault time
Max. storage period per fault event T_{max}	0.30 s to 5 s (steps 0.01 s)
Pre-trigger time T _{pre}	0.05 s to 0.50 s (steps 0.01 s)
Post-fault time T _{post}	0.05 s to 0.50 s (steps 0.01 s)
Sampling rate at 50 Hz	1 instantaneous value per ms
Sampling rate at 60 Hz	1 instantaneous value per 0.83 ms
Backup battery	Lithium battery 3 V/1 Ah, type CR ½ AA Self-discharge time > 5 years "Battery fault" battery charge warn ing

CE conformity

This product is in conformity with the Directives of the European Communities on the harmonization of the laws of the Member States relating to electromagnetic compatibility (EMC Council Directive 89/336/EEC) and electrical equipment designed for use within certain voltage limits (Council Directive 73/23/EEC).

This unit conforms to the international standard IEC 60255, and the German standard DIN 57435/Part 303 (corresponding to VDE 0435/ Part 303).

The unit has been developed and manufactured for application in an industrial environment according to the EMC standards.

This conformity is the result of a test that was performed by Siemens AG in accordance with Article 10 of the Council Directive complying with the generic standards EN 50081-2 and EN 50082-2 for the EMC Directive and standard EN 60255-6 for the "low-voltage Directive".

Selection and ordering data	Description	Order No.	Order code
	7SJ602 multifunction overcurrent and motor protection relay	75J6020 - 00000 - 0 0 0	
	Measuring inputs (4 x I), default settings		
	$I_{\rm N} = 1 \text{ A}^{1}$, 15th position only with A	7	
	$I_{\rm N} = 5 {\rm A}^{1}$, 15th position only with A	5	
	Measuring inputs (1 x V, 3 x I), default settings		
	$I_{\rm ph} = 1 \text{ A}^{1}$, $I_{\rm e}$ = sensitive ($I_{\rm EE} = 0.003$ to 1.5 A),	See r	
	15th position only with B and J	2 page	
	$I_{\rm ph} = 5 {\rm A}^{1}$, $I_{\rm e} = {\rm sensitive} (I_{\rm EE} = 0.015 {\rm to} 7.5 {\rm A})$,		
	15th position only with B and J	6	
	Auxiliary voltage		
	24/48 V DC, binary input threshold 19 V	2	
	$60/110 \text{ V DC}^{2)}$, binary input threshold 19 V ³⁾	4	
	110/125/220/250 V DC, 115/230 V AC ²⁾ binary input three	shold 88 V ³⁾ 5	
	Unit design		
	Surface-mounting housing, terminals on top and bottom	B	
	Flush-mounting housing, screw-type terminals	E	
	Region-specific default and language settings		
	Region World, 50/60 Hz, ANSI/IEC characteristic,		
	languages: English, German, French, Spanish, Russian	В	
	System port (on bottom of unit)		
	No system port	0	
	IEC 60870-5-103, electrical RS232	1	
	IEC 60870-5-103, electrical RS485	2	
	IEC 60870-5-103, optical 820 nm, ST connector	3	
	Temperature monitoring box, electrical RS485 ⁴⁾	8	
	PROFIBUS-DP Slave, electrical RS485	9	L 0 A
	PROFIBUS-DP Slave, optical 820 nm, double ring, ST con	nnector 9	L 0 B
	MODBUS, electrical RS485	9	L 0 D
	MODBUS, optical 820 nm, ST connector	9	L 0 E
	Command (without process check back signal)		
	Without command	0	
	With command	1	
	Measuring / fault recording		
	Oscillographic fault recording	1	
	Oscillographic fault recording, slave pointer, mean values,	min/max_values 3	

1) Rated current can be selected by means of jumpers.

2) Transition between the two auxiliary voltage ranges can be selected by means of jumpers.

3) The binary input thresholds can be selected in two stages by means of jumpers.

 Temperature monitoring box 7XV5662-□AD10, refer to part 13.

Siemens SIP · Edition No. 6

Description

Selection and ordering data

Order No.

7SJ6020-0000-0000 7SJ602 multifunction overcurrent and motor protection relay ANSI No. Description **Basic** version 50/51 Time-overcurrent protection TOC phase *I*>, *I*>>, *I*>>>, *I*_p, reverse interlocking 50N/51N Ground/earth-fault protection TOC ground/earth IE>, IE>>, IEp Overload protection 49 74TC Trip circuit supervision 50BF Breaker-failure protection Cold load pickup Negative sequence/unbalanced load protection F 46 Basic version + directional ground/earth-fault detection Time-overcurrent protection TOC phase 50/51 I>, I>>, I>>>, Ip, reverse interlocking 67Ns Directional sensitive ground/earth-fault detection $I_{\rm EE}$ >, $I_{\rm EE}$ >>, $I_{\rm Ep}$ Displacement voltage 64 49 Overload protection 74TC Trip circuit supervision Breaker-failure protection 50BF Cold load pickup F **B**²⁾ Negative sequence/unbalanced load protection 46 Basic version + sensitive ground/earth-fault detection + measuring Time-overcurrent protection TOC phase 50/51 $I >, I >>, I >>, I_p$, reverse interlocking Sensitive ground/earth-fault detection $I_{EE} >, I_{EE} >>, I_{Ep}$ 50Ns/51Ns 49 Overload protection 74TC Trip circuit supervision Breaker-failure protection 50BF Cold load pickup 46 Negative sequence/unbalanced load protection F Voltage and power measuring Basic version + motor protection Time-overcurrent protection TOC phase 50/51 I>, I>>, I>>>, Ip, reverse interlocking 50N/51N Ground/earth-fault protection TOC ground/earth I_E >, I_E >>, I_{Ep} Overload protection 49 74TC Trip circuit supervision Breaker-failure protection 50BF Cold load pickup Negative sequence/unbalanced load protection 46 48 Starting time supervision 37 Undercurrent/loss of load monitoring Н 66/86 Restart inhibit Basic version + directional ground/earth fault protection + motor protection 50/51 Time-overcurrent protection TOC phase *I*>, *I*>>, *I*>>>, *I*_p, reverse interlocking 67Ns Directional sensitive ground/earth-fault detection IEE>, IEE>>, IEP 64 Displacement voltage 49 Overload protection Trip circuit supervision Breaker-failure protection 74TC 50BF Cold load pickup 46 Negative sequence/unbalanced load protection 48 Starting time supervision 37 Undercurrent/loss of load monitoring H B²⁾ 66/86 Restart inhibit Basic version + sensitive ground/earth-fault detection + measuring + motor protection Time-overcurrent protection TOC phase 50/51 *I*>, *I*>>, *I*>>>, *I*_p, reverse interlocking 50Ns/51Ns Sensitive ground/earth-fault detection $I_{\rm EE}$ >, $I_{\rm EE}$ >>, $I_{\rm Ep}$ 49 Overload protection 74TC Trip circuit supervision Breaker-failure protection 50BF Cold load pickup Negative sequence/unbalanced load protection 46 Voltage and power measuring 48 Starting time supervision 37 Undercurrent/loss of load monitoring 66/86 Restart inhibit Auto-reclosure (ARC) Without auto-reclosure ARC 79 With auto-reclosure ARC

5

Siemens Serie ENS

1)

2)

Only with position 7 = 1 or 5

Only with position 7 = 2 or 6

	es		

Description		Order No.
DIGSI 4		
Software for config	aration and operation of Siemens protection units	
running under MS	Windows 2000/XP Professional Edition,	
device templates, C	omtrade Viewer, electronic manual included	
as well as "Getting s	tarted" manual on paper, connecting cables (copper)	
Basis		
Full version with lic	ense for 10 computers, on CD-ROM	
(authorization by se	rial number)	7XS5400-0AA00
Professional		
	dditionally SIGRA (fault record analysis),	
CFC Editor (logic e	ditor), Display Editor (editor for default and	
control displays) an	d DIGSI 4 Remote (remote operation)	7XS5402-0AA00
SIGRA 4		
	l in DIGSI Professional, but can be ordered additionally)	
	e visualization, analysis and evaluation of fault records.	
	fault records of devices of other manufacturers	
· · · · · · · · · · · · · · · · · · ·	. Running under MS Windows.	
	tronic manual with license for 10 PCs on CD-ROM.	
Authorization by se	rial number.	7XS5410-0AA00
Temperature monit	oring box	
24 to 60 V AC/DC		7XV5662-2AD10
90 to 240 V AC/DC		7XV5662-5AD10
	contained in DIGSI 4, but can be ordered additionally)	
	notebook (9-pin con.) and protection unit (9-pin connector)	7XV5100-4
	perature monitoring box and SIPROTEC 4 unit	
- length 5 m / 16.4 f		7XV5103-7AA05
- length 25 m / 82 ft		7XV5103-7AA25
- length 50 m / 164	t	7XV5103-7AA50
Manual for 7SJ602		
English	please visit	www.siemens.com/siproted
Spanish	please visit	www.siemens.com/siproted

Short-circuit links for current terminals

SP2289-410

Mounting rail

Description	Order No.	Size of package	Supplier
Terminal safety cover			
Voltage/current terminal 18-pole	C73334-A1-C31-1	1	Siemens
Voltage/current terminal 8-pole	C73334-A1-C32-1	1	Siemens
Short-circuit links			
For current terminals	C73334-A1-C33-1	1	Siemens
For other terminals	C73334-A1-C34-1	1	Siemens
Mounting rail for 19" rack	C73165-A63-D200-1	1	Siemens

Your local Siemens representative can inform you on local suppliers.

Connection diagram

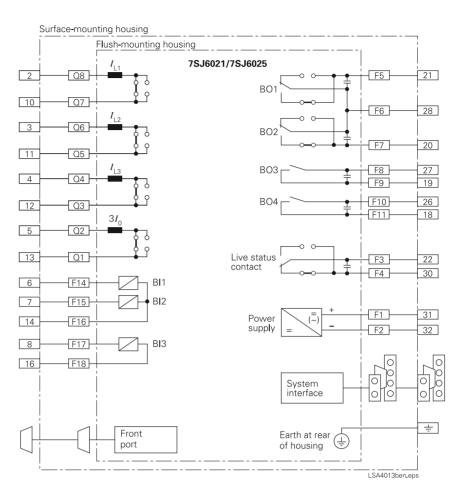


Fig. 5/54 Connection diagram according to IEC standard

Connection diagram

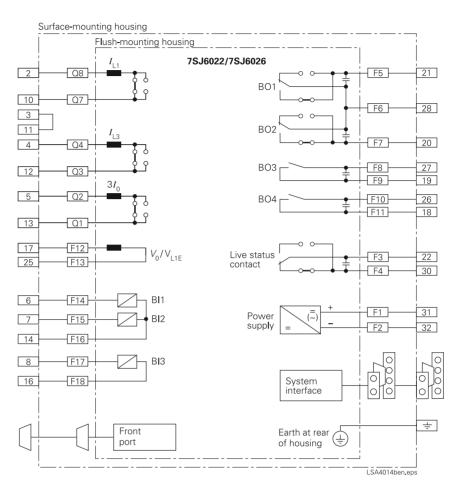


Fig. 5/55 Connection diagram according to IEC standard

5 Overcurrent Protection / 7SJ602

SIPROTEC 4 7SJ61 Multifunction Protection Relay

with text (left) and graphic display

Description

The SIPROTEC 4 7SJ61 relays can be used for line protection of high and medium voltage networks with earthed (grounded), low-resistance earthed, isolated or compensated neutral point. When protecting motors, the SIPROTEC 4 7SJ61 is suitable for asynchronous machines of all sizes. The relay performs all functions of backup protection supplementary to transformer differential protection.

The relay provides control of the circuitbreaker, further switching devices and automation functions. The integrated programmable logic (CFC) allows the user to implement their own functions, e. g. for the automation of switchgear (interlocking). The user is also allowed to generate user-defined messages.

The flexible communication interfaces are open for modern communication architectures with control systems.

Function overview

Protection functions

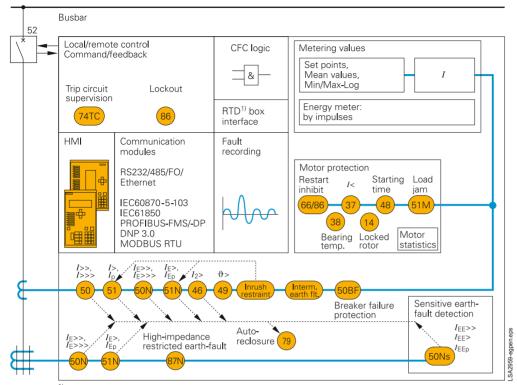
- Time-overcurrent protection (definite-time/inverse-time/user-def.)
- Sensitive earth-fault detection
- Intermittent earth-fault protection
- High-impedance restricted earth fault
- Inrush restraint
- Motor protection
 - Undercurrent monitoring
 - Starting time supervision
 - Restart inhibit
 - Locked rotor
 - Load jam protection
- Overload protection
- Temperature monitoring
- Breaker failure protection
- Negative-sequence protection
- Auto-reclosure
- Lockout

Control functions/programmable logic

- Commands for control of a circuit-breaker and of isolators
- Position of switching elements is shown on the graphic display
- Control via keyboard, binary inputs, DIGSI 4 or SCADA system
- User-defined logic with CFC (e.g. interlocking)

Monitoring functions

- Operational measured values I
- Circuit-breaker wear monitoring
- Slave pointer
- Time metering of operating hours
- Trip circuit supervision
- 8 oscillographic fault records
- Motor statistics


Communication interfaces

- System interface
 - IEC 60870-5-103, IEC 61850
 - PROFIBUS-FMS/-DP
 - DNP 3.0/MODBUS RTU
- Service interface for DIGSI 4 (modem)
- Front interface for DIGSI 4
- Time synchronization via IRIG B/DCF77

Hardware

- 4 current transformers
- 3/8/11 binary inputs
- 4/8/6 output relays

Application

¹⁾ RTD = resistance temperature detector

Fig. 5/58 Function diagram

The SIPROTEC 4 7SJ61 unit is a numerical protection relay that also performs control and monitoring functions and therefore supports the user in cost-effective power system management, and ensures reliable supply of electric power to the customers. Local operation has been designed according to ergonomic criteria. A large, easy-to-read display was a major design aim.

Control

The integrated control function permits control of disconnect devices, earthing switches or circuit-breakers via the integrated operator panel, binary inputs, DIGSI 4 or the control and protection system (e.g. SICAM). The present status (or position) of the primary equipment can be displayed, in case of devices with graphic display. A full range of command processing functions is provided.

Programmable logic

The integrated logic characteristics (CFC) allow the user to implement their own functions for automation of switchgear (interlocking) or a substation via a graphic user interface. The user can also generate userdefined messages.

Line protection

The relay is a non-directional overcurrent relay which can be used for line protection of high and medium-voltage networks with earthed (grounded), low-resistance earthed, isolated or compensated neutral point.

Motor protection

When protecting motors, the 7SJ61 relay is suitable for asynchronous machines of all sizes.

Transformer protection

The relay performs all functions of backup protection supplementary to transformer differential protection. The inrush suppression effectively prevents tripping by inrush currents.

The high-impedance restricted earth-fault protection detects short-circuits and insulation faults on the transformer.

Backup protection

The 7SJ61can be used universally for backup protection.

Flexible protection functions

By configuring a connection between a standard protection logic and any measured or derived quantity, the functional scope of the relays can be easily expanded by up to 20 protection stages or protection functions.

Metering values

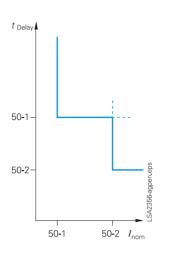
Extensive measured values, limit values and metered values permit improved system management.

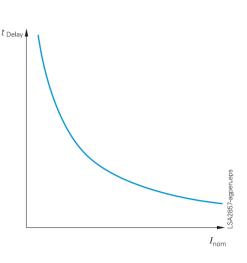
ANSI No.	IEC	Protection functions
(50, 50N)	$I>, I>>, I>>> I_{E}>>, I_{E}>>>$	Definite-time overcurrent protection (phase/neutral)
(51, 51N)	$I_{\rm p},I_{\rm Ep}$	Inverse-time overcurrent protection (phase/neutral)
50Ns, 51Ns	$I_{\rm EE}$ >, $I_{\rm EE}$ >>, $I_{\rm EEp}$	Sensitive earth-fault protection
_		Cold load pick-up (dynamic setting change)
_	<i>I</i> _E >	Intermittent earth fault
87N		High-impedance restricted earth-fault protection
(50BF)		Breaker failure protection
79		Auto-reclosure
(46)	<i>I</i> ₂ >	Phase-balance current protection (negative-sequence protection)
49	ϑ>	Thermal overload protection
(48)		Starting time supervision
(51M)		Load jam protection
14		Locked rotor protection
66/86		Restart inhibit
37)	<i>I</i> <	Undercurrent monitoring
38		Temperature monitoring via external device (RTD-box), e.g. bearing temperature monitoring

Connection techniques and housing with many advantages

1/3-rack size (text display variants) and 1/2-rack size (graphic display variants) are the available housing widths of the 7SJ61 relays referred to a 19" module frame sys-tem. This means that previous models can always be replaced. The height is a uniform 244 mm for flush-mounting housings and 266 mm for surface-mounting housing. All cables can be connected with or without ring lugs.

In the case of surface mounting on a panel, the connection terminals are located above and below in the form of screw-type terminals. The communication interfaces are located in a sloped case at the top and bottom of the housing.





Protection functions

Time-overcurrent protection (ANSI 50, 50N, 51, 51N)

This function is based on the phase-selective measurement of the three phase currents and the earth current (four transformers). Three definite-time overcurrent protection elements (DMT) exist both for the phases and for the earth. The current threshold and the delay time can be set within a wide range. In addition, inverse-time overcurrent protection characteristics (IDMTL) can be activated.

Fig. 5/60

Definite-time overcurrent protection

Fig. 5/61 Inverse-time overcurrent protection

Available inverse-time characteristics

Characteristics acc. to	ANSI/IEEE	IEC 60255-3	
Inverse	•	•	
Short inverse	٠		
Long inverse	٠	•	
Moderately inverse	٠		
Very inverse	٠	•	
Extremely inverse	٠	•	

Reset characteristics

For easier time coordination with electromechanical relays, reset characteristics according to ANSI C37.112 and IEC 60255-3 / BS 142 standards are applied. When using the reset characteristic (disk emulation), a reset process is initiated after the fault current has disappeared. This reset process corresponds to the reverse movement of the Ferraris disk of an electromechanical relay (thus: disk emulation).

User-definable characteristics

Instead of the predefined time characteristics according to ANSI, tripping characteristics can be defined by the user for phase and earth units separately. Up to 20 current/ time value pairs may be programmed. They are set as pairs of numbers or graphically in DIGSI 4.

Inrush restraint

The relay features second harmonic restraint. If the second harmonic is detected during transformer energization, pickup of non-directional normal elements (I>, I_p) are blocked.

Cold load pickup/dynamic setting change

For time-overcurrent protection functions the initiation thresholds and tripping times can be switched via binary inputs or by time control.

Flexible protection functions

The 7SJ61 units enable the user to easily add on up to 20 protective functions. To this end, parameter definitions are used to link a standard protection logic with any chosen characteristic quantity (measured or derived quantity). The standard logic consists of the usual protection elements such as the pickup message, the parameterdefinable delay time, the TRIP command, a blocking possibility, etc. The mode of operation for current quantities can be three-phase or single-phase. The quantities can be operated as greater than or less than stages. All stages operate with protection priority. Protection stages/functions attainable on the basis of the available characteristic quantities:

Function	ANSI No.
I>, I _E >	50, 50N
$3I_0>, I_1>, I_2>, I_2/I_1>$	50N, 46

Binary input

Siemens SI

Protection functions

(Sensitive) earth-fault detection (ANSI 50Ns, 51Ns/50N, 51N)

For high-resistance earthed networks, a sensitive input transformer is connected to a phase-balance neutral current transformer (also called core-balance CT).

The function can also be operated in the insensitive mode as an additional short- circuit protection.

Intermittent earth-fault protection

Intermittent (re-striking) faults occur due to insulation weaknesses in cables or as a result of water penetrating cable joints. Such faults either simply cease at some stage or develop into lasting short-circuits. During intermittent activity, however, star-point resistors in networks that are impedance-earthed may undergo thermal overloading. The normal earth-fault protection cannot reliably detect and interrupt the current pulses, some of which can be very brief.

The selectivity required with intermittent earth faults is achieved by summating the duration of the individual pulses and by triggering when a (settable) summed time is reached. The response threshold $I_{\rm IE}$ > evaluates the r.m.s. value, referred to one systems period.

Breaker failure protection (ANSI 50BF)

If a faulted portion of the electrical circuit is not disconnected upon issuance of a trip command, another command can be initiated using the breaker failure protection which operates the circuit-breaker, e.g. of an upstream (higher-level) protection relay. Breaker failure is detected if after a trip command, current is still flowing in the faulted circuit. As an option it is possible to make use of the circuit-breaker position indication.

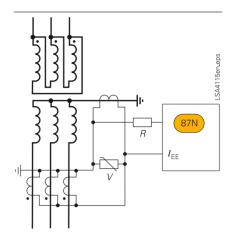
Phase-balance current protection (ANSI 46) (Negative-sequence protection)

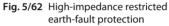
In line protection, the two-element phasebalance current/negative-sequence protection permits detection on the high side of high-resistance phase-to-phase faults and phase-to-earth faults that are on the low side of a transformer (e.g. with the switch group Dy 5). This provides backup protection for high-resistance faults beyond the transformer.

Settable dropout delay times

If the devices are used in parallel with electromechanical relays in networks with intermittent faults, the long dropout times of the electromechanical devices (several hundred milliseconds) can lead to problems in terms of time grading. Clean time grading is only possible if the dropout time is approximately the same. This is why the parameter of dropout times can be defined for certain functions such as time-overcurrent protection, earth short-circuit and phase-balance current protection.

Auto-reclosure (ANSI 79)


Multiple reclosures can be defined by the user and lockout will occur if a fault is present after the last reclosure. The following functions are possible:


- 3-pole ARC for all types of faults
- Separate settings for phase and earth faults
- Multiple ARC, one rapid auto-reclosure (RAR) and up to nine delayed auto-reclosures (DAR)
- Starting of the ARC depends on the trip command selection (e.g. 46, 50, 51)
- Blocking option of the ARC via binary inputs
- ARC can be initiated externally or via CFC
- The overcurrent elements can either be blocked or operated non-delayed depending on the auto-reclosure cycle
- Dynamic setting change of the overcurrent elements can be activated depending on the ready AR

Thermal overload protection (ANSI 49)

For protecting cables and transformers, an overload protection with an integrated pre-warning element for temperature and current can be applied. The temperature is calculated using a thermal homogeneousbody model (according to IEC 60255-8), which takes account both of the energy entering the equipment and the energy losses. The calculated temperature is constantly adjusted accordingly. Thus, account is taken of the previous load and the load fluctuations.

For thermal protection of motors (especially the stator) a further time constant can be set so that the thermal ratios can be detected correctly while the motor is rotating and when it is stopped. The ambient temperature or the temperature of the coolant can be detected serially via an external temperature monitoring box (resistance-temperature detector box, also called RTD-box). The thermal replica of the

overload function is automatically adapted to the ambient conditions. If there is no RTD-box it is assumed that the ambient temperatures are constant.

High-impedance restricted earth-fault protection (ANSI 87N)

The high-impedance measurement principle is an uncomplicated and sensitive method for detecting earth faults, especially on transformers. It can also be applied to motors, generators and reactors when these are operated on an earthed network.

When the high-impedance measurement principle is applied, all current transformers in the protected area are connected in parallel and operated on one common resistor of relatively high R whose voltage is measured (see Fig. 5/61). In the case of 7SJ6 units, the voltage is measured by detecting the current through the (external) resistor R at the sensitive current measurement input $I_{\rm EE}$. The varistor V serves to limit the voltage in the event of an internal fault. It cuts off the high momentary voltage spikes occurring at transformer saturation. At the same time, this results in smoothing of the voltage without any noteworthy reduction of the average value. If no faults have occurred and in the event of external faults, the system is at equilibrium, and the voltage through the resistor is approximately zero. In the event of internal faults, an imbalance occurs which leads to a voltage and a current flow through the resistor *R*.

The current transformers must be of the same type and must at least offer a separate core for the high-impedance restricted earth-fault protection. They must in particular have the same transformation ratio and an approximately identical knee-point voltage. They should also demonstrate only minimal measuring errors.

Protection functions/Functions

Motor protection

Starting time supervision (ANSI 48)

Starting time supervision protects the motor against long unwanted start-ups that might occur when excessive load torque occurs, excessive voltage drops occur within the motor or if the rotor is locked. Rotor temperature is calculated from measured stator current. The tripping time is calculated according to the following equation:

for $I > I_{MOTOR START}$

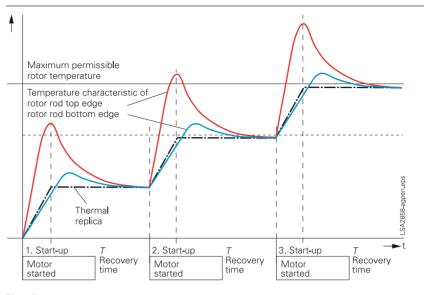
$$=\left(\frac{I_{\rm A}}{I}\right)^2 \cdot T_{\rm A}$$

I = Actual current flowing *I*_{MOTOR START} = Pickup current to detect a motor start

t =	Tripping time

 $I_{\rm A}$ = Rated motor starting current

*T*_A = Tripping time at rated motor starting current (2 times, for warm and cold motor)


The characteristic (equation) can be adapted optimally to the state of the motor by applying different tripping times T_A in dependence of either cold or warm motor state. For differentiation of the motor state the thermal model of the rotor is applied.

If the trip time is rated according to the above formula, even a prolonged start-up and reduced voltage (and reduced start-up current) will be evaluated correctly. The tripping time is inverse (current dependent).

A binary signal is set by a speed sensor to detect a blocked rotor. An instantaneous tripping is effected.

Temperature monitoring (ANSI 38)

Up to 2 temperature monitoring boxes with a total of 12 measuring sensors can be used for temperature monitoring and detection by the protection relay. The thermal status of motors, generators and transformers can be monitored with this device. Additionally, the temperature of the bearings of rotating machines are monitored for limit value violation. The temperatures are being measured with the help of temperature detectors at various locations of the device to be protected. This data is transmitted to the protection relay via one or two temperature monitoring boxes (see "Accessories", page 5/78).

Load jam protection (ANSI 51M)

Sudden high loads can cause slowing down and blocking of the motor and mechanical damages. The rise of current due to a load jam is being monitored by this function (alarm and tripping). The overload protection function is too slow and therefore not suitable under these circumstances.

Phase-balance current protection (ANSI 46) (Negative-sequence protection)

The negative-sequence / phase-balance current protection detects a phase failure or load unbalance due to network asymmetry and protects the rotor from impermissible temperature rise.

Restart inhibit (ANSI 66/86)

If a motor is started up too many times in succession, the rotor can be subject to thermal overload, especially the upper edges of the bars. The rotor temperature is calculated from the stator current. The reclosing lockout only permits start-up of the motor if the rotor has sufficient thermal reserves for a complete start- up (see Fig. 5/62).

Emergency start-up

This function disables the reclosing lockout via a binary input by storing the state of the thermal replica as long as the binary input is active. It is also possible to reset the thermal replica to zero.

Undercurrent monitoring (ANSI 37)

With this function, a sudden drop in current, that can occur due to a reduced motor load, is detected. This may be due to shaft breakage, no-load operation of pumps or fan failure.

Motor statistics

Essential information on start-up of the motor (duration, current, voltage) and general information on number of starts, total operating time, total down time, etc. are saved as statistics in the device.

Circuit-breaker wear monitoring

Methods for determining circuit-breaker contact wear or the remaining service life of a circuit-breaker (CB) allow CB maintenance intervals to be aligned to their actual degree of wear. The benefit lies in reduced maintenance costs.

There is no mathematically exact method of calculating the wear or the remaining service life of circuit-breakers that takes into account the arc-chamber's physical conditions when the CB opens. This is why various methods of determining CB wear have evolved which reflect the different operator philosophies. To do justice to these, the devices offer several methods:

- ΣI
- ΣI^x , with x = 1...3
- $\Sigma i^2 t$

The devices additionally offer a new method for determining the remaining service life:

• Two-point method

Protection functions/Functions

The CB manufacturers double-logarithmic switching cycle diagram (see Fig. 5/63) and the breaking current at the time of contact opening serve as the basis for this method. After CB opening, the two-point method calculates the number of still possible switching cycles. To this end, the two points P1 and P2 only have to be set on the device. These are specified in the CB's technical data.

All of these methods are phase-selective and a limit value can be set in order to obtain an alarm if the actual value falls below or exceeds the limit value during determination of the remaining service life.

Commissioning

Commissioning could hardly be easier and is fully supported by DIGSI 4. The status of the binary inputs can be read individually and the state of the binary outputs can be set individually. The operation of switching elements (circuit-breakers, disconnect devices) can be checked using the switching functions of the bay controller. The analog measured values are represented as wide-ranging operational measured values.

To prevent transmission of information to the control center during maintenance, the bay controller communications can be disabled to prevent unnecessary data from being transmitted. During commissioning, all indications with test marking for test purposes can be connected to a control and protection system.

Test operation

During commissioning, all indications can be passed to an automatic control system for test purposes.

Control and automatic functions

Control

In addition to the protection functions, the SIPROTEC 4 units also support all control and monitoring functions that are required for operating medium-voltage or highvoltage substations.

The main application is reliable control of switching and other processes.

The status of primary equipment or auxiliary devices can be obtained from auxiliary contacts and communicated to the 7SJ61 via binary inputs. Therefore it is possible to detect and indicate both the OPEN and CLOSED position or a fault or intermediate circuit-breaker or auxiliary contact position.

The switchgear or circuit-breaker can be controlled via:

- integrated operator panel
- binary inputs

– substation control and protection system
 – DIGSI 4

Automation / user-defined logic

With integrated logic, the user can set, via a graphic interface (CFC), specific functions for the automation of switchgear or substation. Functions are activated via function keys, binary input or via communication interface.

Switching authority

Switching authority is determined according to parameters and communication.

If a source is set to "LOCAL", only local switching operations are possible. The following sequence of switching authority is laid down: "LOCAL"; DIGSI PC program, "REMOTE".

Command processing

All the functionality of command processing is offered. This includes the processing of single and double commands with or without feedback, sophisticated monitoring of the control hardware and software, checking of the external process, control actions using functions such as runtime monitoring and automatic command termination after output. Here are some typical applications:

- Single and double commands using 1, 1 plus 1 common or 2 trip contacts
- User-definable bay interlocks
- Operating sequences combining several switching operations such as control of circuit-breakers, disconnectors and earthing switches
- Triggering of switching operations, indications or alarm by combination with existing information

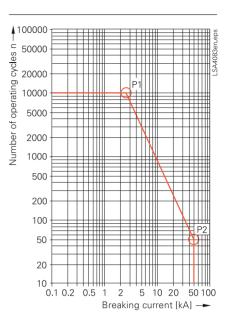


Fig. 5/64 CB switching cycle diagram

Assignment of feedback to command

The positions of the circuit-breaker or switching devices and transformer taps are acquired by feedback. These indication inputs are logically assigned to the corresponding command outputs. The unit can therefore distinguish whether the indication change is a consequence of switching operation or whether it is a spontaneous change of state.

Chatter disable

Chatter disable feature evaluates whether, in a configured period of time, the number of status changes of indication input exceeds a specified figure. If exceeded, the indication input is blocked for a certain period, so that the event list will not record excessive operations.

Function

Indication filtering and delay

Binary indications can be filtered or delayed.

Filtering serves to suppress brief changes in potential at the indication input. The indication is passed on only if the indication voltage is still present after a set period of time. In the event of indication delay, there is a wait for a preset time. The information is passed on only if the indication voltage is still present after this time.

Indication derivation

A further indication (or a command) can be derived from an existing indication. Group indications can also be formed. The volume of information to the system interface can thus be reduced and restricted to the most important signals.

Measured values

The r.m.s. values are calculated from the acquired current. The following functions are available for measured value processing:

- Currents I_{L1} , I_{L2} , I_{L3} , I_E , I_{EE} (50Ns)
- Symmetrical components *I*₁, *I*₂, 3*I*₀
- Mean as well as minimum and maximum current values
- · Operating hours counter
- Mean operating temperature of overload function
- Limit value monitoring
- Limit values are monitored using programmable logic in the CFC. Commands can be derived from this limit value indication.
- Zero suppression In a certain range of very low measured values, the value is set to zero to suppress interference.

Metered values

If an external meter with a metering pulse output is available, the SIPROTEC 4 unit can obtain and process metering pulses via an indication input.

The metered values can be displayed and passed on to a control center as an accumulation with reset.

Switchgear cubicles for high/medium voltage

All units are designed specifically to meet the requirements of high/medium-voltage applications.

In general, no separate measuring instruments or additional control components are necessary.

Fig. 5/65 NXAIR panel (air-insulated)

Communication

In terms of communication, the units offer substantial flexibility in the context of connection to industrial and power automation standards. Communication can be extended or added on thanks to modules for retrofitting on which the common protocols run. Therefore, also in the future it will be possible to optimally integrate units into the changing communication infrastructure, for example in Ethernet networks (which will also be used increasingly in the power supply sector in the years to come).

Serial front interface

There is a serial RS232 interface on the front of all the units. All of the unit's functions can be set on a PC by means of the DIGSI 4 protection operation program. Commissioning tools and fault analysis are also built into the program and are available through this interface.

Rear-mounted interfaces¹⁾

A number of communication modules suitable for various applications can be fitted in the rear of the flush-mounting housing. In the flush-mounting housing, the modules can be easily replaced by the user. The interface modules support the following applications:

• Time synchronization interface All units feature a permanently integrated electrical time synchronization interface. It can be used to feed timing telegrams in IRIG-B or DCF77 format into the units via time synchronization receivers.

• System interface Communication with a central control system takes place through this interface. Radial or ring type station bus topologies can be configured depending on the chosen interface. Furthermore, the units can exchange data through this interface via Ethernet and IEC 61850 protocol and can also be operated by DIGSI.

• Service interface

The service interface was conceived for remote access to a number of protection units via DIGSI. On all units, it can be an electrical RS232/RS485 or an optical interface. For special applications, a maximum of two temperature monitoring boxes (RTD-box) can be connected to this interface as an alternative.

System interface protocols (retrofittable)

IEC 61850 protocol

The Ethernet-based IEC 61850 protocol is the worldwide standard for protection and control systems used by power supply corporations. Siemens was the first manufacturer to support this standard. By means of this protocol, information can also be exchanged directly between bay units so as to set up simple masterless systems for bay and system interlocking. Access to the units via the Ethernet bus is also possible with DIGSI.

IEC 60870-5-103 protocol

The IEC 60870-5-103 protocol is an international standard for the transmission of protective data and fault recordings. All messages from the unit and also control commands can be transferred by means of published, Siemens-specific extensions to the protocol.

Redundant solutions are also possible. Optionally it is possible to read out and alter individual parameters (only possible with the redundant module).

PROFIBUS-DP protocol

PROFIBUS-DP is the most widespread protocol in industrial automation. Via PROFIBUS-DP, SIPROTEC units make their information available to a SIMATIC controller or, in the control direction, receive commands from a central SIMATIC. Measured values can also be transferred.

MODBUS RTU protocol

This uncomplicated, serial protocol is mainly used in industry and by power supply corporations, and is supported by a number of unit manufacturers. SIPROTEC units function as MODBUS slaves, making their information available to a master or receiving information from it. A time-stamped event list is available.

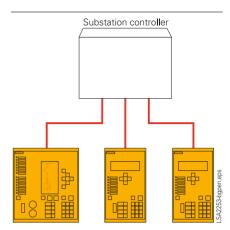


Fig. 5/66

IEC 60870-5-103: Radial fiber-optic connection

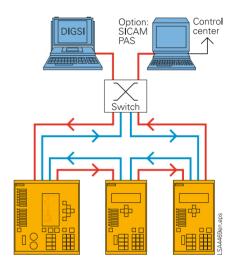


Fig. 5/67

Bus structure for station bus with Ethernet and IEC 61850, fiber-optic ring

1) For units in panel surface-mounting housings please refer to note on page 5/77.

Communication

DNP 3.0 protocol

Power supply corporations use the serial DNP 3.0 (Distributed Network Protocol) for the station and network control levels. SIPROTEC units function as DNP slaves, supplying their information to a master system or receiving information from it.

System solutions for protection and station control

Together with the SICAM power automation system, SIPROTEC 4 can be used with PROFIBUS-FMS. Over the low-cost electrical RS485 bus, or interference-free via the optical double ring, the units exchange information with the control system.

Units featuring IEC 60870-5-103 interfaces can be connected to SICAM in parallel via the RS485 bus or radially by fiber-optic link. Through this interface, the system is open for the connection of units of other manufacturers (see Fig. 5/65).

Because of the standardized interfaces, SIPROTEC units can also be integrated into systems of other manufacturers or in SIMATIC. Electrical RS485 or optical interfaces are available. The optimum physical data transfer medium can be chosen thanks to opto-electrical converters. Thus, the RS485 bus allows low-cost wiring in the cubicles and an interference-free optical connection to the master can be established.

For IEC 61850, an interoperable system solution is offered with SICAM PAS. Via the 100 Mbits/s Ethernet bus, the units are linked with PAS electrically or optically to the station PC. The interface is standardized, thus also enabling direct connection of units of other manufacturers to the Ethernet bus. With IEC 61850, however, the units can also be used in other manufacturers' systems (see Fig. 5/66).

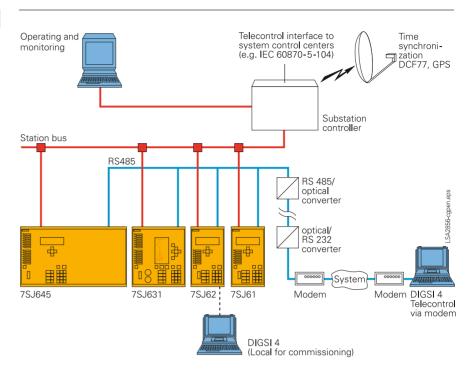
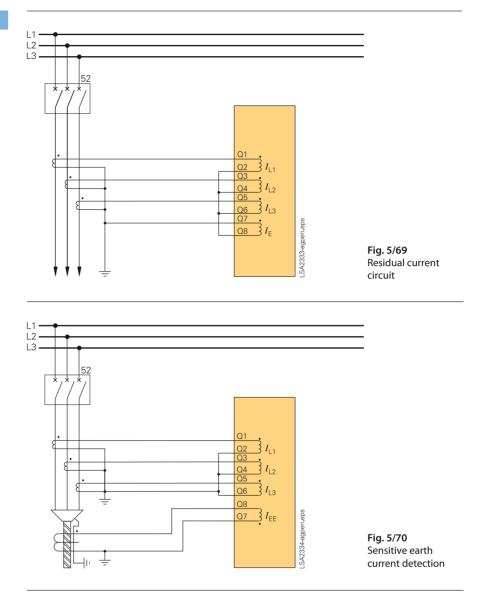


Fig. 5/67 System solution/communication

Fig. 5/68 Optical Ethernet communication module for IEC 61850 with integrated Ethernet-switch



Typical connections

Connection of current and voltage transformers

Standard connection

For earthed networks, the earth current is obtained from the phase currents by the residual current circuit.

Typical applications

Overview of connection types

Type of network	Function	Current connection
(Low-resistance) earthed network	Time-overcurrent protection phase/earth non-directional	Residual circuit, with 3 phase-current transformers required, phase-balance neutral current transformer possible
(Low-resistance) earthed networks	Sensitive earth-fault protection	Phase-balance neutral current transformers required
solated or compensated networks Time-overcurrent protection phases non-directional		Residual circuit, with 3 or 2 phase current transformers possible
Isolated networks	Sensitive earth-fault protection	Phase-balance neutral current transformers required
Compensated networks	Sensitive earth-fault protection	Phase-balance neutral current transformers required

Trip circuit supervision (ANSI 74TC)

One or two binary inputs can be used for monitoring the circuit-breaker trip coil including its incoming cables. An alarm signal occurs whenever the circuit is interrupted.

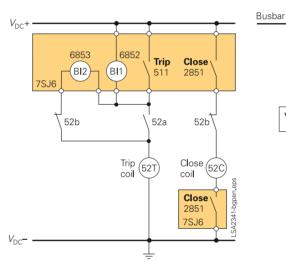


Fig. 5/71 Trip circuit supervision with 2 binary inputs

Protection indications

52

511* General trip 2851* CB close command

2851* CB close command 6852* Trip circuit supervision: Trip relay 6853* Trip circuit supervision: CB aux

52a open, when CB is open 52b open, when CB is closed

Breaker

closed H L

open

closed

BI1 BI2

н н

LL

L H

BI Binary input

TRIP

open

open

closed

closed open

contact

General unit data					
Measuring circuits		50/6	0 Uz (ootte	bla)	
System frequency Current transformer		5070	0 Hz (setta	ibie)	
Rated current Inom		l or 5	A (settabl	e)	
Option: sensitive earth-fault	CT	I or J $I_{\text{EE}} <$		e)	
Power consumption	.01	TEE <	1.0 / 1		
at $I_{nom} = 1 A$ at $I_{nom} = 5 A$ for sensitive earth-fault C	T at 1 A	Appr	ox. 0.05 VA ox. 0.3 VA ox. 0.05 VA	per phase	e
Overload capability					
Thermal (effective)		30 x <i>l</i>	$100 \ge I_{nom}$ for 1 s $30 \ge I_{nom}$ for 10 s $4 \ge I_{nom}$ continuous		
Dynamic (impulse curren	t)	250 x	Inom (half	cycle)	
Overload capability if equipp sensitive earth-fault CT Thermal (effective)	-	100 A	for 1 s for 10 s continuou	s	
Dynamic (impulse curren	t)	750 A	(half cycl	e)	
Auxiliary voltage (via integr	rated con	verter)			
Rated auxiliary voltage V_{aux}	DC 24/ AC	/48 V 6	0/125 V 1 1	10/250 V 15/230 V	
Permissible tolerance	DC 19- AC	-58 V 4	8–150 V 8 9		184–265 V
Ripple voltage, peak-to-peak	≤ 12 %				
Power consumption Quiescent Energized	Approx Approx				
Backup time during loss/short-circuit of auxiliary voltage	≥ 20 m	s at $V \ge$	110 V DC 24 V DC V/230 V		
Binary inputs/indication inp	outs				
Туре	7SJ610		7SJ611, 7SJ613	7SJ6 7SJ6	
Number	3		8	11	
Voltage range	24-250	V DC			
Pickup threshold	Modifi	able by p	olug-in jun	npers	
Pickup threshold	DC 19	V		88 V	r
For rated control voltage	DC 24	/48/60/1	10/125 V	110/	220/250 V
Response time/drop-out time	Approx	x. 3.5 ms	;		
Power consumption energized	1.8 mA	(indepe	endent of c	perating v	oltage)
Binary outputs/command c	outputs				
Туре			7SJ610	7SJ611, 7SJ613	7SJ612, 7SJ614
Number command/indication	on relay		4	8	6
Contacts per command/ indication relay				orm A cts change n B, via jui	
Live status contact			1 NO / N A / B	NC (jumpe	er) / form
Switching capacity		Make	1000 W	/ VA	
		Break		A / 40 W r L/R $\leq 50 r$	
Switching voltage		≤250 V	DC		

5 A continuous, 30 A for 0.5 s making current, 2000 switching cycles

Specification Standards	IEC 60255 ANSI C37.90, C37.90.1, C37.90.2, UL508
Insulation tests	
Standards	IEC 60255-5; ANSI/IEEE C37.90.0
Voltage test (100 % test) all circuits except for auxiliary voltage and RS485/RS232 and time synchronization	2.5 kV (r.m.s. value), 50/60 Hz
Auxiliary voltage	3.5 kV DC
Communication ports and time synchronization	500 V AC
Impulse voltage test (type test) all circuits, except communication ports and time synchronization, class III	5 kV (peak value); 1.2/50 μs; 0.5 J 3 positive and 3 negative impulses at intervals of 5 s
EMC tests for interference immunity	y; type tests
Standards	IEC 60255-6; IEC 60255-22 (product standard) EN 50082-2 (generic specification) DIN 57435 Part 303
High-frequency test IEC 60255-22-1, class III and VDE 0435 Part 303, class III	2.5 kV (peak value); 1 MHz; τ =15 ms 400 surges per s; test duration 2 s
Electrostatic discharge IEC 60255-22-2 class IV and EN 61000-4-2, class IV	8 kV contact discharge; 15 kV air gap discharge; both polarities; 150 pF; $R_i = 330 \Omega$
Irradiation with radio-frequency field, non-modulated IEC 60255-22-3 (Report) class III	10 V/m; 27 to 500 MHz
Irradiation with radio-frequency field, amplitude-modulated IEC 61000-4-3; class III	10 V/m, 80 to 1000 MHz; AM 80 %; 1 kHz
Irradiation with radio-frequency field, pulse-modulated IEC 61000-4-3/ENV 50204; class III	10 V/m, 900 MHz; repetition rate 200 Hz, on duration 50 %
Fast transient interference/burst IEC 60255-22-4 and IEC 61000-4-4, class IV	4 kV; 5/50 ns; 5 kHz; burst length = 15 ms; repetition rate 300 ms; both polarities $R_i = 50 \Omega$; test duration 1 min
High-energy surge voltages (Surge) IEC 61000-4-5; class III Auxiliary voltage	From circuit to circuit: 2 kV; 12 Ω ; 9 μ across contacts: 1 kV; 2 Ω ;18 μ F
Binary inputs/outputs	From circuit to circuit: 2 kV ; 42Ω ; 0.5μ l across contacts: 1 kV ; 42Ω ; 0.5μ F
Line-conducted HF, amplitude-modulated IEC 61000-4-6, class III	10 V; 150 kHz to 80 MHz; AM 80 %; 1 kHz
Power frequency magnetic field IEC 61000-4-8, class IV IEC 60255-6	30 A/m; 50 Hz, continuous 300 A/m; 50 Hz, 3 s 0.5 mT, 50 Hz
Oscillatory surge withstand capability ANSI/IEEE C37.90.1	2.5 to 3 kV (peak value), 1 to 1.5 MHz damped wave; 50 surges per s; duration 2 s, R_i = 150 to 200 Ω

SIEMENS

siemens-russia.com

Siemens SIP · Edition No. 6

Permissible current

EMC tests for interference immunity; type tests (cont'd)

Fast transient surge withstand capability ANSI/IEEE C37.90.1 Radiated electromagnetic interference ANSI/IEEE C37.90.2

IEC 60694 / IEC 61000-4-12

4 to 5 kV; 10/150 ns; 50 surges per s both polarities; duration 2 s, $R_i = 80 \Omega$ 35 V/m; 25 to 1000 MHz; amplitude and pulse-modulated

2.5 kV (peak value, polarity alternating) 100 kHz, 1 MHz, 10 and 50 MHz, $R_{\rm i} = 200 \ \Omega$

EN 50081-* (generic specification)

150 kHz to 30 MHz

30 to 1000 MHz

Limit class B

EMC tests for interference emission; type tests

Standard

Damped wave

Conducted interferences only auxiliary voltage IEC/CISPR 22 Limit class B

Radio interference field strength IEC/CISPR 11

Units with a detached operator panel must be installed in a metal cubicle to maintain limit class B

Mechanical stress tests

Vibration, shock stress and seismic vibration

During operation

Standards Vibration IEC 60255-21-1, class 2 IEC 60068-2-6

Shock IEC 60255-21-2, class 1 IEC 60068-2-27

Seismic vibration IEC 60255-21-3, class 1 IEC 60068-3-3

During transportation

Standards

Vibration IEC 60255-21-1, class 2 IEC 60068-2-6

Shock IEC 60255-21-2, Class 1 IEC 60068-2-27

Continuous shock IEC 60255-21-2, class 1 IEC 60068-2-29

IEC 60255-21 and IEC 60068-2 Sinusoidal 10 to 60 Hz; +/- 0.075 mm amplitude; 60 to 150 Hz; 1 g acceleration frequency sweep 1 octave/min 20 cycles in 3 perpendicular axes Semi-sinusoidal Acceleration 5 g, duration 11 ms; 3 shocks in both directions of 3 axes Sinusoidal 1 to 8 Hz: ± 3.5 mm amplitude (horizontal axis) 1 to 8 Hz: ± 1.5 mm amplitude (vertical axis) 8 to 35 Hz: 1 g acceleration (horizontal axis) 8 to 35 Hz: 0.5 g acceleration (vertical axis) Frequency sweep 1 octave/min 1 cycle in 3 perpendicular axes IEC 60255-21 and IEC 60068-2 Sinusoidal 5 to 8 Hz: \pm 7.5 mm amplitude; 8 to 150 Hz; 2 g acceleration, frequency sweep 1 octave/min 20 cycles in 3 perpendicular axes Semi-sinusoidal Acceleration 15 g, duration 11 ms 3 shocks in both directions of 3 axes

Semi-sinusoidal Acceleration 10 g, duration 16 ms 1000 shocks in both directions of 3 axes

Climatic stress tests

Temperatures

Temperatures	
Type-tested acc. to IEC 60068-2-1 and -2, test Bd, for 16 h	-25 °C to +85 °C /-13 °F to +185 °F
Temporarily permissible operating temperature, tested for 96 h	-20 °C to +70 °C /-4 °F to -158 °F
Recommended permanent operat- ing temperature acc. to IEC 60255-6 (Legibility of display may be impaired above +55 °C /+131 °F) – Limiting temperature during	-5 °C to +55 °C /+25 °F to +131 °F -25 °C to +55 °C /-13 °F to +131 °F
permanent storage – Limiting temperature during transport	-25 °C to +70 °C /-13 °F to +158 °F
Humidity	
Permissible humidity It is recommended to arrange the units in such a way that they are not exposed to direct sunlight or pronounced temperature changes that could cause condensation.	Annual average 75 % relative humi- dity; on 56 days a year up to 95 % relative humidity; condensation not permissible!
Unit design	
Housing	7XP20
Dimensions	See dimension drawings, part 15
Weight 1/3 19", surface-mounting housing 1/3 19", flush-mounting housing	4.5 kg 4.0 kg
1/2 19", surface-mounting housing 1/2 19", flush-mounting housing	7.5 kg 6.5 kg
Degree of protection acc. to EN 60529 Surface-mounting housing Flush-mounting housing Operator safety	IP 51 Front: IP 51, rear: IP 20; IP 2x with cover

Serial interfaces

Operating interface (front of unit)	
Connection	Non-isolated, RS232; front panel, 9-pin subminiature connector
Transmission rate	Factory setting 115200 baud, min. 4800 baud, max. 115200 baud
Service/modem interface (rear of un	it)
Isolated interface for data transfer	Port C: DIGSI 4/modem/RTD-box
Transmission rate	Factory setting 38400 baud, min. 4800 baud, max. 115200 baud
RS232/RS485	
Connection For flush-mounting housing/ surface-mounting housing with detached operator panel For surface-mounting housing with two-tier terminal at the top/bottom part	9-pin subminiature connector, mounting location "C" At the bottom part of the housing: shielded data cable
Distance RS232	15 m /49.2 ft
Distance RS485	Max. 1 km/3300 ft
Test voltage	500 V AC against earth

Tecl	ani	cal	da	10
		9911	uu	

System interface (rear of unit)

IEC 60870-5-103 protocol Isolated interface for data transfer to a control center

Transmission rate

RS232/RS485

Connection

For flush-mounting housing/ surface-mounting housing with detached operator panel For surface-mounting housing with two-tier terminal on the top/bottom part Distance RS232 Distance RS485 Test voltage Fiber optic Connection fiber-optic cable For flush-mounting housing/ surface-mounting housing with detached operator panel

For surface-mounting housing with two-tier terminal on the top/bottom part

Optical wavelength Permissible path attenuation

Distance

IEC 60870-5-103 protocol, redundant

RS485

Connection For flush-mounting housing/ surface-mounting housing with detached operator panel For surface-mounting housing with two-tier terminal on the top/bottom part Distance RS485

Test voltage

IEC 61850 protocol

Isolated interface for data transfer: - to a control center

- with DIGS

- between SIPROTEC 4 relays Transmission rate

Ethernet, electrical

Connection

For flush-mounting housing/ surface-mounting housing with detached operator panel

Distance

Test voltage

Ethernet, optical

Connection For flush-mounting housing/ surface-mounting housing with detached operator panel Optical wavelength Distance

Siemens SIP · Edition No. 6

Port B

Factory setting 9600 baud, min. 1200 baud, max. 115200 baud

Mounting location "B"

At the bottom part of the housing: shielded data cable

Max 15 m/49 ft Max. 1 km/3300 ft 500 V AC against earth

Integrated ST connector for fiberoptic connection Mounting location "B"

At the bottom part of the housing

820 nm Max. 8 dB, for glass fiber 62.5/125 µm Max. 1.5 km/0.9 miles

Mounting location "B"

(not available)

Max. 1 km/3300 ft 500 V AC against earth

Port B, 100 Base T acc. to IEEE802.3

100 Mbit

Two RJ45 connectors mounting location "B"

Max. 20 m / 65.6 ft 500 V AC against earth

Integr. LC connector for FO connection Mounting location "B"

1300 nm 1.5 km/0.9 miles PROFIBUS-FMS/DP Isolated interface for data transfer Port B to a control center Up to 1.5 Mbaud Transmission rate RS485 Connection For flush-mounting housing/ 9-pin subminiature connector, surface-mounting housing with mounting location "B" detached operator panel At the bottom part of the housing: For surface-mounting housing with two-tier terminal on the shielded data cable top/bottom part Distance $1000 \text{ m/3300 ft} \le 93.75 \text{ kbaud};$ 500 m/1500 ft < 187.5 kbaud $200 \text{ m}/600 \text{ ft} \le 1.5 \text{ Mbaud};$ 100 m/300 ft ≤ 12 Mbaud Test voltage 500 V AC against earth Fiber optic Connection fiber-optic cable For flush-mounting housing/ Mounting location "B" surface-mounting housing with detached operator panel For surface-mounting housing At the bottom part of the housing with two-tier terminal on the top/bottom part and 2) on page 5/99 Optical wavelength 820 nm Permissible path attenuation Distance 1500 kB/s 530 m/0.33 miles MODBUS RTU, ASCII, DNP 3.0 Isolated interface for data transfer Port B to a control center Transmission rate Up to 19200 baud RS485 Connection For flush-mounting housing/ surface-mounting housing with mounting location "B" detached operator panel For surface-mounting housing shielded data cable with two-tier terminal at the top/bottom part Distance recommended Test voltage 500 V AC against earth Fiber-optic Connection fiber-optic cable connection For flush-mounting housing/ Mounting location "B" surface-mounting housing with detached operator panel For surface-mounting housing with two-tier terminal at the and 2) on page 5/77 top/bottom part

> Optical wavelength Permissible path attenuaion Distance

Integr. ST connector for FO connection

Important: Please refer to footnotes Max. 8 dB, for glass fiber 62.5/125 µm 500 kB/s 1.6 km/0.99 miles

9-pin subminiature connector,

At bottom part of the housing:

Max. 1 km/3300 ft max. 32 units

Integrated ST connector for fiber-optic

At the bottom part of the housing Important: Please refer to footnotes

820 nm

Max. 8 dB, for glass fiber 62.5/125 μ m Max. 1.5 km/0.9 miles

SIEMENS

siemens-russia.com

Time synchronization DCF77/IRIG-B signal (Format IRIG-B000)		
Connection	9-pin subminiature connector	
	(SUB-D)	
	(terminal with surface-mounting housing)	
Voltage levels	5 V, 12 V or 24 V (optional)	
Functions		
Definite-time overcurrent protectio	n (ANSI 50, 50N)	
Operating mode phase protection (ANSI 50)	3-phase (standard) or 2-phase (L1 and L3)	
Number of elements (stages)	I>, <i>I</i> >>, <i>I</i> >>> (phases) <i>I</i> _E >, <i>I</i> _E >>>, <i>I</i> _E >>> (earth)	
Setting ranges		
Pickup phase elements Pickup earth elements	0.5 to 175 A or ∞^{11} (in steps of 0.01 A) 0.25 to 175 A or ∞^{11} (in steps of 0.01 A)	
Delay times T Dropout delay time $T_{\rm DO}$	0 to 60 s or ∞ (in steps of 0.01 s) 0 to 60 s (in steps of 0.01 s)	
Times Pickup times (without inrush restraint, with inrush restraint + 10 ms)		
With twice the setting value With five times the setting value	Approx. 30 ms Approx. 20 ms	
Dropout times	Approx. 40 ms	
Dropout ratio	Approx. 0.95 for $I/I_{\rm nom} \ge 0.3$	
Tolerances Pickup Delay times <i>T</i> , <i>T</i> _{DO}	2 % of setting value or 50 mA ¹⁾ 1 % or 10 ms	
Inverse-time overcurrent protection		
Operating mode phase protection (ANSI 51)	3-phase (standard) or 2-phase (L1 and L3)	
Setting ranges Pickup phase element I_P Pickup earth element I_{EP} Time multiplier T (IEC characteristics) Time multiplier D (ANSI characteristics)	0.5 to 20 A or ∞^{11} (in steps of 0.01 A) 0.25 to 20 A or ∞^{11} (in steps of 0.01 A) 0.05 to 3.2 s or ∞ (in steps of 0.01 s) 0.05 to 15 s or ∞ (in steps of 0.01 s)	
Trip characteristics IEC	Normal inverse, very inverse,	
ANSI	extremely inverse, long inverse Inverse, short inverse, long inverse moderately inverse, very inverse, extremely inverse, definite inverse	
User-defined characteristic	Defined by a maximum of 20 value pairs of current and time delay	
Dropout setting Without disk emulation	Approx. 1.05 · setting value I_p for $I_p/I_{nom} \ge 0.3$, corresponds to approx. 0.95 · pickup threshold	
With disk emulation	Approx. $0.90 \cdot$ setting value I_p	
Tolerances Pickup/dropout thresholds $I_{\rm p}$, $I_{\rm Ep}$ Pickup time for $2 \le I/I_{\rm p} \le 20$	2 % of setting value or 50 mA ¹⁾ 5 % of reference (calculated) value + 2 % current tolerance, respectively	
Dropout ratio for $0.05 \le I/I_{\rm p}$ ≤ 0.9	30 ms 5 % of reference (calculated) value + 2 % current tolerance, respectively 30 ms	

Inrush blocking		
	Time an annument along onto IN-IN	
Influenced functions	Time-overcurrent elements, <i>I</i> >, <i>I</i> _E >, <i>I</i> _p , <i>I</i> _{Ep}	
Lower function limit phases Lower function limit earth	At least one phase current (50 Hz and 100 Hz) \geq 125 mA ¹⁾ Earth current (50 Hz and 100 Hz)	
	\geq 125 mA ¹⁾	
Upper function limit (setting range) 1.5 to 125 A $^{1)}$ (in steps of 0.01 A)	
Setting range I_{2f}/I	10 to 45 % (in steps of 1 %)	
Crossblock (I_{L1}, I_{L2}, I_{L3})	ON/OFF	
Dynamic setting change		
Controllable function	Pickup, tripping time	
Start criteria	Current criteria, CB position via aux. contacts, binary input, auto-reclosure ready	
Time control	3 timers	
Current criteria	Current threshold (reset on dropping below threshold; monitoring with timer)	
(Sensitive) earth-fault detection (A	-	
Earth-fault pickup for all types of ea		
Definite-time characteristic (ANSI 5		
Setting ranges Pickup threshold <i>I</i> _{EE} >, <i>I</i> _{EE} >> For sensitive input For normal input Delay times <i>T</i> for <i>I</i> _{EE} >, <i>I</i> _{EE} >> Dropout delay time <i>T</i> _{DO}	0.001 to 1.5 A (in steps of 0.001 A) 0.25 to 175 A ¹⁾ (in steps of 0.01 A) 0 to 320 s or ∞ (in steps of 0.01 s) 0 to 60 s (in steps of 0.01 s)	
Times Pickup times	Approx. 50 ms	
Dropout ratio	Approx. 0.95	
Tolerances Pickup threshold <i>I</i> _{EE} >, <i>I</i> _{EE} >> Delay times	2 % of setting value or 1 mA 1 % of setting value or 20 ms	
Earth-fault pickup for all types of ea	arth faults	
Inverse-time characteristic (ANSI 51Ns)		
User-defined characteristic	Defined by a maximum of 20 pairs of current and delay time values	
Setting ranges Pickup threshold I _{EEp} For sensitive input For normal input User defined Time multiplier T	0.001 A to 1.4 A (in steps of 0.001 A) 0.25 to 20 A^{1} (in steps of 0.01 A) 0.1 to 4 s or ∞ (in steps of 0.01 s)	
Times Pickup times	Approx 50 ms	

Approx. 50 ms

Approx. $1.1 \cdot I_{EEp}$

Approx. $1.05 \cdot I_{EEp}$

Refer to the manual

2 % of setting value or 1 mA 2 % of setting value or 50 mA $^{1)}$

7 % of reference value for $2 \le I/I_{\text{EEp}}$ $\le 20 + 2$ % current tolerance, or 70 ms

Siemens SI Sedition MENS

siemens-russia.com

Pickup times Pickup threshold

Dropout ratio

For sensitive input For normal input

Logarithmic inverse

Dropout times in linear range

Logarithmic inverse with knee point Refer to the manual

Tolerances Pickup threshold

 $t = \tau_{\rm th} \cdot \ln \frac{\left(I/k \cdot I_{\rm nom}\right)^2 - \left(I_{\rm pre}/k \cdot I_{\rm nom}\right)^2}{\left(I/k \cdot I_{\rm nom}\right)^2 - 1}$

= Temperature rise time constant

= Setting factor acc. to VDE 0435 Part 3011 and IEC 60255-8 $I_{nom} =$ Rated (nominal) current of the protection relay

= Tripping time

= Load current = Preload current

t

Ι

Ipre k

 $au_{
m th}$

Tripping characteristic For $(I/k \cdot I_{nom}) \le 8$

Dropout ratios

loc	hnical	data
1 EC	ппсаг	uulu

High-impedance restricted earth-fault protection (ANSI 87N) / single-phase overcurrent protection

Setting ranges	
Pickup thresholds <i>I</i> >, <i>I</i> >>	
For sensitive input	0.003 to 1.5 Å or as (in stone of 0.001 Å)
1	0.003 to 1.5 A or ∞ (in steps of 0.001 A) 0.25 to 175 A ¹⁾ or ∞ (in steps of 0.01 A)
For normal input	· · ·
Delay times $T_I >$, $T_I >>$	0 to 60 s or ∞ (in steps of 0.01 s)
Times	
Pickup times	
Minimum	Approx. 20 ms
Typical	Approx. 30 ms
Dropout times	Approx. 30 ms
Dropout ratio	Approx. 0.95 for $I/I_{nom} \ge 0.5$
Tolerances	
Pickup thresholds	3 % of setting value or
-	1 % rated current at $I_{nom} = 1$ or 5 A;
	5 % of setting value or
	3 % rated current at $I_{\text{nom}} = 0.1 \text{ A}$
	$5 / 6$ fated current at $T_{\rm nom} = 0.1 M$

1 % of setting value or 10 ms

Delay times

Intermittent earth-fault protection

Setting ranges

0 0		
Pickup threshold		
For <i>I</i> _E	$I_{\rm IE}>$	0.25 to 175 A ¹⁾ (in steps of 0.01 A)
For $3I_0$	$I_{\rm IE}>$	0.25 to $175 A^{11}$ (in steps of 0.01 A)
For I _{EE}	$I_{\rm IE}>$	0.005 to 1.5 A (in steps of 0.001 A)
Pickup prolon- gation time	$T_{\rm V}$	0 to 10 s (in steps of 0.01 s)
Earth-fault accu- mulation time	T_{sum}	0 to 100 s (in steps of 0.01 s)
Reset time for accumulation	$T_{\rm res}$	1 to 600 s (in steps of 1 s)
Number of pickups for intermittent earth fault		2 to 10 (in steps of 1)
Times		
Pickup times		
$Current = 1.25 \cdot picku$	1	Approx. 30 ms
Current $\geq 2 \cdot \text{pickup}$	value	Approx. 22 ms
Dropout time		Approx. 22 ms
Tolerances		
Pickup threshold $I_{\rm IE}>$		3 % of setting value, or 50 mA ¹⁾
Times $T_{\rm V}$, $T_{\rm sum}$, $T_{\rm res}$		1 % of setting value or 10 ms
Thermal overload protec	tion (ANSI	49)
Setting ranges		
		(1 + 1)

Setting 1 Factor k 0.1 to 4 (in steps of 0.01)

Time constant	1 to 999.9 min (in steps of 0.1 min)
Warning overtemperature $\Theta_{alarm}/\Theta_{trip}$	50 to 100 % with reference to the tripping overtemperature (in steps of 1 %)
Current warning stage Ialarm	0.5 to 20 A (in steps of 0.01 A)
Extension factor when stopped k_r factor	1 to 10 with reference to the time constant with the machine running (in steps of 0.1)
Rated overtemperature (for I_{nom})	40 to 200 °C (in steps of 1 °C)

Dropout ratios $\Theta/\Theta_{\text{Trip}}$ $\Theta/\Theta_{\text{Alarm}}$ I/I_{Alarm}	Drops out with Θ_{Alarm} Approx. 0.99 Approx. 0.97
Tolerances With reference to $k \cdot I_{nom}$ With reference to tripping time	Class 5 acc. to IEC 60255-8 5 % +/- 2 s acc. to IEC 60255-8
Auto-reclosure (ANSI 79)	
Number of reclosures	0 to 9 Shot 1 to 4 individually adjustable
Program for phase fault Start-up by	Time-overcurrent elements, negative sequence, binary input
Program for earth fault Start-up by	Time-overcurrent elements, sensitive earth-fault protection, binary input
Blocking of ARC	Pickup of protection functions, three-phase fault detected by a protec- tive element, binary input, last TRIP command after the reclosing cycle is complete (unsuccessful reclosing), TRIP command by the breaker failure protection (50BF), opening the CB without ARC initiation, external CLOSE command
Setting ranges Dead time (separate for phase and earth and individual for shots 1 to 4)	0.01 to 320 s (in steps of 0.01 s)
Blocking duration for manual- CLOSE detection Blocking duration after	0.5 s to 320 s or 0 (in steps of 0.01 s)
Blocking duration after Blocking duration after dynamic blocking	0.5 s to 320 s (in steps of 0.01 s) 0.01 to 320 s (in steps of 0.01 s)
Start-signal monitoring time	0.01 to 320 s or ∞ (in steps of 0.01 s)
Circuit-breaker supervision time	0.1 to 320 s (in steps of 0.01 s)
Max. delay of dead-time start	0 to 1800 s or ∞ (in steps of 0.1 s)
Maximum dead time extension	0.5 to 320 s or ∞(in steps of 0.01 s)
Action time	0.01 to 320 s or ∞ (in steps of 0.01 s)
The delay times of the following pro individually by the ARC for shots 1 t (setting value $T = T$, non-delayed $T = I >>>, I>>, I>>, I_P$, $I_E>>>, I_E>>, I_E>, I_E$	io 4

Additional functions

Auto-reclosure (ANSI 79) (cont'd)

Lockout (final trip), delay of dead-time start via binary input (monitored), dead-time extension via binary input (monitored), co-ordination with other protection relays, circuit-breaker monitoring, evaluation of the CB contacts	,, ,	
		delay of dead-time start via binary input (monitored), dead-time extension via binary input (monitored), co-ordination with other protection relays, circuit-breaker monitoring,

Breaker failure protection (ANSI 50 BF)

Setting ranges Pickup thresholds	0.2 to 5 A ¹⁾ (in steps of 0.01 A)
Delay time	0.06 to 60 s or ∞ (in steps of 0.01 s)
Times Pickup times with internal start with external start Dropout times	is contained in the delay time is contained in the delay time Approx. 25 ms
Tolerances Pickup value Delay time	2 % of setting value (50 mA) ¹⁾ 1 % or 20 ms

Flexible protection functions (ANSI 47, 50, 50N)

Operating modes/measuring quantities		
3-phase	$I, I_1, I_2, I_2/I_1, 3I_0$	
1-phase	I, I _E , I _E sens.	
Without fixed phase relation	Binary input	
Pickup when	Exceeding or falling below threshold value	
Setting ranges		
Current I , I_1 , I_2 , $3I_0$, I_E	0.15 to 200 A ¹⁾ (in steps of 0.01 A)	
Current ratio I_2 / I_1	15 to 100 % (in steps of 1 %)	
Sensitive earth current $I_{\text{E sens.}}$	0.001 to 1.5 A (in steps of 0.001 A)	
Dropout ratio >- stage	1.01 to 3 (in steps of 0.01)	
Dropout ratio <- stage	0.7 to 0.99 (in steps of 0.01)	
Pickup delay time	0 to 60 s (in steps of 0.01 s)	
Trip delay time	0 to 3600 s (in steps of 0.01 s)	
Dropout delay time	0 to 60 s (in steps of 0.01 s)	
Times		
Pickup times, phase quantities		
With 2 times the setting value	Approx. 30 ms	
With 10 times the setting value	Approx. 20 ms	
Pickup times, symmetrical		
components		
With 2 times the setting value	Approx. 40 ms	
With 10 times the setting value		
Binary input	Approx. 20 ms	
Dropout times		
Phase quantities	< 20 ms	
Symmetrical components	< 30 ms	
Binary input	< 10 ms	
Tolerances		
Pickup threshold		
Phase quantities	1 % of setting value or 50 mA ¹⁾	
Symmetrical components	2 % of setting value or 100 mA ¹⁾	
Times	1 % of setting value or 10 ms	
Negative-sequence current detection (ANSI 46)		

Definite-time characteristic (ANSI 46-1 and 46-2)

Setting ranges Pickup current *I*₂>, *I*₂>> Delay times Dropout delay time *T*_{DO} Functional limit

0.5 to 15 A or ∞ (in steps of 0.01 A) 0 to 60 s or ∞ (in steps of 0.01 s) 0 to 60 s (in steps of 0.01 s) All phase currents \leq 50 A¹)

Times Pickup times Dropout times Dropout ratio	Approx. 35 ms Approx. 35 ms Approx. 0.95 for $I_2 / I_{nom} > 0.3$
Tolerances Pickup thresholds Delay times	3 % of the setting value or 50 mA $^{1)}$ 1 % or 10 ms
Inverse-time characteristic (ANSI 46	-TOC)
Setting ranges Pickup current Time multiplier T (IEC characteristics) Time multiplier D (ANSI characteristics)	0.5 to 10 A ¹⁾ (in steps of 0.01 A) 0.05 to 3.2 s or ∞ (in steps of 0.01 s) 0.5 to 15 s or ∞ (in steps of 0.01 s)
Functional limit	All phase currents $\leq 50 \text{ A}^{1}$
Trip characteristics IEC ANSI	Normal inverse, very inverse, extremely inverse Inverse, moderately inverse, very inverse, extremely inverse
Pickup threshold	Approx. 1.1 \cdot I_{2p} setting value
Dropout IEC and ANSI (without disk emulation) ANSI with disk emulation	Approx. $1.05 \cdot I_{2p}$ setting value, which is approx. $0.95 \cdot pickup$ threshold Approx. $0.90 \cdot I_{2p}$ setting value
Tolerances Pickup threshold Time for $2 \le M \le 20$	3 % of the setting value or 50 mA ¹⁾ 5 % of setpoint (calculated) +2 % current tolerance, at least 30 ms
Starting time monitoring for motor	s (ANSI 48)
Setting ranges Motor starting current I_{STARTUP} Pickup threshold $I_{\text{MOTOR START}}$ Permissible starting time T_{STARTUP} , cold motor Permissible starting time T_{STARTUP} , warm motor Temperature threshold cold motor Permissible blocked rotor time $T_{\text{LOCKED-ROTOR}}$	2.5 to 80 A^{11} (in steps of 0.01) 2 to 50 A^{11} (in steps of 0.01) 1 to 180 s (in steps of 0.1 s) 0.5 to 180 s (in steps of 0.1 s)
Tripping time characteristic For <i>I</i> > <i>I</i> _{MOTOR START}	$t = \left(\frac{I_{\text{STARTUP}}}{I}\right)^2 \cdot T_{\text{STARTUP}}$
	$I_{\text{STARTUP}} = \text{Rated motor starting} \\ \text{current} \\ I = \text{Actual current flowing} \\ T_{\text{STARTUP}} = \text{Tripping time for rated} \\ \text{motor starting current} \\ t = \text{Tripping time in seconds}$
Dropout ratio I _{MOTOR START}	Approx. 0.95
Tolerances Pickup threshold	2.% of setting value or 50 mA ^{1}

2 % of setting value or 50 mA $^{1)}$ 5 % or 30 ms

Load jam protection for motors (ANSI 51M)
Setting ranges

Pickup threshold

Delay time

Current threshold for		
alarm and trip	$0.25 \text{ to } 60 \text{ A}^{1)}$ (in steps of 0.01 A)	
Delay times	0 to 600 s (in steps of 0.01 s)	
Blocking duration after	0 to 600 s (in steps of 0.01 s)	
close signal detection		
Tolerances		
Pickup threshold	2 % of setting value or 50 mA ¹⁾	
Delay time	1 % of setting value or 10 ms	
1) At $I_{\text{nom}} = 1$ A, all limits divided by 5.		

FI O qu

Restart inhibit for motors (ANSI 66)

S

Setting ranges	
Motor starting current relative to rated motor current	1.1 to 10 (in steps of 0.1)
IMOTOR START/IMotor Nom Rated motor current I _{Motor Nom} Max. permissible starting time	1 to 6 A ¹⁾ (in steps of 0.01 A) 1 to 320 s (in steps of 1 s)
$T_{\text{Start Max}}$ Equilibrium time T_{Equal} Minimum inhibit time $T_{\text{MIN, INHIBIT TIME}}$	0 min to 320 min (in steps of 0.1 min) 0.2 min to 120 min (in steps of 0.1 min)
Max. permissible number of warm starts	1 to 4 (in steps of 1)
Difference between cold and warm starts	1 to 2 (in steps of 1)
Extension k-factor for cooling simulations of rotor at zero speed $k_{\tau at STOP}$	0.2 to 100 (in steps of 0.1)
Extension factor for cooling time constant with motor running k _{t RUNNING}	0.2 to 100 (in steps of 0.1)
Restarting limit	
	$\Theta_{\text{restart}} = \Theta_{\text{rot max perm}} \cdot \frac{n_c - 1}{n_c}$
	Θ _{restart} = Temperature limit below which restarting is possible
	$\begin{split} \Theta_{rotmaxperm} &= Maximumpermissible\\ rotor overtemperature\\ (= 100~\%~in~operational\\ measured value\\ \Theta_{rot}/\Theta_{rottrip}) \end{split}$
	<i>n</i> _c = Number of permissible start-ups from cold state
Undercurrent monitoring (ANSI 37)	
Signal from the operational measured values	Predefined with programmable logic
Temperature monitoring box (ANSI	38)
Temperature detectors	
Connectable boxes Number of temperature detectors per box	1 or 2 Max. 6
Type of measuring Mounting identification	Pt 100 Ω or Ni 100 Ω or Ni 120 Ω "Oil" or "Environment" or "Stator" or "Bearing" or "Other"
Thresholds for indications For each measuring detector	
Stage 1	-50 °C to 250 °C (in steps of 1 °C)

Stage 2

2) -58 °F to 482 °F (in steps of 1 °F) or ∞ (no indication)

-50 °C to 250 °C (in steps of 1 °C) -58 °F to 482 °F (in steps of 1 °F) or ∞ (no indication)

Additional functions

Operational measured values

Operational measurea values	
Currents I_{L1}, I_{L2}, I_{L3} Positive-sequence component I_1 Negative-sequence component I_2 I_E or $3I_0$	In A (kA) primary, in A secondary or in $\%I_{\rm nom}$
Range Tolerance ¹⁾	10 to 200 % <i>I</i> _{nom} 1 % of measured value or 0.5 % <i>I</i> _{nom}
Temperature overload protection Θ/Θ_{Trip}	In %
Range Tolerance ¹⁾	0 to 400 % 5 % class accuracy per IEC 60255-8
Temperature restart inhibit $\Theta_L / \Theta_{L Trip}$	In %
Range Tolerance ¹⁾	0 to 400 % 5 % class accuracy per IEC 60255-8
Restart threshold $\Theta_{Restart}\!\!\!\!/\Theta_{LTrip}$	In %
Reclose time T_{Reclose}	In min
Current of sensitive ground fault detection $I_{\rm EE}$	In A (kA) primary and in mA secondary
Range Tolerance ¹⁾	0 mA to 1600 mA 2 % of measured value or 1 mA
RTD-box	See section "Temperature monitoring box"
Long-term averages	
Time window	5, 15, 30 or 60 minuets
Frequency of updates	Adjustable
Long-term averages of currents	IL1dmd, IL2dmd, IL3dmd, I1dmd in A (kA)
Max. / Min. report	
Report of measured values	With date and time
Reset, automatic	Time of day adjustable (in minutes, 0 to 1439 min) Time frame and starting time adjust- able (in days, 1 to 365 days, and ∞)
Reset, manual	Using binary input, using keypad, via communication
Min./Max. values for current	<i>I</i> _{L1} , <i>I</i> _{L2} , <i>I</i> _{L3} <i>I</i> ₁ (positive-sequence component)
Min./Max. values for overload pro- tection	$\Theta/\Theta_{\mathrm{Trip}}$
Min./Max. values for mean values	I_{L1dmd} , I_{L2dmd} , I_{L3dmd} I_1 (positive-sequence component)
Local measured values monitoring	
Current asymmetry	$I_{\text{max}}/I_{\text{min}}$ > balance factor, for $I > I_{\text{balance limit}}$
Current phase sequence	Clockwise (ABC) / counter-clockwise (ACB)
Limit value monitoring	Predefined limit values, user-defined expansions via CFC
Fault recording	

Fau

Recording of indications of the last 8 power system faults

Recording of indications of the last 3 power system ground faults

SIEMENS

siemens-russia.com

1) At rated frequency.

Technical date

Time stamping	
Time stamping Percent log	1 mc
Resolution for event log (operational annunciations)	l ms
Resolution for trip log (fault annunciations)	1 ms
Maximum time deviation (internal clock)	0.01 %
Battery	Lithium battery 3 V/1 Ah, type CR 1/2 AA, message "Battery Fault" for insufficient battery charge
Oscillographic fault recording	
Maximum 8 fault records saved, memory maintained by buffer bat- tery in case of loss of power supply	
Recording time	Total 20 s Pre-trigger and post-fault recording and memory time adjustable
Sampling rate for 50 Hz Sampling rate for 60 Hz	1 sample/1.25 ms (16 samples/cycle) 1 sample/1.04 ms (16 samples/cycle)
Statistics	
Saved number of trips	Up to 9 digits
Number of automatic reclosing commands (segregated according to 1^{st} and $\ge 2^{nd}$ cycle)	Up to 9 digits
Circuit-breaker wear	
Methods	 Σ<i>l</i>^x with x = 1 3 2-point method (remaining service life) Σ<i>i</i>²t
Operation	Phase-selective accumulation of mea- sured values on TRIP command, up to 8 digits, phase-selective limit values, monitoring indication
Motor statistics	
Total number of motor start-ups Total operating time Total down-time Ratio operating time/down-time Motor start-up data: - start-up time - start-up current (primary)	0 to 9999 (resolution 1) 0 to 99999 h (resolution 1 h) 0 to 99999 h (resolution 1 h) 0 to 100 % (resolution 0.1 %) of the last 5 start-ups 0.30 s to 9999.99 s 0.30 s to 9999.99 s (resolution 1 0 ms) 0 A to 1000 kA (resolution 1 A)
Operating hours counter	
Display range	Up to 7 digits
Criterion	Overshoot of an adjustable current threshold (BkrClosed <i>I</i> _{MIN})
Trip circuit monitoring	
With one or two binary inputs	
Commissioning aids	
Phase rotation field check, operational measured values, circuit-breaker/switching device test,	
creation of a test measurement report	
Clock	
Time synchronization	DCF77/IRIG-B signal (telegram format IRIG-B000), binary input, communication

Setting group switchover of the function parameters

Number of available setting groups	4 (parameter group A, B, C and D)
Switchover performed	Via keypad, DIGSI, system (SCADA) interface or binary input
Control	
Number of switching units	Depends on the binary inputs and outputs
Interlocking	Programmable
Circuit-breaker signals	Feedback, close, open, intermediate position
Control commands	Single command / double command 1, 1 plus 1 common or 2 trip contacts
Programmable controller	CFC logic, graphic input tool
Local control	Control via menu, assignment of a function key
Remote control	Via communication interfaces, using a substation automation and control system (e.g. SICAM), DIGSI 4 (e.g. via modem)

CE conformity

This product is in conformity with the Directives of the European Communities on the harmonization of the laws of the Member States relating to electromagnetic compatibility (EMC Council Directive 89/336/EEC) and electrical equipment designed for use within certain voltage limits (Council Directive 73/23/EEC).

This unit conforms to the international standard IEC 60255, and the German standard DIN 57435/Part 303 (corresponding to VDE 0435/Part 303).

Further applicable standards: ANSI/IEEE C37.90.0 and C37.90.1.

The unit conforms to the international standard IEC 60255, and the German standard DIN 57435/Part 303 (corresponding to VDE 0435/Part 303).

This conformity is the result of a test that was performed by Siemens AG in accordance with Article 10 of the Council Directive complying with the generic standards EN 50081-2 and EN 50082-2 for the EMC Directive and standard EN 60255-6 for the "low-voltage Directive".

c(UL)us
LISTED

5

SIEMENS

siemens-russia.com

Selection and ordering data	Description	Order No.
Sciection and oracing data	7SJ61 multifunction protection relay	7SJ6100 - 00000 - 0000
	Housing, binary inputs (BI) and outputs (BO)	
	Housing 1/3 19", 4 line text display, 3 BI, 4 BO, 1 live status contact	0
	Housing 1/3 19", 4 line text display, 8 BI, 8 BO, 1 live status contact	1
	Housing 1/3 19", 4 line text display, 11 BI, 6 BO, 1 live status contact	2
	Housing 1/2 19", graphic display, 8 BI, 8 BO, 1 live status contact 7)	3 next
	Housing 1/219", graphic display, 11 BI, 6 BO, 1 live status contact ⁷⁾	4 page
	Measuring inputs $(4 \times I)$	
	$I_{\rm ph} = 1 {\rm A}^{1}, I_{\rm e} = 1 {\rm A}^{1} ({\rm min.} = 0.05 {\rm A})$	
	Position 15 only with A	1
	$I_{\rm ph} = 1 {\rm A}^{1)}, I_{\rm e} = {\rm sensitive} ({\rm min.} = 0.001 {\rm A})$	
	Position 15 only with B	2
	$I_{\rm ph} = 5 \mathrm{A}^{1}, I_{\rm e} = 5 \mathrm{A}^{1} ({\rm min.} = 0.25 \mathrm{A})$	
	Position 15 only with A	5
	$I_{\rm ph} = 5 {\rm A}^{1)}, I_{\rm e} = {\rm sensitive} ({\rm min.} = 0.001 {\rm A})$	
	Position 15 only with B	6
	$I_{\rm ph} = 5 {\rm A}^{1}, I_{\rm e} = 1 {\rm A}^{1} ({\rm min.} = 0.05 {\rm A})$	
	Position 15 only with A	7
	/	
	Rated auxiliary voltage (power supply, indication voltage)	
	24 to 48 V DC, threshold binary input 19 DC^{3}	2
	$60 \text{ to } 125 \text{ V DC}^2$, threshold binary input 19 DC ³	4
	$110 \text{ to } 250 \text{ V DC}^2$, 115 to 230 V ⁴) AC, threshold binary input 88 V D	
	$\frac{110 \text{ to } 250 \text{ V DC}^2}{110 \text{ to } 250 \text{ V}^2 \text{ AC}}$, the shold binary input 88 V D	
	Unit version	
	For panel surface mounting, 2 tier terminal top/bottom	В
	For panel flush mounting, plug-in terminal (2/3 pin connector)	D
	For panel flush mounting, screw-type terminal (direct connection/ri	ing-type cable lugs) E
	Region-specific default settings/function versions and language settin	
	Region DE, 50 Hz, IEC, language: German, selectable	
	Region World, 50/60 Hz, IEC/ANSI, language: English (GB), selectal	
	Region US, 60 Hz, ANSI, language: English (US), selectable	<u> </u>
	Region FR, 50/60 Hz, IEC/ANSI, language: French, selectable	<u>D</u>
	Region World, 50/60 Hz, IEC/ANSI, language: Spanish, selectable	<u> </u>
	Region IT, 50/60 Hz, IEC/ANSI, language: Italian, selectable	F
	System interface (Port B): Refer to page 5/77	
	No system interface	0
	Protocols see page 5/77	
	Consistent for (Dont C)	
	Service interface (Port C)	
	No interface at rear side	<u> </u>
	DIGSI 4/modem, electrical RS232	
	DIGSI 4/modem/RTD-box ⁵⁾ , electrical RS485	2
1) Rated current can be selected by	DIGSI 4/modem/RTD-box ⁵⁾⁶⁾ , optical 820 nm wavelength, ST conne	ector 3
means of jumpers.	Measuring/fault recording	
2) Transition between the two auxiliary	Fault recording	1
voltage ranges can be selected by	Slave pointer, mean values, min/max values, fault recording	3
means of jumpers.3) The binary input thresholds can be		
selected per binary input by means of ju	-	
4) 230 V AC, starting from device version	/EE.	
5) Temperature monitoring box 7XV5662-□AD10, refer to "Accessories		
6) When using the temperature monitorin box at an optical interface, the additional		

- box at an optical interface, the additional RS485 fiber-optic converter 7XV5650-0 A00 is required.
- 7) starting from device version .../GG and FW-Version V4.82

Selection and ordering data

Description Order No. 75J6100 - 00000 - 0000-0000 7SJ61 multifunction protection relay ANSI No. Description Designation Basic version Control 50/51 Time-overcurrent protection I>, I>>, I>>>, Ip 50N/51N Earth-fault protection *I*_E>, *I*_E>>, *I*_E>>>, *I*_{Ep} 50N/51N Earth-fault protection via insensitive IEE function: I_{EE} , I_{EE} , I_{EEp} ¹⁾ Flexible protection functions (index quantities 50/50N derived from current): Additional time-overcurrent protection stages I₂>, I>>>>, I_E>>>> 49 Overload protection (with 2 time constants) 46 Phase balance current protection (negative-sequence protection)

			FORE	(negative-sequence protection)							
			50BF	Breaker failure protection				ľ			
			37	Undercurrent monitoring							
			74TC	Trip circuit supervision							
				4 setting groups, cold-load pickup							
				Inrush blocking							
			86	Lockout	F	Α					
		IEF		Intermittent earth fault	Р	A					
			50Ns/51Ns 87N	Sensitive earth-fault detection (non-directional) High-impedance restricted earth fault	F	В	2)				
•		IEF	50Ns/51Ns 87N	Sensitive earth-fault detection (non-directional) High-impedance restricted earth fault Intermittent earth fault	Р	В	2)				
1	Motor	IEF	50Ns/51Ns 87N	Sensitive earth-fault detection (non-directional) High-impedance restricted earth fault Intermittent earth fault							
			48/14	Starting time supervision, locked rotor							
			66/86	Restart inhibit			21				
			51M	Load jam protection, motor statistics	R	В	2)				
1	Motor		50Ns/51Ns 87N 48/14 66/86 51M	Sensitive earth-fault detection (non-directional) High-impedance restricted earth fault Starting time supervision, locked rotor Restart inhibit Load jam protection, motor statistics	Н	В	2)				
	Motor		48/14 66/86	Starting time supervision, locked rotor Restart inhibit							
			51M	Load jam protection, motor statistics	Н	A					
ADC				· ·							
ARC			70	Without			0				
			79	With auto-reclosure			I				
	100 Cert							-			3)
For pr	otection	of exp	losion-protect	ted motors (increased-safety type of protection "e")				2	Ā	9	9

Basic version included

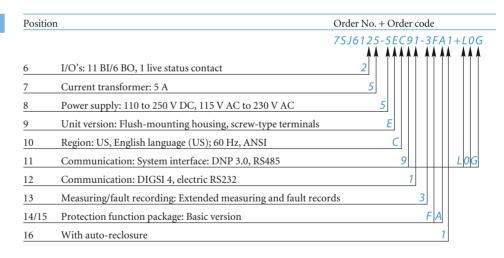
IEF = Intermittent earth fault

1) 50N/51N only with insensitive earth-current transformer when position 7 = 1, 5, 7.

2) Sensitive earth-current transformer

only when position 7 = 2, 6.

3) This variant will be supplied with a previous firmware version.


Order code

er numbers for system port B	Description	Order No.	Order code
	7SJ61 multifunction protection relay	7SJ6100 - 00000 - 01	
	System interface (on rear of unit, Port B)		
	No system interface	0	
	IEC 60870-5-103 protocol, RS232	1	
	IEC 60870-5-103 protocol, RS485	2	
	IEC 60870-5-103 protocol, 820 nm fiber, ST connector	3	
	PROFIBUS-FMS Slave, RS485	4	
	PROFIBUS-FMS Slave, 820 nm wavelength, single ring	, ST connector 1) 5	
	PROFIBUS-FMS Slave, 820 nm wavelength, double rin	g, ST connector ¹) 6	
	PROFIBUS-DP Slave, RS485	9	LOA
	PROFIBUS-DP Slave, 820 nm wavelength, double ring, S	ST connector ¹) 9	L 0 B
	MODBUS, RS485	9	L 0 D
	MODBUS, 820 nm wavelength, ST connector ²)	9	L 0 E
	DNP 3.0, RS485	9	L 0 G
	DNP 3.0, 820 nm wavelength, ST connector ²)	9	L 0 H
	IEC 60870-5-103 protocol, redundant, RS485, RJ45 cor	nnector ²⁾ 9	L 0 P
	IEC 61850, 100 Mbit Ethernet, electrical, double, RSJ45	connector (EN 100) 9	LOR
	IEC 61850, 100 Mbit Ethernet, optical, double, LC conr	nector $(EN \ 100)^{2}$ 9	L 0 S
		2 21 DC 405 4 1 5 Cl	

1) Not with position 9 = "B"; if 9 = "B", please order 7SJ6 unit with RS485 port and separate fiber-optic converters. For double ring, please order converter 6GK1502-3AB10, not available with position 9 = "B". For double ring, please order converter 6GK1502-4AB10, not available with position 9 = "B".

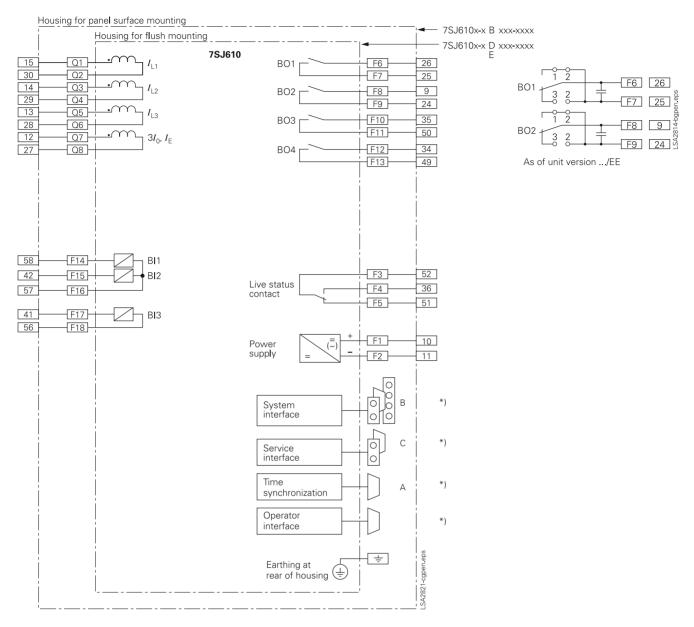
The converter requires a 24 V AC power supply (e.g. power supply 7XV5810-0BA00).

2) Not available with position $9 = B^{\circ}$.

Sample order

A				

		Order No.
DIGSI 4		
Software for	onfiguration and operation of Siemens protection units	
running und	r MS Windows 2000/XP Professional Edition	
Basis	Full version with license for 10 computers, on CD-ROM	
	(authorization by serial number)	7XS5400-0AA00
Professional	DIGSI 4 Basis and additionally SIGRA (fault record analysis),	
	CFC Editor (logic editor), Display Editor (editor for default	
	and control displays) and DIGSI 4 Remote (remote operation)	7XS5402-0AA00
Professional	+ IEC 61850	
i i oitessionui	Complete version:	
	DIGSI 4 Basis and additionally SIGRA (fault record analysis),	
	CFC Editor (logic editor), Display Editor (editor for control displa	avs),
	DIGSI 4 Remote (remote operation)	
	+ IEC 61850 system configurator	7XS5403-0AA00
	· · ·	
IEC 61850 Sys	tem configurator	
	configuration of stations with IEC 61850 communication under	
	ng under MS Windows 2000 or XP Professional Edition	
Optional pac	kage for DIGSI 4 Basis or Professional	
License for 1	PCs. Authorization by serial number. On CD-ROM	7XS5460-0AA00
(generally co	ning under MS Windows 2000 or XP Professional Edition.	
	ntained in DIGSI Professional, but can be ordered additionally) n by serial number. On CD-ROM.	7XS5410-0AA00
		7XS5410-0AA00
Temperature		7XS5410-0AA00
Temperature 24 to 60 V A	n by serial number. On CD-ROM.	7XS5410-0AA00 7XV5662-2AD10
24 to 60 V A	n by serial number. On CD-ROM. monitoring box C/DC	
24 to 60 V A	n by serial number. On CD-ROM. monitoring box C/DC	7XV5662-2AD10
24 to 60 V A0 90 to 240 V A Varistor/Volta	n by serial number. On CD-ROM. monitoring box C/DC C/DC ge Arrester	7XV5662-2AD10
24 to 60 V A0 90 to 240 V A Varistor/Volta Voltage arres	n by serial number. On CD-ROM. monitoring box C/DC C/DC ge Arrester ter for high-impedance REF protection	7XV5662-2AD10 7XV5662-5AD10
24 to 60 V A0 90 to 240 V A Varistor/Volta Voltage arres 125 Vrms; 60	n by serial number. On CD-ROM. monitoring box C/DC C/DC ge Arrester ter for high-impedance REF protection 0 A; 1S/S 256	7XV5662-2AD10 7XV5662-5AD10 C53207-A401-D76-1
24 to 60 V A0 90 to 240 V A Varistor/Volta Voltage arres 125 Vrms; 60	n by serial number. On CD-ROM. monitoring box C/DC C/DC ge Arrester ter for high-impedance REF protection	7XV5662-2AD10 7XV5662-5AD10
24 to 60 V A0 90 to 240 V A Varistor/Volta Voltage arres 125 Vrms; 60 240 Vrms; 60	n by serial number. On CD-ROM. monitoring box C/DC C/DC ge Arrester ter for high-impedance REF protection 0 A; 1S/S 256 0 A; 1S/S 1088	7XV5662-2AD10 7XV5662-5AD10 C53207-A401-D76-1
24 to 60 V Ad 90 to 240 V A Varistor/Volta Voltage arres 125 Vrms; 60 240 Vrms; 60 Connecting of	n by serial number. On CD-ROM. monitoring box C/DC C/DC ge Arrester ter for high-impedance REF protection 0 A; 1S/S 256 0 A; 1S/S 1088 mble	7XV5662-2AD10 7XV5662-5AD10 C53207-A401-D76-1
24 to 60 V A0 90 to 240 V A Varistor/Volta Voltage arres 125 Vrms; 60 240 Vrms; 60 Connecting C Cable betwee	n by serial number. On CD-ROM. monitoring box C/DC C/DC ge Arrester ter for high-impedance REF protection 0 A; 1S/S 256 0 A; 1S/S 1088 able n PC/notebook (9-pin con.) and protection unit (9-pin connector)	7XV5662-2AD10 7XV5662-5AD10 C53207-A401-D76-1 C53207-A401-D77-1
24 to 60 V Ad 90 to 240 V A Varistor/Volta Voltage arres 125 Vrms; 60 240 Vrms; 60 Cable betwee (contained in	n by serial number. On CD-ROM. monitoring box C/DC C/DC ge Arrester ter for high-impedance REF protection 0 A; 1S/S 256 0 A; 1S/S 1088 hble n PC/notebook (9-pin con.) and protection unit (9-pin connector) DIGSI 4, but can be ordered additionally)	7XV5662-2AD10 7XV5662-5AD10 C53207-A401-D76-1
24 to 60 V AG 90 to 240 V A Varistor/Volta Voltage arres 125 Vrms; 60 240 Vrms; 60 Cable betwee (contained in Cable betwee	n by serial number. On CD-ROM. monitoring box C/DC C/DC ge Arrester ter for high-impedance REF protection 0 A; 1S/S 256 0 A; 1S/S 1088 nble n PC/notebook (9-pin con.) and protection unit (9-pin connector) DIGSI 4, but can be ordered additionally) n temperature monitoring box and SIPROTEC 4 unit	7XV5662-2AD10 7XV5662-5AD10 C53207-A401-D76-1 C53207-A401-D77-1 7XV5100-4
24 to 60 V AG 90 to 240 V A Varistor/Volta Voltage arres 125 Vrms; 60 240 Vrms; 60 Cable betwee (contained in Cable betwee - length 5 m	n by serial number. On CD-ROM. monitoring box C/DC C/DC ge Arrester ter for high-impedance REF protection 0 A; 1S/S 256 0 A; 1S/S 1088 hble n PC/notebook (9-pin con.) and protection unit (9-pin connector) DIGSI 4, but can be ordered additionally) n temperature monitoring box and SIPROTEC 4 unit 16.4 ft	7XV5662-2AD10 7XV5662-5AD10 C53207-A401-D76-1 C53207-A401-D77-1 7XV5100-4 7XV5103-7AA05
24 to 60 V AG 90 to 240 V A 90 to 240 V A Varistor/Volta Voltage arres 125 Vrms; 60 240 Vrms; 60 Cable betwee (contained in Cable betwee - length 5 m - length 25 m	n by serial number. On CD-ROM. monitoring box C/DC C/DC ge Arrester ter for high-impedance REF protection 0 A; 1S/S 256 0 A; 1S/S 1088 bble n PC/notebook (9-pin con.) and protection unit (9-pin connector) DIGSI 4, but can be ordered additionally) n temperature monitoring box and SIPROTEC 4 unit 16.4 ft /82 ft	7XV5662-2AD10 7XV5662-5AD10 C53207-A401-D76-1 C53207-A401-D77-1 7XV5100-4 7XV5103-7AA05 7XV5103-7AA25
24 to 60 V AG 90 to 240 V A Varistor/Volta Voltage arres 125 Vrms; 60 240 Vrms; 60 Cable betwee (contained in Cable betwee - length 5 m	n by serial number. On CD-ROM. monitoring box C/DC C/DC ge Arrester ter for high-impedance REF protection 0 A; 1S/S 256 0 A; 1S/S 1088 bble n PC/notebook (9-pin con.) and protection unit (9-pin connector) DIGSI 4, but can be ordered additionally) n temperature monitoring box and SIPROTEC 4 unit 16.4 ft /82 ft	7XV5662-2AD10 7XV5662-5AD10 C53207-A401-D76-1 C53207-A401-D77-1 7XV5100-4 7XV5103-7AA05
24 to 60 V AG 90 to 240 V A Varistor/Volta Voltage arres 125 Vrms; 60 240 Vrms; 60 Cable betwee (contained in Cable betwee - length 5 m - length 50 m	n by serial number. On CD-ROM. monitoring box C/DC C/DC ge Arrester ter for high-impedance REF protection 0 A; 1S/S 256 0 A; 1S/S 1088 bble n PC/notebook (9-pin con.) and protection unit (9-pin connector) DIGSI 4, but can be ordered additionally) n temperature monitoring box and SIPROTEC 4 unit 16.4 ft /82 ft /164 ft	7XV5662-2AD10 7XV5662-5AD10 C53207-A401-D76-1 C53207-A401-D77-1 7XV5100-4 7XV5103-7AA05 7XV5103-7AA25
24 to 60 V AG 90 to 240 V A Varistor/Volta Voltage arres 125 Vrms; 60 240 Vrms; 60 Cable betwee (contained in Cable betwee - length 5 m - length 25 m	n by serial number. On CD-ROM. monitoring box C/DC C/DC ge Arrester ter for high-impedance REF protection 0 A; 1S/S 256 0 A; 1S/S 1088 bble n PC/notebook (9-pin con.) and protection unit (9-pin connector) DIGSI 4, but can be ordered additionally) n temperature monitoring box and SIPROTEC 4 unit 16.4 ft /82 ft /164 ft	7XV5662-2AD10 7XV5662-5AD10 C53207-A401-D76-1 C53207-A401-D77-1 7XV5100-4 7XV5103-7AA05 7XV5103-7AA25


1) x = please inquire for latest edition (exact Order No.).

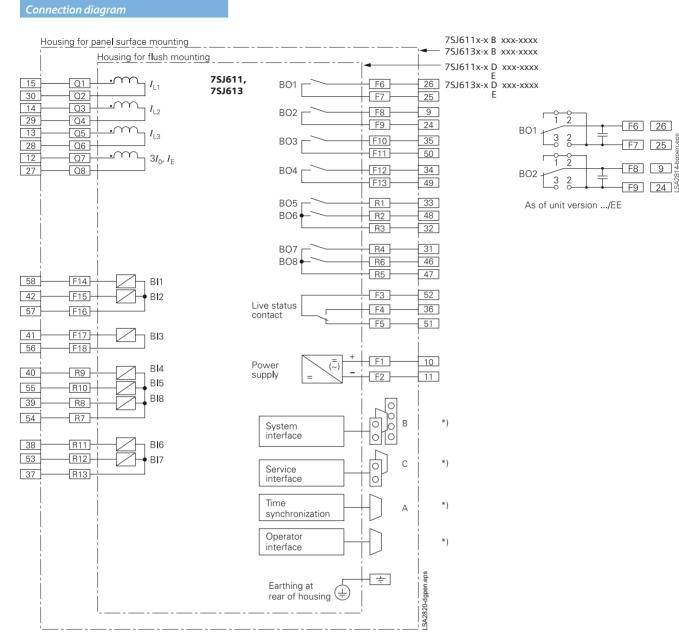
Accessories		Description	Order No.	Size of package	Supplier
	sda	Terminal safety cover			
CSP2289-atb ebs		Voltage/current terminal 18-pole/12-pole	C73334-A1-C31-1	1	Siemens
		Voltage/current terminal 12-pole/8-pole	C73334-A1-C32-1	1	Siemens
		Connector 2-pin	C73334-A1-C35-1	1	Siemens
Mounting rail		Connector 3-pin	C73334-A1-C36-1	1	Siemens
		Crimp connector CI2 0.5 to 1 mm ²	0-827039-1	4000	AMP ¹⁾
		1		taped on reel	
SP2090-afp.eps	Crimp connector CI2 0.5 to 1 mm ²	0-827396-1	1	AMP ¹⁾	
P2090-	P2091-	Crimp connector: Type III+ 0.75 to 1.5 mm ²	0-163084-2	1	AMP ¹⁾
LS	LS 🔨		0-163083-7	4000	AMP ¹⁾
2-pin	3-pin	Crimp connector: Type III+ 0.75 to 1.5 mm ²	0-103083-7	taped on reel	
connector	connector				1)
		Crimping tool for Type III+	0-539635-1	1	$AMP^{(1)}$
		and matching female	0-539668-2	1	AMP ¹⁾
S S	<i>(</i> 0	Crimping tool for CI2	0-734372-1	1	AMP ¹⁾
afp.e	O tebe	and matching female	1-734387-1	1	$AMP^{1)}$
SP2093-afp.eps	92-at	Short-circuit links			
	SP2092	for current terminals	C73334-A1-C33-1	1	Siemens
Short-circuit links	Short-circuit links	for other terminals	C73334-A1-C34-1	1	Siemens
for current termi- nals	for other terminals	Mounting rail for 19" rack	C73165-A63-D200-1	1	Siemens

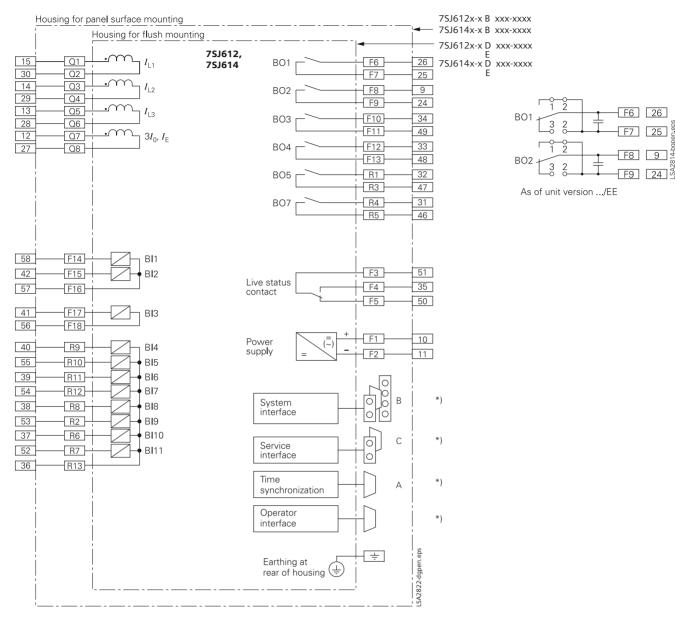
1) Your local Siemens representative can inform you on local suppliers.

Connection diagram

Fig. 5/72 7SJ610 connection diagram

*) For pinout of communication ports see part 15 of this catalog. For the allocation of the terminals of the panel surface-mounting version refer to the manual (http://www.siemens.com/siprotec).




Fig. 5/73 7SJ611, 7SJ613 connection diagram

*) For pinout of communication ports see part 15 of this catalog. For the allocation of the terminals of the panel surface-mounting version refer to the manual (http://www.siemens.com/siprotec).

9

Connection diagram

Fig. 5/74 7SJ612, 7SJ614 connection diagram

*) For pinout of communication ports see part 15 of this catalog. For the allocation of the terminals of the panel surface-mounting version refer to the manual (http://www.siemens.com/siprotec).

SIPROTEC 4 7SJ62 Multifunction Protection Relay

Fig. 5/75 SIPROTEC 4 7SJ62 multifunction protection relay with text (left) and graphic display

Description

The SIPROTEC 4 7SJ62 relays can be used for line protection of high and medium voltage networks with earthed (grounded), low-resistance earthed, isolated or compensated neutral point. With regard to motor protection, the SIPROTEC 4 7SJ62 is suitable for asynchronous machines of all sizes. The relay performs all functions of backup protection supplementary to transformer differential protection.

7SJ62 is featuring the "flexible protection functions". Up to 20 protection functions can be added according to individual requirements. Thus, for example, a rateof-frequency-change protection or reverse power protection can be implemented.

The relay provides control of the circuitbreaker, further switching devices and automation functions. The integrated programmable logic (CFC) allows the user to implement their own functions, e. g. for the automation of switchgear (interlocking). The user is also allowed to generate user-defined messages.

The flexible communication interfaces are open for modern communication architectures with control systems.

Function overview

Protection functions

- Time-overcurrent protection
- Directional time-overcurrent protection
- Sensitive dir. earth-fault detection
- Displacement voltage
- Intermittent earth-fault protection
- · High-impedance restricted earth fault
- Inrush restraint
- Motor protection
 - Undercurrent monitoring
 - Starting time supervision
 - Restart inhibit
 - Locked rotor
 - Load jam protection
- Overload protection
- Temperature monitoring
- Under-/overvoltage protection
- Under-/overfrequency protection
- Breaker failure protection
- Negative-sequence protection
- Phase-sequence monitoring
- Synchro-check
- Fault locator
- Lockout
- Auto-reclosure
- Control functions/programmable logic
- Commands f. ctrl of CB and of isolatorsPosition of switching elements is shown
- on the graphic display
- Control via keyboard, binary inputs, DIGSI 4 or SCADA system
- User-defined logic with CFC (e.g. interlocking)

Monitoring functions

- Operational measured values V, I, f
- Energy metering values $W_{\rm p}, W_{\rm q}$
- Circuit-breaker wear monitoring
- Slave pointer
- Trip circuit supervision
- Fuse failure monitor
- 8 oscillographic fault records
- Motor statistics
- Communication interfaces
- System interface
- IEC 60870-5-103/ IEC 61850
- PROFIBUS-FMS/-DP
- DNP 3.0/MODBUS RTU
- Service interface for DIGSI 4 (modem)
- Front interface for DIGSI 4
- Time synchronization via IRIG B/DCF77 Hardware
- 4 current transformers
- 3/4 voltage transformers
- 8/11 binary inputs
- 8/6 output relays

Application

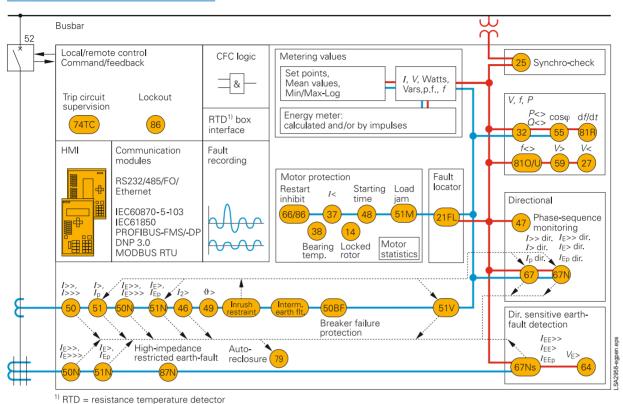


Fig. 5/76 Function diagram

The SIPROTEC 4 7SJ62 unit is a numerical protection relay that also performs control and monitoring functions and therefore supports the user in cost-effective power system management, and ensures reliable supply of electric power to the customers. Local operation has been designed according to ergonomic criteria. A large, easy-toread display was a major design aim.

Control

The integrated control function permits control of disconnect devices, earthing switches or circuit-breakers via the integrated operator panel, binary inputs, DIGSI 4 or the control and protection system (e.g. SICAM). The present status (or position) of the primary equipment can be displayed, in case of devices with graphic display. A full range of command processing functions is provided.

Programmable logic

The integrated logic characteristics (CFC) allow the user to implement their own functions for automation of switchgear (interlocking) or a substation via a graphic user interface. The user can also generate user-defined messages.

Line protection

The 7SJ62 units can be used for line protection of high and medium-voltage networks with earthed (grounded), lowresistance earthed, isolated or compensated neutral point.

Synchro-check

In order to connect two components of a power system, the relay provides a synchrocheck function which verifies that switching ON does not endanger the stability of the power system.

Motor protection

When protecting motors, the 7SJ62 relay is suitable for asynchronous machines of all sizes.

Transformer protection

The relay performs all functions of backup protection supplementary to transformer differential protection. The inrush suppression effectively prevents tripping by inrush currents.

The high-impedance restricted earth-fault protection detects short-circuits and insulation faults on the transformer.

Backup protection

The 7SJ62can be used universally for backup protection.

Flexible protection functions

By configuring a connection between a standard protection logic and any measured or derived quantity, the functional scope of the relays can be easily expanded by up to 20 protection stages or protection functions.

Metering values

Extensive measured values, limit values and metered values permit improved system management.

Application

ANSI No.	IEC	Protection functions
50, 50N	$I >, I >>, I >>>, I_E >, I_E >>, I_E >>>, I_E >>>$	Definite time-overcurrent protection (phase/neutral)
51,51V,51N	<i>I</i> _p , <i>I</i> _{Ep}	Inverse time-overcurrent protection (phase/neutral), phase function with voltage-dependent option
67,67N	$I_{ m dir}$ >, $I_{ m dir}$ >>, $I_{ m pdir}$ $I_{ m Edir}$ >, $I_{ m Edir}$ >>, $I_{ m Epdir}$	Directional time-overcurrent protection (definite/inverse, phase/neutral), Directional comparison protection
67Ns/50Ns	$I_{\rm EE}$ >, $I_{\rm EE}$ >>, $I_{\rm EEp}$	Directional/non-directional sensitive earth-fault detection
_		Cold load pick-up (dynamic setting change)
59N/64	V _E , V ₀ >	Displacement voltage, zero-sequence voltage
_	I _{IE} >	Intermittent earth fault
87N)		High-impedance restricted earth-fault protection
50BF)		Breaker failure protection
79		Auto-reclosure
25		Synchro-check
46	<i>I</i> ₂ >	Phase-balance current protection (negative-sequence protection)
47)	V ₂ >, phase-sequence	Unbalance-voltage protection and/or phase-sequence monitoring
49	θ>	Thermal overload protection
48		Starting time supervision
(51M)		Load jam protection
14)		Locked rotor protection
66/86		Restart inhibit
37)	I<	Undercurrent monitoring
38		Temperature monitoring via external device (RTD-box), e.g. bearing temperature monitoring
27, 59	V<, V>	Undervoltage/overvoltage protection
(59R)	dV/dt	Rate-of-voltage-change protection
32	P<>, Q<>	Reverse-power, forward-power protection
55	$\cos \varphi$	Power factor protection
(810/U)	f>,f<	Overfrequency/underfrequency protection
(81R)	df/dt	Rate-of-frequency-change protection
(21FL)		Fault locator

Construction

Connection techniques and housing with many advantages

1/3-rack size (text display variants) and 1/2-rack size (graphic display variants) are the available housing widths of the 7SJ62 relays, referred to a 19" module frame system. This means that previous models can always be replaced. The height is a uniform 244 mm for flush-mounting housings and 266 mm for surface-mounting housing. All cables can be connected with or without ring lugs.

In the case of surface mounting on a panel, the connection terminals are located above and below in the form of screw-type terminals. The communication interfaces are located in a sloped case at the top and bottom of the housing.

Protection functions

Time-overcurrent protection (ANSI 50, 50N, 51, 51V, 51N)

This function is based on the phaseselective measurement of the three phase currents and the earth current (four transformers). Three definite-time overcurrent protection elements (DMT) exist both for the phases and for the earth. The current threshold and the delay time can be set within a wide range. In addition, inversetime overcurrent protection characteristics (IDMTL) can be activated. The inverse-time function provides – as an option – voltage-restraint or voltagecontrolled operating modes.

Available inverse-time characteristics

Characteristics acc. to	ANSI/IEEE	IEC 60255-3
Inverse	•	•
Short inverse	٠	
Long inverse	•	•
Moderately inverse	•	
Very inverse	•	•
Extremely inverse	•	•

t Delay.

50-1

50-2

Fig. 5/77

50-1

50-2

Definite-time overcurrent protection

Inon

Reset characteristics

For easier time coordination with electromechanical relays, reset characteristics according to ANSI C37.112 and IEC 60255-3 /BS 142 standards are applied. When using the reset characteristic (disk emulation), a reset process is initiated after the fault current has disappeared. This reset process corresponds to the reverse movement of the Ferraris disk of an electromechanical relay (thus: disk emulation).

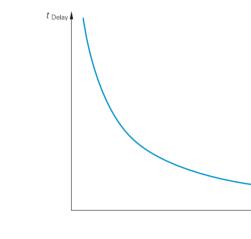


Fig. 5/78 Inverse-time overcurrent protection

User-definable characteristics

Instead of the predefined time characteristics according to ANSI, tripping characteristics can be defined by the user for phase and earth units separately. Up to 20 current/time value pairs may be programmed. They are set as pairs of numbers or graphically in DIGSI 4.

Inrush restraint

The relay features second harmonic restraint. If the second harmonic is detected during transformer energization, pickup of non-directional and directional normal elements are blocked.

Cold load pickup/dynamic setting change

For directional and non-directional timeovercurrent protection functions the initiation thresholds and tripping times can be switched via binary inputs or by time control.

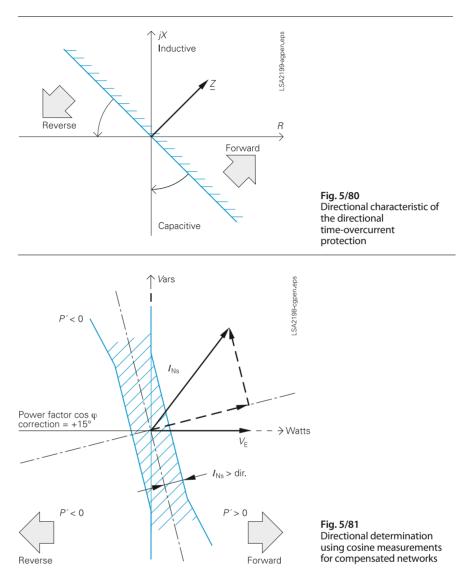
 $I_{\rm nom}$

Protection functions

Directional time-overcurrent protection (ANSI 67, 67N)

Directional phase and earth protection are separate functions. They operate in parallel to the non-directional overcurrent elements. Their pickup values and delay times can be set separately. Definite-time and inverse-time characteristics are offered. The tripping characteristic can be rotated about \pm 180 degrees.

By means of voltage memory, directionality can be determined reliably even for close-in (local) faults. If the switching device closes onto a fault and the voltage is too low to determine direction, directionality (directional decision) is made with voltage from the voltage memory. If no voltage exists in the memory, tripping occurs according to the coordination schedule.


For earth protection, users can choose whether the direction is to be determined via zero-sequence system or negative-sequence system quantities (selectable). Using negative-sequence variables can be advantageous in cases where the zero voltage tends to be very low due to unfavorable zero-sequence impedances.

Directional comparison protection (cross-coupling)

It is used for selective protection of sections fed from two sources with instantaneous tripping, i.e. without the disadvantage of time coordination. The directional comparison protection is suitable if the distances between the protection stations are not significant and pilot wires are available for signal transmission. In addition to the directional comparison protection, the directional coordinated time-overcurrent protection is used for complete selective backup protection. If operated in a closed-circuit connection, an interruption of the transmission line is detected.

(Sensitive) directional earth-fault detection (ANSI 64, 67Ns, 67N)

For isolated-neutral and compensated networks, the direction of power flow in the zero sequence is calculated from the zerosequence current I_0 and zero-sequence voltage V_0 .

For networks with an isolated neutral, the reactive current component is evaluated; for compensated networks, the active current component or residual resistive current is evaluated. For special network conditions, e.g. high-resistance earthed networks with ohmic-capacitive earth-fault current or low-resistance earthed networks with ohmic-inductive current, the tripping characteristics can be rotated approximately \pm 45 degrees.

Two modes of earth-fault direction detection can be implemented: tripping or "signalling only mode".

It has the following functions:

- TRIP via the displacement voltage V_E.
- Two instantaneous elements or one instantaneous plus one user-defined characteristic.

- Each element can be set in forward, reverse, or non-directional.
- The function can also be operated in the insensitive mode as an additional short-circuit protection.

(Sensitive) earth-fault detection (ANSI 50Ns, 51Ns / 50N, 51N)

For high-resistance earthed networks, a sensitive input transformer is connected to a phase-balance neutral current transformer (also called core-balance CT).

The function can also be operated in the insensitive mode as an additional short-circuit protection.

Protection function

Intermittent earth-fault protection

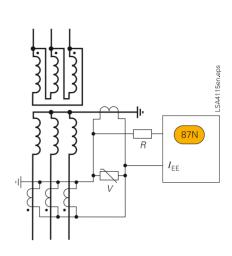
Intermittent (re-striking) faults occur due to insulation weaknesses in cables or as a result of water penetrating cable joints. Such faults either simply cease at some stage or develop into lasting short-circuits. During intermittent activity, however, star-point resistors in networks that are impedance-earthed may undergo thermal overloading. The normal earth-fault protection cannot reliably detect and interrupt the current pulses, some of which can be very brief.

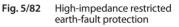
The selectivity required with intermittent earth faults is achieved by summating the duration of the individual pulses and by triggering when a (settable) summed time is reached. The response threshold $I_{\rm IE}$ > evaluates the r.m.s. value, referred to one systems period.

Phase-balance current protection (ANSI 46) (Negative-sequence protection)

In line protection, the two-element phasebalance current/negative-sequence protection permits detection on the high side of high-resistance phase-to-phase faults and phase-to-earth faults that are on the low side of a transformer (e.g. with the switch group Dy 5). This provides backup protection for high-resistance faults beyond the transformer.

Breaker failure protection (ANSI 50BF)


If a faulted portion of the electrical circuit is not disconnected upon issuance of a trip command, another command can be initiated using the breaker failure protection which operates the circuit-breaker, e.g. of an upstream (higher-level) protection relay. Breaker failure is detected if, after a trip command, current is still flowing in the faulted circuit. As an option, it is possible to make use of the circuit-breaker position indication.


High-impedance restricted earth-fault protection (ANSI 87N)

The high-impedance measurement principle is an uncomplicated and sensitive method for detecting earth faults, especially on transformers. It can also be applied to motors, generators and reactors when these are operated on an earthed network.

When the high-impedance measurement principle is applied, all current transformers in the protected area are connected in parallel and operated on one common resistor of relatively high R whose voltage is measured (see Fig. 5/82). In the case of 7SJ6 units, the voltage is measured by detecting the current through the (external) resistor R at the sensitive current measurement input I_{EE} . The varistor V serves to limit the voltage in the event of an internal fault. It cuts off the high momentary voltage spikes occurring at transformer saturation. At the same time, this results in smoothing of the voltage without any noteworthy reduction of the average value. If no faults have occurred and in the event of external faults, the system is at equilibrium, and the voltage through the resistor is approximately zero. In the event of internal faults, an imbalance occurs which leads to a voltage and a current flow through the resistor *R*.

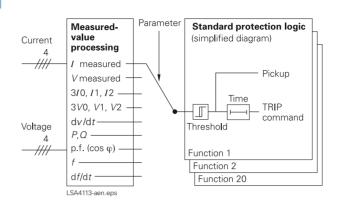
The current transformers must be of the same type and must at least offer a separate core for the high-impedance restricted earth-fault protection. They must in particular have the same transformation ratio and an approximately identical knee-point voltage. They should also demonstrate only minimal measuring errors.

Protection functions

Flexible protection functions

The 7SJ62 units enable the user to easily add on up to 20 protective functions. To this end, parameter definitions are used to link a standard protection logic with any chosen characteristic quantity (measured or derived quantity) (Fig. 5/80). The standard logic consists of the usual protection elements such as the pickup message, the parameter-definable delay time, the TRIP command, a blocking possibility, etc. The mode of operation for current, voltage, power and power factor quantities can be three-phase or single-phase. Almost all quantities can be operated as greater than or less than stages. All stages operate with protection priority.

Protection stages/functions attainable on the basis of the available characteristic quantities:


Function	ANSI No.
<i>I</i> >, <i>I</i> _E >	50, 50N
<i>V</i> <, <i>V</i> >, <i>V</i> _E >, d <i>V</i> /d <i>t</i>	27, 59, 59R, 64
$\overline{3I_0>, I_1>, I_2>, I_2/I_1} \\ 3V_0>, V_1><, V_2><$	50N, 46 59N, 47
P><, Q><	32
$\cos \varphi$ (p.f.)><	55
<i>f</i> ><	810, 81U
d <i>f</i> /d <i>t</i> ><	81R

For example, the following can be implemented:

- Reverse power protection (ANSI 32R)
- Rate-of-frequency-change protection (ANSI 81R)

Synchro-check (ANSI 25)

In case of switching ON the circuitbreaker, the units can check whether the two subnetworks are synchronized. Voltage-, frequency- and phase-angledifferences are being checked to determine whether synchronous conditions are existent.

Auto-reclosure (ANSI 79)

Multiple reclosures can be defined by the user and lockout will occur if a fault is present after the last reclosure. The following functions are possible:

- 3-pole ARC for all types of faults
- Separate settings for phase and earth faults
- Multiple ARC, one rapid auto-reclosure (RAR) and up to nine delayed auto-reclosures (DAR)
- Starting of the ARC depends on the trip command selection (e.g. 46, 50, 51, 67)
- Blocking option of the ARC via binary inputs
- ARC can be initiated externally or via CFC
- The directional and non-directional elements can either be blocked or operated non-delayed depending on the autoreclosure cycle
- Dynamic setting change of the directional and non-directional elements can be activated depending on the ready AR

Thermal overload protection (ANSI 49)

For protecting cables and transformers, an overload protection with an integrated pre-warning element for temperature and current can be applied. The temperature is calculated using a thermal homogeneousbody model (according to IEC 60255-8), which takes account both of the energy entering the equipment and the energy losses. The calculated temperature is constantly adjusted accordingly. Thus, account is taken of the previous load and the load fluctuations.

For thermal protection of motors (especially the stator) a further time constant can be set so that the thermal ratios can be detected correctly while the motor is rotating and when it is stopped. The ambient temperature or the temperature of the coolant can be detected serially via an external temperature monitoring box (resistance-temperature detector box, also called RTD- box). The thermal replica of the overload function is automatically adapted to the ambient conditions. If there is no RTD-box it is assumed that the ambient temperatures are constant.

Settable dropout delay times

If the devices are used in parallel with electromechanical relays in networks with intermittent faults, the long dropout times of the electromechanical devices (several hundred milliseconds) can lead to problems in terms of time grading. Clean time grading is only possible if the dropout time is approximately the same. This is why the parameter of dropout times can be defined for certain functions such as time-overcurrent protection, earth short-circuit and phase-balance current protection.

Protection functions

Motor protection

Restart inhibit (ANSI 66/86)

If a motor is started up too many times in succession, the rotor can be subject to thermal overload, especially the upper edges of the bars. The rotor temperature is calculated from the stator current. The reclosing lockout only permits start-up of the motor if the rotor has sufficient thermal reserves for a complete start-up (see Fig. 5/84).

Emergency start-up

This function disables the reclosing lockout via a binary input by storing the state of the thermal replica as long as the binary input is active. It is also possible to reset the thermal replica to zero.

Temperature monitoring (ANSI 38)

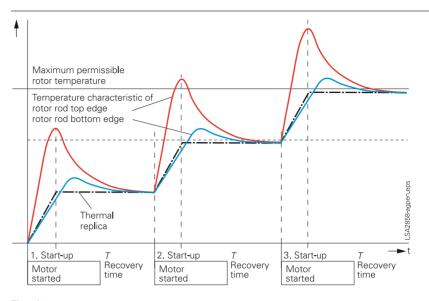
Up to two temperature monitoring boxes with a total of 12 measuring sensors can be used for temperature monitoring and detection by the protection relay. The thermal status of motors, generators and transformers can be monitored with this device. Additionally, the temperature of the bearings of rotating machines are monitored for limit value violation. The temperatures are being measured with the help of temperature detectors at various locations of the device to be protected. This data is transmitted to the protection relay via one or two temperature monitoring boxes (see "Accessories", page 5/115).

Starting time supervision (ANSI 48/14)

Starting time supervision protects the motor against long unwanted start-ups that might occur in the event of excessive load torque or excessive voltage drops within the motor, or if the rotor is locked. Rotor temperature is calculated from measured stator current. The tripping time is calculated according to the following equation:

for $I > I_{MOTOR START}$

$$t = \left(\frac{I_{\rm A}}{I}\right)^2 \cdot T_{\rm A}$$


I = Actual current flowing $I_{\text{MOTOR START}}$ = Pickup current to detect a motor

start

t = Tripping time

 $I_{\rm A}$ = Rated motor starting current

*T*_A = Tripping time at rated motor starting current (2 times, for warm and cold motor)

The characteristic (equation) can be adapted optimally to the state of the motor by applying different tripping times T_A in dependence of either cold or warm motor state. For differentiation of the motor state the thermal model of the rotor is applied.

If the trip time is rated according to the above formula, even a prolonged start-up and reduced voltage (and reduced start-up current) will be evaluated correctly. The tripping time is inverse (current dependent).

A binary signal is set by a speed sensor to detect a blocked rotor. An instantaneous tripping is effected.

Load jam protection (ANSI 51M)

Sudden high loads can cause slowing down and blocking of the motor and mechanical damages. The rise of current due to a load jam is being monitored by this function (alarm and tripping).

The overload protection function is too slow and therefore not suitable under these circumstances.

Phase-balance current protection (ANSI 46) (*Negative-sequence protection*)

The negative-sequence / phase-balance current protection detects a phase failure or load unbalance due to network asymmetry and protects the rotor from impermissible temperature rise.

Undercurrent monitoring (ANSI 37)

With this function, a sudden drop in current, which can occur due to a reduced motor load, is detected. This may be due to shaft breakage, no-load operation of pumps or fan failure.

Motor statistics

Essential information on start-up of the motor (duration, current, voltage) and general information on number of starts, total operating time, total down time, etc. are saved as statistics in the device.

Voltage protection

Overvoltage protection (ANSI 59)

The two-element overvoltage protection detects unwanted network and machine overvoltage conditions. The function can operate either with phase-to-phase, phase-to-earth, positive phase-sequence or negative phase-sequence system voltage. Three-phase and single-phase connections are possible.

Undervoltage protection (ANSI 27)

The two-element undervoltage protection provides protection against dangerous voltage drops (especially for electric machines). Applications include the isolation of generators or motors from the network to avoid undesired operating states and a possible loss of stability. Proper operating conditions of electrical machines are best evaluated with the positive-sequence quantities. The protection function is active over a wide frequency range (45 to 55, 55 to 65 Hz)¹¹. Even when falling below this frequency range the function continues to work, however, with a greater tolerance band.

1) The 45 to 55, 55 to 65 Hz range is available for $f_{\rm N} = 50/60$ Hz.

Protection functions/Functions

The function can operate either with phase-to-phase, phase-to-earth or positive phase-sequence voltage and can be monitored with a current criterion. Three-phase and single-phase connections are possible.

Frequency protection (ANSI 810/U)

Frequency protection can be used for overfrequency and underfrequency protection. Electric machines and parts of the system are protected from unwanted speed deviations. Unwanted frequency changes in the network can be detected and the load can be removed at a specified frequency setting.

Frequency protection can be used over a wide frequency range (40 to 60, 50 to 70 Hz)¹⁾. There are four elements (select-able as overfrequency or underfrequency) and each element can be delayed separately. Blocking of the frequency protection can be performed if using a binary input or by using an undervoltage element.

Fault locator (ANSI 21FL)

The integrated fault locator calculates the fault impedance and the distance-to-fault. The results are displayed in Ω , kilometers (miles) and in percent of the line length.

Circuit-breaker wear monitoring

Methods for determining circuit-breaker contact wear or the remaining service life of a circuit-breaker (CB) allow CB maintenance intervals to be aligned to their actual degree of wear. The benefit lies in reduced maintenance costs.

There is no mathematically exact method of calculating the wear or the remaining service life of circuit-breakers that takes into account the arc-chamber's physical conditions when the CB opens. This is why various methods of determining CB wear have evolved which reflect the different operator philosophies. To do justice to these, the devices offer several methods:

- ΣI
- ΣI^x , with x = 1... 3
- $\sum i^2 t$

The devices additionally offer a new method for determining the remaining service life:

• Two-point method

1) The 40 to 60, 50 to 70 Hz range is available for $f_{\rm N}$ = 50/60 Hz

The CB manufacturers double-logarithmic switching cycle diagram (see Fig. 5/107) and the breaking current at the time of contact opening serve as the basis for this method. After CB opening, the two-point method calculates the number of still possible switching cycles. To this end, the two points P1 and P2 only have to be set on the device. These are specified in the CB's technical data.

All of these methods are phase-selective and a limit value can be set in order to obtain an alarm if the actual value falls below or exceeds the limit value during determination of the remaining service life.

Customized functions (ANSI 32, 51V, 55, etc.)

Additional functions, which are not time critical, can be implemented via the CFC using measured values. Typical functions include reverse power, voltage controlled overcurrent, phase angle detection, and zero-sequence voltage detection.

Commissioning

Commissioning could hardly be easier and is fully supported by DIGSI 4. The status of the binary inputs can be read individually and the state of the binary outputs can be set individually. The operation of switching elements (circuit-breakers, disconnect devices) can be checked using the switching functions of the bay controller. The analog measured values are represented as wide-ranging operational measured values. To prevent transmission of information to the control center during maintenance, the bay controller communications can be disabled to prevent unnecessary data from being transmitted. During commissioning, all indications with test marking for test purposes can be connected to a control and protection system.

Test operation

During commissioning, all indications can be passed to an automatic control system for test purposes.

Control and automatic functions

Control

In addition to the protection functions, the SIPROTEC 4 units also support all control and monitoring functions that are required for operating medium-voltage or highvoltage substations.

The main application is reliable control of switching and other processes.

The status of primary equipment or auxiliary devices can be obtained from auxiliary

Fig. 5/85 CB switching cycle diagram

contacts and communicated to the 7SJ62 via binary inputs. Therefore it is possible to detect and indicate both the OPEN and CLOSED position or a fault or intermediate circuit-breaker or auxiliary contact position.

The switchgear or circuit-breaker can be controlled via:

- integrated operator panel
- binary inputs
- substation control and protection system
 DIGSI 4

Automation / user-defined logic

With integrated logic, the user can set, via a graphic interface (CFC), specific functions for the automation of switchgear or substation. Functions are activated via function keys, binary input or via communication interface.

Switching authority

Switching authority is determined according to parameters and communication.

If a source is set to "LOCAL", only local switching operations are possible. The following sequence of switching authority is laid down: "LOCAL"; DIGSI PC program, "REMOTE".

Command processing

All the functionality of command processing is offered. This includes the processing of single and double commands with or without feedback, sophisticated monitoring of the control hardware and software, checking of the external process, control actions using functions such as runtime

Functions

monitoring and automatic command termination after output. Here are some typical applications:

- Single and double commands using 1, 1 plus 1 common or 2 trip contacts
- User-definable bay interlocks
- Operating sequences combining several switching operations such as control of circuit-breakers, disconnectors and earthing switches
- Triggering of switching operations, indications or alarm by combination with existing information

Assignment of feedback to command

The positions of the circuit-breaker or switching devices and transformer taps are acquired by feedback. These indication inputs are logically assigned to the corresponding command outputs. The unit can therefore distinguish whether the indication change is a consequence of switching operation or whether it is a spontaneous change of state.

Chatter disable

Chatter disable feature evaluates whether, in a configured period of time, the number of status changes of indication input exceeds a specified figure. If exceeded, the indication input is blocked for a certain period, so that the event list will not record excessive operations.

Indication filtering and delay

Binary indications can be filtered or delayed.

Filtering serves to suppress brief changes in potential at the indication input. The indication is passed on only if the indication voltage is still present after a set period of time. In the event of indication delay, there is a wait for a preset time. The information is passed on only if the indication voltage is still present after this time.

Indication derivation

A further indication (or a command) can be derived from an existing indication. Group indications can also be formed. The volume of information to the system interface can thus be reduced and restricted to the most important signals.

Switchgear cubicles for high/medium voltage

All units are designed specifically to meet the requirements of high/medium-voltage applications.

In general, no separate measuring instruments (e.g., for current, voltage, frequency, ...) or additional control components are necessary.

Measured values

The r.m.s. values are calculated from the acquired current and voltage along with the power factor, frequency, active and reactive power. The following functions are available for measured value processing:

- Currents I_{L1} , I_{L2} , I_{L3} , I_E , I_{EE} (67Ns)
- Voltages *V*_{L1}, *V*_{L2}, *V*_{L3}, *V*_{L1L2}, *V*_{L2L3}, *V*_{L3L1}
- Symmetrical components *I*₁, *I*₂, 3*I*₀; *V*₁, *V*₂, *V*₀
- Power Watts, Vars, VA/P, Q, S (P, Q: total and phase selective)
- Power factor (cos φ), (total and phase selective)
- Frequency
- Energy ± kWh, ± kVarh, forward and reverse power flow
- Mean as well as minimum and maximum current and voltage values
- Operating hours counter
- Mean operating temperature of overload function
- Limit value monitoring Limit values are monitored using programmable logic in the CFC. Commands can be derived from this limit value indication.
- Zero suppression In a certain range of very low measured values, the value is set to zero to suppress interference.

Metered values

For internal metering, the unit can calculate an energy metered value from the measured current and voltage values. If an external meter with a metering pulse output is available, the SIPROTEC 4 unit can obtain and process metering pulses via an indication input.

The metered values can be displayed and passed on to a control center as an accumulation with reset. A distinction is made between forward, reverse, active and reactive energy. Fig. 5/86 NXAIR panel (air-insulated)

Communication

In terms of communication, the units offer substantial flexibility in the context of connection to industrial and power automation standards. Communication can be extended or added on thanks to modules for retrofitting on which the common protocols run. Therefore, also in the future it will be possible to optimally integrate units into the changing communication infrastructure, for example in Ethernet networks (which will also be used increasingly in the power supply sector in the years to come).

Serial front interface

There is a serial RS232 interface on the front of all the units. All of the unit's functions can be set on a PC by means of the DIGSI 4 protection operation program. Commissioning tools and fault analysis are also built into the program and are available through this interface.

Rear-mounted interfaces¹⁾

A number of communication modules suitable for various applications can be fitted in the rear of the flush-mounting housing. In the flush-mounting housing, the modules can be easily replaced by the user. The interface modules support the following applications:

- Time synchronization interface All units feature a permanently integrated electrical time synchronization interface. It can be used to feed timing telegrams in IRIG-B or DCF77 format into the units via time synchronization receivers.
- System interface Communication with a central control system takes place through this interface. Radial or ring type station bus topologies can be configured depending on the chosen interface. Furthermore, the units can exchange data through this interface via Ethernet and IEC 61850 protocol and can also be operated by DIGSI.
- Service interface

The service interface was conceived for remote access to a number of protection units via DIGSI. On all units, it can be an electrical RS232/RS485 or an optical interface. For special applications, a maximum of two temperature monitoring boxes (RTD-box) can be connected to this interface as an alternative.

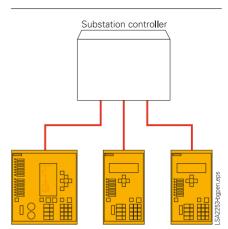
1) For units in panel surface-mounting housings please refer to note on page 5/114.

System interface protocols (retrofittable) IEC 61850 protocol

The Ethernet-based IEC 61850 protocol is the worldwide standard for protection and control systems used by power supply corporations. Siemens was the first manufacturer to support this standard. By means of this protocol, information can also be exchanged directly between bay units so as to set up simple masterless systems for bay and system interlocking. Access to the units via the Ethernet bus is also possible with DIGSI.

IEC 60870-5-103 protocol

The IEC 60870-5-103 protocol is an international standard for the transmission of protective data and fault recordings. All messages from the unit and also control commands can be transferred by means of published, Siemens-specific extensions to the protocol.


Redundant solutions are also possible. Optionally it is possible to read out and alter individual parameters (only possible with the redundant module).

PROFIBUS-DP protocol

PROFIBUS-DP is the most widespread protocol in industrial automation. Via PROFIBUS-DP, SIPROTEC units make their information available to a SIMATIC controller or, in the control direction, receive commands from a central SIMATIC. Measured values can also be transferred.

MODBUS RTU protocol

This uncomplicated, serial protocol is mainly used in industry and by power supply corporations, and is supported by a number of unit manufacturers. SIPROTEC units function as MODBUS slaves, making their information available to a master or receiving information from it. A timestamped event list is available.

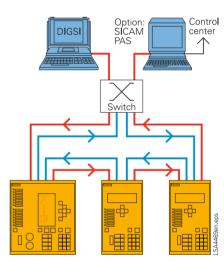


Fig. 5/88

Bus structure for station bus with Ethernet and IEC 61850, fiber-optic ring

Communication

DNP 3.0 protocol

Power supply corporations use the serial DNP 3.0 (Distributed Network Protocol) for the station and network control levels. SIPROTEC units function as DNP slaves, supplying their information to a master system or receiving information from it.

System solutions for protection and station control

Together with the SICAM power automation system, SIPROTEC 4 can be used with PROFIBUS-FMS. Over the low-cost electrical RS485 bus, or interference-free via the optical double ring, the units exchange information with the control system.

Units featuring IEC 60870-5-103 interfaces can be connected to SICAM in parallel via the RS485 bus or radially by fiber-optic link. Through this interface, the system is open for the connection of units of other manufacturers (see Fig. 5/87).

Because of the standardized interfaces, SIPROTEC units can also be integrated into systems of other manufacturers or in SIMATIC. Electrical RS485 or optical interfaces are available. The optimum physical data transfer medium can be chosen thanks to opto-electrical converters. Thus, the RS485 bus allows low-cost wiring in the cubicles and an interference-free optical connection to the master can be established.

For IEC 61850, an interoperable system solution is offered with SICAM PAS. Via the 100 Mbits/s Ethernet bus, the units are linked with PAS electrically or optically to the station PC. The interface is standardized, thus also enabling direct connection of units of other manufacturers to the Ethernet bus. With IEC 61850, however, the units can also be used in other manufacturers' systems (see Fig. 5/88).

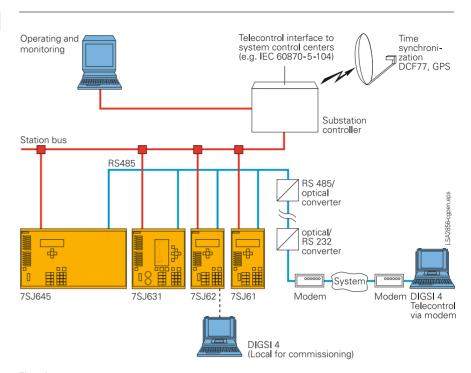
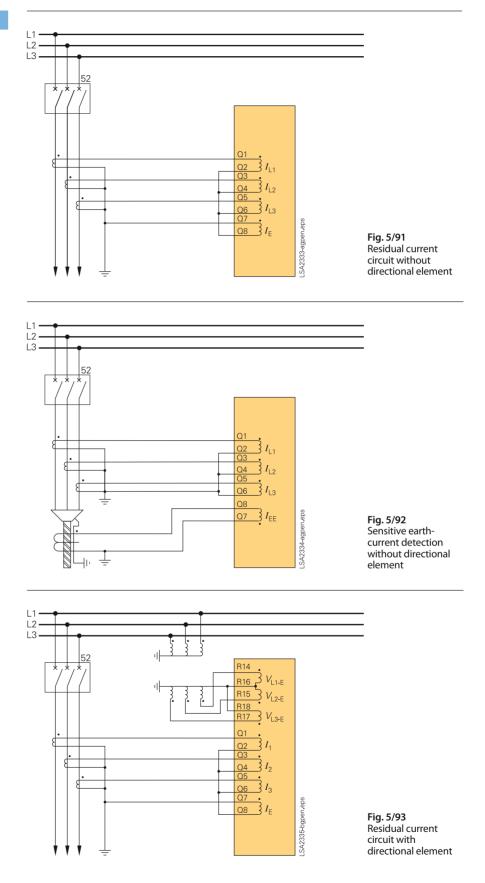


Fig. 5/90

System solution/communication

Fig. 5/89 Optical Ethernet communication module for IEC 61850 with integrated Ethernet-switch

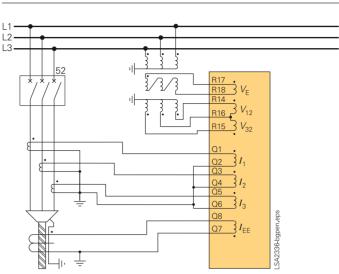


Typical connections

Connection of current and voltage transformers

Standard connection

For earthed networks, the earth current is obtained from the phase currents by the residual current circuit.



Typical connections

Connection for compensated networks

The figure shows the connection of two phase-to-earth voltages and the $V_{\rm E}$ voltage of the open delta winding and a phase-balance neutral current transformer for the earth current. This connection maintains maximum precision for directional earthfault detection and must be used in compensated networks. Fig. 5/94 shows sensitive directional

earth-fault detection.

Fig. 5/94 Sensitive directional earth-fault detection with directional element for phases

Connection for isolated-neutral or compensated networks only

If directional earth-fault protection is not used, the connection can be made with only two phase current transformers. Directional phase short-circuit protection can be achieved by using only two primary transformers.

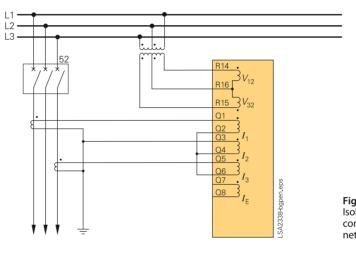
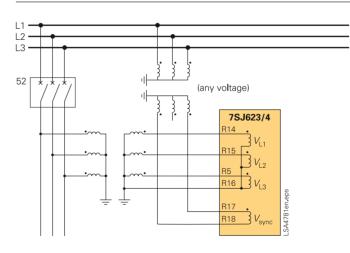



Fig. 5/95 Isolated-neutral or compensated networks

Connection for the synchro-check function

The 3-phase system is connected as reference voltage, i. e. the outgoing voltages as well as a single-phase voltage, in this case a busbar voltage, that has to be checked for synchronism.

Typical applications

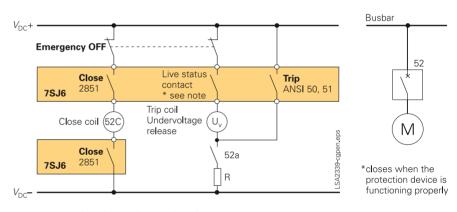
Overview of connection types

Type of network	Function	Current connection	Voltage connection
(Low-resistance) earthed network	Time-overcurrent protection phase/earth non-directional	Residual circuit, with 3 phase-current transformers required, phase-balance neutral current transformer possible	-
(Low-resistance) earthed networks	Sensitive earth-fault protection	Phase-balance neutral current transformers required	-
Isolated or compensated networks	Time-overcurrent protection phases non-directional	Residual circuit, with 3 or 2 phase current transformers possible	-
(Low-resistance) earthed networks	Time-overcurrent protection phases directional	Residual circuit, with 3 phase-current transformers possible	Phase-to-earth connection or phase-to-phase connection
Isolated or compensated networks	Time-overcurrent protection phases directional	Residual circuit, with 3 or 2 phase- current transformers possible	Phase-to-earth connection or phase-to-phase connection
(Low-resistance) earthed networks	Time-overcurrent protection earth directional	Residual circuit, with 3 phase-current transformers required, phase-balance neutral current transformers possible	Phase-to-earth connection required
Isolated networks	Sensitive earth-fault protection	Residual circuit, if earth current > 0.05 I_N on secondary side, other- wise phase-balance neutral current transformers required	3 times phase-to-earth connection or phase-to-earth connection with open delta winding
Compensated networks	Sensitive earth-fault protection $\cos \varphi$ measurement	Phase-balance neutral current transformers required	Phase-to-earth connection with open delta winding required

Connection of circuit-breaker

Undervoltage releases

Undervoltage releases are used for automatic tripping of high-voltage motors.


Example:

DC supply voltage of control system fails and manual electric tripping is no longer possible.

Automatic tripping takes place when voltage across the coil drops below the trip limit. In Fig. 5/97, tripping occurs due to failure of DC supply voltage, by automatic opening of the live status contact upon failure of the protection unit or by shortcircuiting the trip coil in event of network fault.

In Fig. 5/98 tripping is by failure of auxiliary voltage and by interruption of tripping circuit in the event of network failure. Upon failure of the protection unit, the tripping circuit is also interrupted, since contact held by internal logic drops back into open position.

Siemens SIP · Edition No. 6

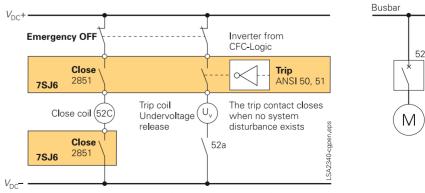


Fig. 5/98 Undervoltage trip with locking contact (trip signal 50 is inverted)

siemens-russia.com

Typical applications

Trip circuit supervision (ANSI 74TC)

One or two binary inputs can be used for monitoring the circuit-breaker trip coil including its incoming cables. An alarm signal occurs whenever the circuit is interrupted.

Lockout (ANSI 86)

All binary outputs can be stored like LEDs and reset using the LED reset key. The lockout state is also stored in the event of supply voltage failure. Reclosure can only occur after the lockout state is reset.

Reverse-power protection for dual supply (ANSI 32R)

If power is fed to a busbar through two parallel infeeds, then in the event of any fault on one of the infeeds it should be selectively interrupted. This ensures a continued supply to the busbar through the remaining infeed. For this purpose, directional devices are needed which detect a short-circuit current or a power flow from the busbar in the direction of the infeed. The directional time-overcurrent protection is usually set via the load current. It cannot be used to deactivate low-current faults. Reverse-power protection can be set far below the rated power. This ensures that it also detects power feedback into the line in the event of low-current faults with levels far below the load current. Reverse-power protection is performed via the "flexible protection functions" of the 7SJ62.

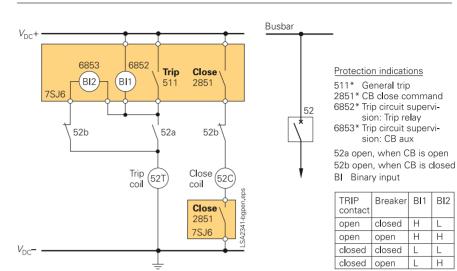


Fig. 5/99 Trip circuit supervision with 2 binary inputs

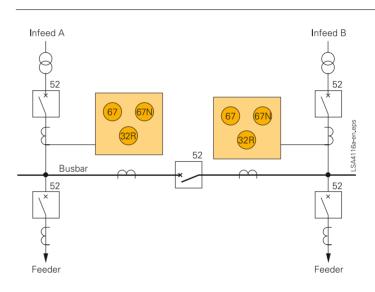


Fig. 5/100 Reverse-power protection for dual supply

Ta	-h m	ical	4	-	-
Tee	chn	icai	u	uu	1

General unit data				
Measuring circuits				
System frequency		50 / 60 Hz	(settable)	
Current transformer				
Rated current Inom		1 or 5 A (se	ettable)	
Option: sensitive earth-fault	CT	$I_{\rm EE} < 1.6$ A		
Power consumption at $I_{nom} = 1 \text{ A}$ at $I_{nom} = 5 \text{ A}$ for sensitive earth-fault C	T at 1 A		05 VA per ph 3 VA per pha 05 VA	
Overload capability Thermal (effective) Dynamic (impulse curren	t)	$100 \times I_{\text{nom}}$ $30 \times I_{\text{nom}}$ $4 \times I_{\text{nom}}$ $250 \times I_{\text{nom}}$	or 10 s ntinuous	
Overload capability if equip				
sensitive earth-fault CT Thermal (effective) Dynamic (impulse curren	t)	300 A for 1 100 A for 1 15 A contin 750 A (half	0 s nuous	
Voltage transformer	,	,		
Туре		7SJ621, 7SJ622	7SJ623, 7SJ622	7SJ625, 7SJ626
Number		3	4	4
Rated voltage V _{nom}		100 V to 22	25 V	
Measuring range		0 V to 170	V	
Power consumption at V_{non}	h = 100 V	< 0.3 VA p	er phase	
Overload capability in voltage (phase-neutral voltage) Thermal (effective)	ge path	230 V cont	inuous	
Auxiliary voltage				
Rated auxiliary voltage V _{aux}	DC 24/4 AC	8 V 60/125	V 110/250 V 115/230 V	
Permissible tolerance	AC	8 V 48–150	V 88–300 V 92-138 V	
Ripple voltage, peak-to-peak	≤ 12 %			
Power consumption Quiescent Energized	Approx. 4 Approx. 7			
Backup time during loss/short circuit of auxiliary voltage	$\geq 20 \text{ ms a}$	at $V \ge 110$ V at $V \ge 24$ V at 115 V/23	DC	
Binary inputs/indication in	puts			
Туре	7SJ621, 7SJ623, 7SJ625		7SJ622, 7SJ624, 7SJ626	
Number	8		11	
Voltage range	24-250 \	/ DC		
Pickup threshold modifiable	e by plug-ii	n jumpers		
Pickup threshold	19 V DC		88 V DC	
For rated control voltage	24/48/60 110/125		110/125/ 220/250 V	DC
Response time/drop-out time	Approx.			
Power consumption energized	1.8 mA (independen	t of operating	g voltage)

Binary outputs/command outputs Type 7SJ621, 7SJ622 7SJ623, 7SJ624 7SJ625 7SJ626 Command/indication relay 6 8 Contacts per command/ 1 NO / form A indication relay (Two contacts changeable to NC/form B, via jumpers) 1 NO / NC (jumper) / form A/B Live status contact Switching capacity Make 1000 W / VA Break 30 W / VA / 40 W resistive / 25 W at L/R \leq 50 ms Switching voltage ≤ 250 V DC Permissible current 5 A continuous, 30 A for 0.5 s making current, 2000 switching cycles Electrical tests Specification Standards IEC 60255 ANSI C37.90, C37.90.1, C37.90.2, UL508 Insulation tests Standards IEC 60255-5; ANSI/IEEE C37.90.0 Voltage test (100 % test) 2.5 kV (r.m.s. value), 50/60 Hz all circuits except for auxiliary voltage and RS485/RS232 and time synchronization Auxiliary voltage 3.5 kV DC Communication ports 500 V AC and time synchronization Impulse voltage test (type test) 5 kV (peak value); 1.2/50 µs; 0.5 J all circuits, except communication 3 positive and 3 negative impulses ports and time synchronization, at intervals of 5 s class III EMC tests for interference immunity; type tests Standards IEC 60255-6; IEC 60255-22 (product standard) EN 50082-2 (generic specification) DIN 57435 Part 303 High-frequency test 2.5 kV (peak value); 1 MHz; $\tau = 15$ ms; IEC 60255-22-1, class III 400 surges per s; test duration 2 s and VDE 0435 Part 303, class III Electrostatic discharge 8 kV contact discharge; IEC 60255-22-2 class IV 15 kV air gap discharge; and EN 61000-4-2, class IV both polarities; 150 pF; $R_i = 330 \Omega$ Irradiation with radio-frequency 10 V/m; 27 to 500 MHz field, non-modulated IEC 60255-22-3 (Report) class III Irradiation with radio-frequency 10 V/m, 80 to 1000 MHz; field, amplitude-modulated AM 80 %; 1 kHz IEC 61000-4-3; class III Irradiation with radio-frequency 10 V/m, 900 MHz; repetition field, pulse-modulated rate 200 Hz, on duration 50 % IEC 61000-4-3/ENV 50204; class III Fast transient interference/burst 4 kV; 5/50 ns; 5 kHz; IEC 60255-22-4 and IEC 61000-4-4, burst length = 15 ms; class IV repetition rate 300 ms; both polarities; $R_i = 50 \Omega$; test duration 1 min

SIEMENS

siemens-russia.com

Technical data

EMC tests for interference immunity; type tests (cont'd)

High-energy surge voltages (Surge) IEC 61000-4-5; class III Auxiliary voltage

Binary inputs/outputs

Line-conducted HF, amplitude-modulated IEC 61000-4-6, class III

Power frequency magnetic field IEC 61000-4-8, class IV IEC 60255-6

Oscillatory surge withstand capability ANSI/IEEE C37 90 1

Fast transient surge withstand capability ANSI/IEEE C37.90.1

Radiated electromagnetic interference ANSI/IEEE C37.90.2

Damped wave IEC 60694 / IEC 61000-4-12 From circuit to circuit: 2 kV; 12 Ω ; 9 μ F across contacts: 1 kV; 2 Ω ;18 µF From circuit to circuit: 2 kV; 42Ω ; 0.5μ F

across contacts: 1 kV; 42 Ω; 0.5 µF 10 V; 150 kHz to 80 MHz; AM 80 %; 1 kHz

30 A/m; 50 Hz, continuous 300 A/m; 50 Hz, 3 s 0.5 mT, 50 Hz

2.5 to 3 kV (peak value), 1 to 1.5 MHz damped wave; 50 surges per s; duration 2 s, $R_i = 150$ to 200 Ω

4 to 5 kV; 10/150 ns; 50 surges per s both polarities; duration 2 s, $R_i = 80 \Omega$

35 V/m; 25 to 1000 MHz; amplitude and pulse-modulated

2.5 kV (peak value, polarity alternating) 100 kHz, 1 MHz, 10 and 50 MHz, $R_{\rm i} = 200 \ \Omega$

EN 50081-* (generic specification)

150 kHz to 30 MHz

30 to 1000 MHz

Limit class B

EMC tests for interference emission; type tests

Standard

Conducted interferences only auxiliary voltage IEC/CISPR 22 Limit class B

Radio interference field strength IEC/CISPR 11

Units with a detached operator panel must be installed in a metal cubicle to maintain limit class B

Mechanical stress tests

Vibration, shock stress and seismic vibration

During operation

Standards

Vibration IEC 60255-21-1, class 2 IEC 60068-2-6

Shock IEC 60255-21-2, class 1 IEC 60068-2-27

Seismic vibration IEC 60255-21-3, class 1 IEC 60068-3-3

IEC 60255-21 and IEC 60068-2 Sinusoidal 10 to 60 Hz; +/- 0.075 mm amplitude; 60 to 150 Hz; 1 g acceleration frequency sweep 1 octave/min 20 cycles in 3 perpendicular axes Semi-sinusoidal Acceleration 5 g, duration 11 ms; 3 shocks in both directions of 3 axes Sinusoidal 1 to 8 Hz: ± 3.5 mm amplitude (horizontal axis) 1 to 8 Hz: \pm 1.5 mm amplitude (vertical axis) 8 to 35 Hz: 1 g acceleration (horizontal axis) 8 to 35 Hz: 0.5 g acceleration (vertical axis) Frequency sweep 1 octave/min 1 cycle in 3 perpendicular axes

During transportation

Standards Vibration IEC 60255-21-1, class 2 IEC 60068-2-6

Shock IEC 60255-21-2, Class 1 IEC 60068-2-27 Continuous shock IEC 60255-21-2, class 1 IEC 60068-2-29

IEC 60255-21 and IEC 60068-2 Sinusoidal 5 to 8 Hz: \pm 7.5 mm amplitude; 8 to 150 Hz; 2 g acceleration, frequency sweep 1 octave/min 20 cycles in 3 perpendicular axes Semi-sinusoidal Acceleration 15 g, duration 11 ms 3 shocks in both directions of 3 axes

Semi-sinusoidal Acceleration 10 g, duration 16 ms 1000 shocks in both directions of 3 axes

-25 °C to +85 °C /-13 °F to +185 °F

-20 °C to +70 °C /-4 °F to -158 °F

-5 °C to +55 °C /+25 °F to +131 °F

-25 °C to +55 °C /-13 °F to +131 °F

-25 °C to +70 °C /-13 °F to +158 °F

Annual average 75 % relative

not permissible!

humidity; on 56 days a year up to 95 % relative humidity; condensation

Climatic stress tests Temperatures

Type-tested acc. to IEC 60068-2-1 and -2, test Bd, for 16 h

Temporarily permissible operating temperature, tested for 96 h

Recommended permanent operating temperature acc. to IEC 60255-6 (Legibility of display may be impaired above +55 °C /+131 °F)

- Limiting temperature during permanent storage
- Limiting temperature during transport

Humidity

Permissible humidity It is recommended to arrange the units in such a way that they are not exposed to direct sunlight or pronounced temperature changes that could cause condensation.

Unit design

Surface-mounting housing

Flush-mounting housing

Operator safety

Housing	7XP20
Dimensions	See dimension drawings, part 1
Weight Surface-mounting housing Flush-mounting housing	4.5 kg 4.0 kg
Degree of protection acc. to EN 60529	

IP 51 Front: IP 51, rear: IP 20; IP 2x with cover

5

Technical data		
Serial interfaces		IEC 61850 pr
Operating interface (front of unit)		Isolated inter
Connection	Non-isolated, RS232; front panel, 9-pin subminiature connector	- to a control - with DIGSI - between SII
Transmission rate	Factory setting 115200 baud, min. 4800 baud, max. 115200 baud	Transmission
Service/modem interface (rear of ur	nit)	Ethernet, ele
Isolated interface for data transfer	Port C: DIGSI 4/modem/RTD-box	Connection
Transmission rate	Factory setting 38400 baud, min. 4800 baud, max. 115200 baud	For flush-r surface-mo detached o
<u>RS232/RS485</u>		Distance
Connection For flush-mounting housing/ surface-mounting housing with	9-pin subminiature connector, mounting location "C"	Test voltage Ethernet, op
detached operator panel For surface-mounting housing with two-tier terminal at the	At the bottom part of the housing: shielded data cable	Connection For flush-mo
top/bottom part		surface-mou
Distance RS232	15 m /49.2 ft	detached ope Optical wave
Distance RS485	Max. 1 km/3300 ft	Distance
Test voltage	500 V AC against earth	PROFIBUS-F
System interface (rear of unit)		Isolated inter
IEC 60870-5-103 protocol		to a control c
Isolated interface for data transfer to a control center	Port B	Transmissior RS485
Transmission rate	Factory setting 9600 baud, min. 1200 baud, max. 115200 baud	Connection
RS232/RS485		For flush-r
Connection For flush-mounting housing/ surface-mounting housing with detached operator panel For surface-mounting housing	Mounting location "B" At the bottom part of the housing:	surface-mo detached o For surface with two-t top/bottom
with two-tier terminal on the top/bottom part	shielded data cable	Distance
Distance RS232	Max. 15 m/49 ft	
Distance RS485	Max. 1 km/3300 ft	Test voltag
Test voltage	500 V AC against earth	Fiber optic
Fiber optic		Connection f
Connection fiber-optic cable For flush-mounting housing/ surface-mounting housing with	Integrated ST connector for fiber- optic connection Mounting location "B"	For flush-r surface-mo detached o
detached operator panel For surface-mounting housing with two-tier terminal on the	At the bottom part of the housing	For surface with two-t top/botton
top/bottom part Optical wavelength	820 nm	Optical wave

with two-tier terminal on the top/bottom part Optical wavelength Permissible path attenuation Distance

IEC 60870-5-103 protocol, redundant RS485

Connection For flush-mounting housing/ surface-mounting housing with detached operator panel For surface-mounting housing with two-tier terminal on the top/bottom part Distance RS485 Test voltage

820 nm Max. 8 dB, for glass fiber 62.5/125 μm Max. 1.5 km/0.9 miles

Mounting location "B"

(not available)

Max. 1 km/3300 ft 500 V AC against earth

IEC 61850 protocol	
Isolated interface for data transfer: - to a control center - with DIGSI - between SIPROTEC 4 relays	Port B, 100 Base T acc. to IEEE802.3
Transmission rate	100 Mbit
Ethernet, electrical	
Connection For flush-mounting housing/ surface-mounting housing with detached operator panel	Two RJ45 connectors mounting location "B"
Distance	Max. 20 m / 65.6 ft
Test voltage	500 V AC against earth
Ethernet, optical	
Connection	Intergr. LC connector for FO connection
For flush-mounting housing/ surface-mounting housing with detached operator panel Optical wavelength	Mounting location "B" 1300 nmm
Distance	1.5 km/0.9 miles
PROFIBUS-FMS/DP	
Isolated interface for data transfer to a control center	Port B
Transmission rate	Up to 1.5 Mbaud
RS485	-
Connection For flush-mounting housing/ surface-mounting housing with detached operator panel For surface-mounting housing with two-tier terminal on the	9-pin subminiature connector, mounting location "B" At the bottom part of the housing: shielded data cable
top/bottom part	
Distance	1000 m/3300 ft ≤ 93.75 kbaud; 500 m/1500 ft ≤ 187.5 kbaud; 200 m/600 ft ≤ 1.5 Mbaud; 100 m/300 ft ≤ 12 Mbaud
Test voltage	500 V AC against earth
Fiber optic	
Connection fiber-optic cable	Integr. ST connector for FO connection
For flush-mounting housing/ surface-mounting housing with detached operator panel	Mounting location "B"
For surface-mounting housing with two-tier terminal on the top/bottom part	At the bottom part of the housing <u>Important:</u> Please refer to footnotes ¹⁾ and ²⁾ on page 5/136
Optical wavelength	820 nm
Permissible path attenuation	Max. 8 dB, for glass fiber 62.5/125 μm
Distance	500 kB/s 1.6 km/0.99 miles 1500 kB/s 530 m/0.33 miles
MODBUS RTU, ASCII, DNP 3.0	

Port B

Isolated interface for data transfer

to a control center

Transmission rate

Up to 19200 baud

SIEMENS

siemens-russia.com

Technical data

System interface (rear of unit) (cont'd) DC 405

<u>RS485</u>	<u>RS485</u>		
Connection For flush-mounting housing/ surface-mounting housing with detached operator panel For surface-mounting housing with two-tier terminal at the top/bottom part	9-pin subminiature connector, mounting location "B" At bottom part of the housing: shielded data cable		
Test voltage	500 V AC against earth		
Fiber-optic			
Connection fiber-optic cable	Integrated ST connector for fiber-optic connection		
For flush-mounting housing/ surface-mounting housing with detached operator panel	Mounting location "B"		
For surface-mounting housing with two-tier terminal at the top/bottom part	At the bottom part of the housing $\underline{\text{Important:}}$ Please refer to footnotes $\overline{\text{Important:}}$ on page 5/136		
Optical wavelength	820 nm		
Permissible path attenuation	Max 8 dB. for glass fiber 62.5/125 μm		
Distance	Max. 1.5 km/0.9 miles		
Time synchronization DCF77/IRIG-B signal (Format IRIG-B000)			
Connection	9-pin subminiature connector (SUB-D) (terminal with surface-mounting housing)		
Voltage levels	5 V, 12 V or 24 V (optional)		
Functions			

Definite-time overcurrent protectio (ANSI 50, 50N, 67, 67N)	n, directional/non-directional
Operating mode non-directional phase protection (ANSI 50)	3-phase (standard) or 2-phase (L1 and L3)
Number of elements (stages)	I>, I>>, I>>> (phases) $I_E>, I_E>>, I_E>>>$ (earth)
Setting ranges	
Pickup phase elements Pickup earth elements	0.5 to 175 A or $\infty^{1)}$ (in steps of 0.01 A) 0.25 to 175 A or $\infty^{1)}$ (in steps of 0.01 A)
Delay times T Dropout delay time $T_{\rm DO}$	0 to 60 s or ∞ (in steps of 0.01 s) 0 to 60 s (in steps of 0.01 s)
Times Pickup times (without inrush restraint, with inrush restraint + 10 ms)	
With twice the setting value With five times the setting value	Non-directionalDirectionalApprox. 30 ms45 msApprox. 20 ms40 ms
Dropout times	Approx. 40 ms
Dropout ratio	Approx. 0.95 for $I/I_{\text{nom}} \ge 0.3$
Tolerances	
Pickup	2 % of setting value or 50 mA ¹⁾

1 % or 10 ms

1) At $I_{nom} = 1$ A, all limits divided by 5.

Delay times T, T_{DO}

Operating mode non-directional 3-phase (standard) or 2-phase (L1 and L3) phase protection (ANSI 51) Setting ranges 0.5 to 20 A or $\infty^{1)}$ (in steps of 0.01 A) 0.25 to 20 A or $\infty^{1)}$ (in steps of 0.01 A) Pickup phase element IP Pickup earth element IEP Time multiplier T 0.05 to 3.2 s or ∞ (in steps of 0.01 s) (IEC characteristics) Time multiplier D 0.05 to 15 s or ∞ (in steps of 0.01 s) (ANSI characteristics) Undervoltage threshold 10.0 to 125.0 V (in steps of 0.1 V) V< for release Ip Trip characteristics IEC Normal inverse, very inverse, extremely inverse, long inverse ANSI Inverse, short inverse, long inverse moderately inverse, very inverse, extremely inverse, definite inverse User-defined characteristic Defined by a maximum of 20 value pairs of current and time delay Dropout setting Without disk emulation Approx. $1.05 \cdot$ setting value I_p for $I_p/I_{nom} \ge 0.3$, corresponds to approx. 0.95 · pickup threshold With disk emulation Approx. $0.90 \cdot$ setting value I_p Tolerances Pickup/dropout thresholds I_{p} , I_{Ep} 2 % of setting value or 50 mA¹⁾ Pickup time for $2 \le I/I_p \le 20$ 5 % of reference (calculated) value + 2 % current tolerance, respectively 30 ms Dropout ratio for $0.05 \leq I/I_p$ 5 % of reference (calculated) value ≤ 0.9 + 2 % current tolerance, respectively 30 ms Direction detection For phase faults Polarization With cross-polarized voltages; With voltage memory for measurement voltages that are too low Forward range $V_{\rm ref,rot} \pm 86^{\circ}$ Rotation of reference voltage V_{ref,rot} - 180° to 180° (in steps of 1°) Direction sensitivity For one and two-phase faults unlimited; For three-phase faults dynamically unlimited; Steady-state approx. 7 V phase-to-phase For earth faults Polarization With zero-sequence quantities $3V_0$, $3I_0$ or with negative-sequence quantities $3V_2, 3I_2$ Forward range $V_{\rm ref,rot} \pm 86^{\circ}$ Rotation of reference voltage V_{ref,rot} - 180° to 180° (in steps of 1°) Direction sensitivity Zero-sequence quantities $3V_0$, $3I_0$ $V_E \approx 2.5$ V displacement voltage, measured; $3V_0 \approx 5$ V displacement voltage, calculated Negative-sequence quantities $3V_2 \approx 5$ V negative-sequence voltage;

Inverse-time overcurrent protection, directional/non-directional

(ANSI 51, 51N, 67, 67N)

rent¹⁾ Tolerances (phase angle error under reference conditions) For phase and earth faults

 $3V_2, 3I_2$

± 3 ° electrical

 $3I_2 \approx 225$ mA negative-sequence cur-

Inrush blocking

Influenced functions

$I_{\rm Ep}$ (directional, non-directional)
At least one phase current $(50 \text{ Hz and } 100 \text{ Hz}) \ge 125 \text{ mA}^{1)}$
Earth current $(50 \text{ Hz and } 100 \text{ Hz}) \ge 125 \text{ mA}^{1)}$
1.5 to 125 A ¹⁾ (in steps of 0.01 A)
10 to 45 % (in steps of 1 %)
ON/OFF
Directional and non-directional pickup, tripping time
Current criteria, CB position via aux. contacts, binary input, auto-reclosure ready
3 timers
Current threshold (reset on dropping below threshold; monitoring with timer)

Time-overcurrent elements, I>, I_E >, I_p ,

(Sensitive) earth-fault detection (ANSI 64, 50 Ns, 51Ns, 67Ns)

Displacement voltage starting for all types of earth fault (ANSI 64)

Setting ranges

	Pickup threshold $V_{\rm E}$ > (measured)	1.8 to 170 V (in steps of 0.1 V)
	Pickup threshold $3V_0$ >	10 to 225 V (in steps of 0.1 V)
	(calculated)	
	Delay time T _{Delay pickup}	0.04 to 320 s or ∞ (in steps of 0.01 s)
	Additional trip delay T _{VDELAY}	0.1 to 40000 s or ∞ (in steps of 0.01 s)
	Times	
	Pickup time	Approx. 50 ms
	Dropout ratio	0.95 or (pickup value -0.6 V)
	Tolerances	
	Pickup threshold V _E (measured)	3 % of setting value or 0.3 V
	Pickup threshold $3V_0$ (calculated)	3 % of setting value or 3 V
	Delay times	1 % of setting value or 10 ms
Phase detection for earth fault in an unearthed system		
	Measuring principle	Voltage measurement (phase-to-earth)

Setting ranges	
$V_{\rm phmin}$ (earth-fault phase)	10 to 100 V (in steps of 1 V)
$V_{\rm phmax}$ (unfaulted phases)	10 to 100 V (in steps of 1 V)
Measuring tolerance	3 % of setting value, or 1 V
acc. to DIN 57435 part 303	

Earth-fault pickup for all types of earth faults

Definite-time characteristic (ANSI 50Ns)

Setting ranges	
Pickup threshold <i>I</i> _{EE} >, <i>I</i> _{EE} >>	
For sensitive input	0.001 to 1.5 A (in steps of 0.001 A)
For normal input	0.25 to 175 A ¹⁾ (in steps of 0.01 A)
Delay times T for I_{EE} >, I_{EE} >>	0 to 320 s or ∞ (in steps of 0.01 s)
Dropout delay time $T_{\rm DO}$	0 to 60 s (in steps of 0.01 s)
Times	
Pickup times	Approx. 50 ms
Dropout ratio	Approx. 0.95

Tolerances Pickup threshold	
For sensitive input	2 % of setting value or 1 mA
For normal input	2 % of setting value or 50 mA ¹⁾
Delay times	1 % of setting value or 20 ms
Earth-fault pickup for all types of ear	th faults
Inverse-time characteristic (ANSI 51	Ns)
User-defined characteristic	Defined by a maximum of 20 pairs of current and delay time values
Setting ranges	
Pickup threshold <i>I</i> _{EEp}	0.001 A = 1.4 A (1 + 1.4 + 0.001 A)
For sensitive input For normal input	0.001 A to 1.4 A (in steps of 0.001 A) 0.25 to 20 A ¹ (in steps of 0.01 A)
User defined	
Time multiplier <i>T</i>	0.1 to 4 s or ∞ (in steps of 0.01 s)
Times Pickup times	Approx. 50 ms
Pickup threshold	Approx. 1.1 $\cdot I_{\text{EEp}}$
Dropout ratio	Approx. 1.05 $\cdot I_{EEp}$
Tolerances	приок. 1.05 Теер
Pickup threshold	
For sensitive input	2 % of setting value or 1 mA
For normal input	2 % of setting value or 50 mA ¹⁾
Delay times in linear range	7 % of reference value for $2 \le I/I_{\text{EEp}}$ $\le 20 + 2$ % current tolerance, or 70 ms
Logarithmic inverse	Refer to the manual
Logarithmic inverse with knee point	Refer to the manual
Direction detection for all types of ed	
Measuring method " $\cos \varphi / \sin \varphi$ "	
Direction measurement	I_E and V_E measured or
Direction measurement	$3I_0$ and $3V_0$ calculated
Measuring principle	Active/reactive power measurement
Setting ranges	
Measuring enable <i>I</i> _{Release direct} . For sensitive input	0.001 to 1.2 A (in steps of 0.001 A)
For normal input	$0.25 \text{ to } 150 \text{ A}^{(1)}$ (in steps of 0.001 A)
Direction phasor $\varphi_{\text{Correction}}$	- 45 ° to + 45 ° (in steps of 0.1 °)
Dropout delay $T_{\text{Reset delay}}$	1 to 60 s (in steps of 1 s)
Reduction of dir. area $\alpha_{\text{Red.dir.area}}$	1 ° to 15 ° (in steps of 1 °)
Tolerances Pickup measuring enable	
For sensitive input	2 % of setting value or 1 mA
For normal input	2 % of setting value or 50 mA ¹⁾
Angle tolerance	3 °
Measuring method " $\varphi (V_0 / I_0)$ "	
Direction measurement	$I_{\rm E}$ and $V_{\rm E}$ measured or $3I_0$ and $3V_0$ calculated
Minimum voltage Vmin, measured	0.4 to 50 V (in steps of 0.1 V)
Minimum voltage V _{min} , calculated	10 to 90 V (in steps of 1 V)
Phase angle φ	- 180° to 180° (in steps of 0.1°)
Delta phase angle $\Delta \varphi$ Tolerances	0° to 180° (in steps of 0.1°)
Pickup threshold $V_{\rm E}$ (measured)	3 % of setting value or 0.3 V
Pickup threshold $3V_0$ (calculated)	3 % of setting value or 3 V
Angle tolerance	3 °
Angle correction for cable CT	
Angle correction F1, F2	0.9 to 5.9 (in stone of $0.1.9$)
Current value <i>I</i> ₁ , <i>I</i> ₂ For sensitive input	0 ° to 5 ° (in steps of 0.1 °) 0.001 to 1.5 A (in steps of 0.001 A)
For normal input	$0.25 \text{ to } 175 \text{ A}^{(1)} \text{ (in steps of 0.001 \text{ A})}$

Note: Due to the high sensitivity the linear range of the measuring input IN with integrated sensitive input transformer is from 0.001 A to 1.6 A. For currents greater than 1.6 A, correct directionality can no longer be guaranteed.

Technical data

High-impedance restricted earth-fault protection (ANSI 87N) / single-phase overcurrent protection

Setting ranges Pickup thresholds I>, I>> For sensitive input For normal input Delay times $T_I >$, $T_I >>$

Times Pickup times Minimum Typical

Dropout times Dropout ratio

Tolerances Pickup thresholds

0 to 60 s or ∞ (in steps of 0.01 s)

0.003 to 1.5 A or ∞ (in steps of 0.001 A)

0.25 to 175 A^{1} or ∞ (in steps of 0.01 A)

Approx. 20 ms Approx. 30 ms Approx. 30 ms Approx. 0.95 for $I/I_{nom} \ge 0.5$

3 % of setting value or 1 % rated current at $I_{nom} = 1$ or 5 A; 5 % of setting value or 3 % rated current at $I_{\text{nom}} = 0.1 \text{ A}$ 1 % of setting value or 10 ms

Intermittent earth-fault protection

Setting ranges Pickup threshold

Delay times

· · · · · · · · ·		
For <i>I</i> _E	$I_{\rm IE}>$	0.25 to $175 A_{11}^{(1)}$ (in steps of 0.01 A)
For $3I_0$	$I_{\text{IE}}>$	0.25 to 175 A ¹⁾ (in steps of 0.01 A)
For I _{EE}	$I_{\rm IE}>$	0.005 to 1.5 A (in steps of 0.001 A)
Pickup prolon- gation time	$T_{\rm V}$	0 to 10 s (in steps of 0.01 s)
Earth-fault accu- mulation time	T_{sum}	0 to 100 s (in steps of 0.01 s)
Reset time for accumulation	$T_{\rm res}$	1 to 600 s (in steps of 1 s)
Number of pickups for intermittent earth fau		2 to 10 (in steps of 1)
Times		
Pickup times		
Current = $1.25 \cdot pic$	kup value:	Approx. 30 ms
Current $\geq 2 \cdot \text{pick}$	up value	Approx. 22 ms
Dropout time		Approx. 22 ms
Tolerances		
Pickup threshold <i>I</i> _{IE} >	,	3 % of setting value, or 50 $mA^{1)}$
Times T_V , T_{sum} , T_{res}		1 % of setting value or 10 ms

Thermal overload protection (ANSI 49)

Setting ranges
Factor k
Time constant
Warning overtemperature $\Theta_{alarm}/\Theta_{trip}$
Current warning stage Ialarm

Extension factor when stopped kr factor

Rated overtemperature (for Inom) Tripping characteristic For $(I/k \cdot I_{nom}) \le 8$

(in steps of 0.1) 40 to 200 °C (in steps of 1 °C) $t = \tau_{\text{th}} \cdot \ln \frac{\left(I / \mathbf{k} \cdot I_{\text{nom}} \right)^2 - \left(I_{\text{pre}} / \mathbf{k} \cdot I_{\text{nom}} \right)^2}{\left(I / \mathbf{k} \cdot I_{\text{nom}} \right)^2 - 1}$

0.1 to 4 (in steps of 0.01)

50 to 100 % with reference to the tripping overtemperature

0.5 to 20 A (in steps of 0.01 A)

1 to 10 with reference to the time

constant with the machine running

(in steps of 1 %)

1 to 999.9 min (in steps of 0.1 min)

 $\tau_{\rm th}$ = Temperature rise time constant = Load current T $I_{\rm pre}$ = Preload current = Setting factor acc. to VDE 0435 k Part 3011 and IEC 60255-8 $I_{\text{nom}} = \text{Rated (nominal) current of the}$ protection relay Dropout ratios $\Theta / \Theta_{\text{Trip}}$ Drops out with Θ_{Alarm} Θ/Θ_{Alarm} Approx. 0.99 Approx. 0.97 I/I_{Alarm} Tolerances With reference to $k \cdot I_{nom}$ Class 5 acc. to IEC 60255-8 5 % +/- 2 s acc. to IEC 60255-8 With reference to tripping time Auto-reclosure (ANSI 79) Number of reclosures 0 to 9 Shot 1 to 4 individually adjustable Program for phase fault Start-up by Time-overcurrent elements (dir., non-dir.), negative sequence, binary input Program for earth fault Time-overcurrent elements Start-up by (dir., non-dir.), sensitive earth-fault protection, binary input Blocking of ARC Pickup of protection functions, three-phase fault detected by a protective element, binary input, last TRIP command after the reclosing cycle is complete (unsuccessful reclosing), TRIP command by the breaker failure protection (50BF), opening the CB without ARC initiation, external CLOSE command Setting ranges Dead time 0.01 to 320 s (in steps of 0.01 s) (separate for phase and earth and individual for shots 1 to 4) Blocking duration for manual-0.5 s to 320 s or 0 (in steps of 0.01 s) CLOSE detection Blocking duration after 0.5 s to 320 s (in steps of 0.01 s) reclosure Blocking duration after 0.01 to 320 s (in steps of 0.01 s) dynamic blocking Start-signal monitoring time 0.01 to 320 s or ∞ (in steps of 0.01 s) Circuit-breaker supervision 0.1 to 320 s (in steps of 0.01 s) time Max. delay of dead-time start 0 to 1800 s or ∞ (in steps of 0.1 s) Maximum dead time extension 0.5 to 320 s or ∞(in steps of 0.01 s) 0.01 to 320 s or ∞ (in steps of 0.01 s) Action time The delay times of the following protection function can be altered individually by the ARC for shots 1 to 4 (setting value T = T, non-delayed T = 0, blocking $T = \infty$): I>>>, I>>, I>, I>, Ip, Idir>>, Idir>, Ipdir I_E>>>, I_E>>, I_E>>, I_E>, I_{Ep}, I_{Edir}>>, I_{Edir}>, I_{Edir} Additional functions Lockout (final trip), delay of dead-time

= Tripping time

start via binary input (monitored), dead-time extension via binary input (monitored), co-ordination with other protection relays, circuit-breaker monitoring, evaluation of the CB contacts

Technical data

Breaker failure protection (ANSI 50 BF)

Breaker failure protection (ANSI 50 BF)		
Setting ranges Pickup thresholds	0.2 to 5 A ¹⁾ (in steps of 0.01 A)	
Delay time	0.06 to 60 s or ∞ (in steps of 0.01 s)	
Times Pickup times with internal start with external start Dropout times	is contained in the delay time is contained in the delay time Approx. 25 ms	
Tolerances	11	
Pickup value Delay time	2 % of setting value (50 mA) ¹⁾ 1 % or 20 ms	
Synchro- and voltage check (ANSI 2.	5)	
Operating mode	• Synchro-check	
Additional release conditions	 Live-bus / dead line Dead-bus / live-line Dead-bus and dead-line Bypassing 	
Voltages		
Max. operating voltage V_{max}	20 to 140 V (phase-to-phase) (in steps of 1 V) 20 to 125 V (phase to phase)	
Min. operating voltage V_{\min}	20 to 125 V (phase-to-phase) (in steps of 1 V)	
V< for dead-line / dead-bus check	1 to 60 V (phase-to-phase) (in steps of 1 V)	
<i>V></i> for live-line / live-bus check	20 to 140 V (phase-to-phase) (in steps of 1 V)	
Primary rated voltage of transformer V2 _{nom}	0.1 to 800 kV (in steps of 0.01 kV)	
Tolerances Drop-off to pickup ratios	2 % of pickup value or 2 V approx. 0.9 (<i>V</i> >) or 1.1 (<i>V</i> <)	
ΔV -measurement Voltage difference	0.5 to 50 V (phase-to-phase) (in steps of 1 V)	
Tolerance	1 V	
Δf -measurement Δf -measurement ($f2>f1; f2)Tolerance$	0.01 to 2 Hz (in steps of 0.01 Hz) 15 mHz	
$\Delta \alpha$ -measurement $\Delta \alpha$ -measurement $(\alpha 2 > \alpha 1; \alpha 2 > \alpha 1)$	2 ° to 80 ° (in steps of 1 °)	
Tolerance Max. phase displacement	2° 5° for $\Delta f \le 1$ Hz 10° for $\Delta f > 1$ Hz	
Adaptation Vector group adaptation by angle Different voltage transformers V_1/V_2	0 ° to 360 ° (in steps of 1 °) 0.5 to 2 (in steps of 0.01)	
Times Minimum measuring time Max. duration $T_{\text{SYN DURATION}}$ Supervision time $T_{\text{SUP VOLTAGE}}$ Closing time of CB $T_{\text{CB close}}$ Tolerance of all timers	Approx. 80 ms 0.01 to 1200 s; ∞ (in steps of 0.01 s) 0 to 60 s (in steps of 0.01 s) 0 to 60 s (in steps of 0.01 s) 1 % of setting value or 10 ms	
Measuring values of synchro-check f	unction	
Reference voltage V1 Range Tolerance*)	In kV primary, in V secondary or in % V_{nom} 10 to 120 % V_{nom} \leq 1 % of measured value or 0.5 % of V_{nom}	
Voltage to be synchronized V2	In kV primary, in V secondary or in % V _{nom}	

10 to 120 % V_{nom}

 \leq 1 % of measured value or 0.5 % of V_{nom}

Frequency of V1 and V2	f1, f2 in Hz
Range	f _N ± 5 Hz
Tolerance*)	20 mHz
Voltage difference (V2 – V1) Range Tolerance*)	In kV primary, in V secondary or in % V_{nom} 10 to 120 % $V_{\text{nom}} \le$ 1 % of measured value or 0.5 % of V_{nom}
Frequency difference (<i>f</i> 2 – <i>f</i> 1)	In mHz
Range	$f_N \pm 5$ Hz
Tolerance*)	20 mHz
Angle difference $(\alpha 2 - \alpha 1)$	In °
Range	0 to 180 °
Tolerance [*])	0.5 °
Flexible protection functions (ANSI 2	27, 32, 47, 50, 55, 59, 81R)
Operating modes / measuring quantities 3-phase 1-phase Without fixed phase relation Pickup when Setting ranges Current I, I ₁ , I ₂ , 3I ₀ , I _E Current ratio I ₂ /I ₁ Sens. earth curr. I _{E sens} . Voltages V, V ₁ , V ₂ , 3V ₀ Displacement voltage V _E	I, I ₁ , I ₂ , I ₂ /I ₁ , 3I ₀ , V, V ₁ , V ₂ , 3V ₀ , dV/dt, P, Q, $\cos \varphi$ I, I _E , I _{E sens} , V, V _E , P, Q, $\cos \varphi$ f, df/dt, binary input Exceeding or falling below threshold value 0.15 to 200 A ¹⁾ (in steps of 0.01 A) 15 to 100 % (in steps of 1 %) 0.001 to 1.5 A (in steps of 0.001 A) 2 to 260 V (in steps of 0.1 V) 2 to 200 V (in steps of 0.1 V)
Power P, Q	0.5 to 10000 W (in steps of 0.1 W)
Power factor $(\cos \varphi)$	- 0.99 to + 0.99 (in steps of 0.01)
Frequency $f_N = 50$ Hz	40 to 60 Hz (in steps of 0.01 Hz)
$f_N = 60$ Hz	50 to 70 Hz (in steps of 0.01 Hz)
Rate-of-frequency change df/dt	0.1 to 20 Hz/s (in steps of 0.01 Hz/s)
Voltage change dV/dt	4 V/s to 100 V/s (in steps of 1 V/s)
Dropout ratio >- stage	1.01 to 3 (insteps of 0.01)
Dropout ratio <- stage	0.7 to 0.99 (in steps of 0.01)
Dropout differential f	0.02 to 1.00 Hz (in steps of 0.01 Hz)
Pickup delay time	0 to 60 s (in steps of 0.01 s)

0 to 3600 s (in steps of 0.01 s) Trip delay time Dropout delay time 0 to 60 s (in steps of 0.01 s) Times Pickup times Current, voltage (phase quantities) With 2 times the setting value Approx. 30 ms With 10 times the setting value Approx. 20 ms Current, voltages (symmetrical components) With 2 times the setting value Approx. 40 ms With 10 times the setting value Approx. 30 ms Power Typical Approx. 120 ms Maximum (low signals and Approx. 350 ms thresholds) Power factor 300 to 600 ms Frequency Approx. 100 ms Rate-of-frequency change With 1.25 times the setting value Approx. 220 ms Voltage change dV/dt For 2 times pickup value

Approx. 220 ms Approx. 20 ms

*) With rated frequency.

Binary input

1) At $I_{nom} = 1$ A, all limits divided by 5.

Range Tolerance*)

Flexible protection functions (ANSI 27, 32, 47, 50, 55, 59, 81R) (cont'd)

Dropout times	
Current, voltage (phase	< 20 ms
quantities)	
Current, voltages (symmetrical	< 30 ms
components)	
Power	
Typical	< 50 ms
Maximum	< 350 ms
Power factor	< 300 ms
Frequency	< 100 ms
Rate-of-frequency change	< 200 ms
Voltage change	< 220 ms
Binary input	< 10 ms
Tolerances	
Pickup threshold	
Current	0.5 % of setting value or 50 mA ¹⁾
Current (symmetrical	1 % of setting value or 100 mA ¹⁾
components)	-
Voltage	0.5 % of setting value or 0.1 V
Voltage (symmetrical	1 % of setting value or 0.2 V
components)	
Power	1 % of setting value or 0.3 W
Power factor	2 degrees
Frequency	5 mHz (at $V = V_N$, $f = f_N$)
	$10 \text{ mHz} (\text{at } V = V_{\text{N}})$
Rate-of-frequency change	5 % of setting value or 0.05 Hz/s
Voltage change dV/dt	5 % of setting value or 1.5 V/s
Times	1 % of setting value or 10 ms

Negative-sequence current detection (ANSI 46)

Definite-time characteristic (ANSI 46-1 and 46-2)

Setting ranges

Setting ranges	
Pickup current I_2 , I_2 >>	0.5 to 15 A or o
Delay times	0 to 60 s or ∞ (
Dropout delay time $T_{\rm DO}$	0 to 60 s (in ste
Functional limit	All phase curre
Times	
Pickup times	Approx. 35 ms
Dropout times	Approx. 35 ms
Dropout ratio	Approx. 0.95 fc
Tolerances	
Pickup thresholds	3 % of the setti
Delay times	1 % or 10 ms
	TOC

Inverse-time characteristic (ANSI 46-TOC)

Setting ranges Pickup current Time multiplier T (IEC characteristics) Time multiplier D (ANSI characteristics)

Functional limit

Trip characteristics IEC

ANSI

Pickup threshold

- Dropout IEC and ANSI (without disk emulation) ANSI with disk emulation
- Tolerances Pickup threshold Time for $2 \le M \le 20$

0.5 to 15 A or ∞ (in steps of 0.01 A
0 to 60 s or ∞ (in steps of 0.01 s)
0 to 60 s (in steps of 0.01 s)
All phase currents $\leq 50 \text{ A}^{1)}$

for $I_2 / I_{nom} > 0.3$

ing value or 50 mA¹⁾

0.5 to 10 A¹⁾ (in steps of 0.01 A) 0.05 to 3.2 s or ∞ (in steps of 0.01 s) 0.5 to 15 s or ∞ (in steps of 0.01 s) All phase currents \leq 50 A ¹⁾ Normal inverse, very inverse,

extremely inverse Inverse, moderately inverse, very inverse, extremely inverse Approx. 1.1 $\cdot I_{2p}$ setting value

Approx. $1.05 \cdot I_{2p}$ setting value, which is approx. 0.95 · pickup threshold Approx. 0.90 $\cdot I_{2p}$ setting value

3~% of the setting value or $50~mA^{1)}$ 5 % of setpoint (calculated) +2 % current tolerance, at least 30 ms

Starting time monitoring for motors (ANSI 48,	
Setting ranges	

Starting time monitoring for motor	s (ANSI 48)
Setting ranges Motor starting current I _{STARTUP} Pickup threshold I _{MOTOR START} Permissible starting time T _{STARTUP} , cold motor Permissible starting time T _{STARTUP} , warm motor	2.5 to 80 A ¹⁾ (in steps of 0.01) 2 to 50 A ¹⁾ (in steps of 0.01) 1 to 180 s (in steps of 0.1 s) 0.5 to 180 s (in steps of 0.1 s)
Temperature threshold	0 to 80 % (in steps of 1 %)
cold motor Permissible blocked rotor time $T_{\text{LOCKED-ROTOR}}$	0.5 to 120 s or ∞ (in steps of 0.1 s)
Tripping time characteristic	,
For $I > I_{\text{MOTOR START}}$	$t = \left(\frac{I_{\text{STARTUP}}}{I}\right)^2 \cdot T_{\text{STARTUP}}$
	$I_{\text{STARTUP}} = \text{Rated motor starting}$
	$I = Actual current flowing$ $T_{\text{STARTUP}} = Tripping time for rated$ motor starting current $t = Tripping time in seconds$
Dropout ratio I _{MOTOR START}	Approx. 0.95
Tolerances Pickup threshold	2 % of setting value or 50 mA ^{1}
Delay time	5 % or 30 ms
Load jam protection for motors (AN	ISI 5 I MI)
Setting ranges Current threshold for alarm and trip	0.25 to 60 $\mathrm{A}^{1)}$ (in steps 0.01 A)
Delay times Blocking duration after	0 to 600 s (in steps 0.01 s) 0 to 600 s (in steps 0.01 s)
CLOSE signal detection	0 to 000 s (in steps 0.01 s)
Tolerances Dialout thread ald	
Pickup threshold Delay time	2 % of setting value or 50 mA ¹⁾ 1 % of setting value or 10 ms
Restart inhibit for motors (ANSI 66)	
Setting ranges	
Motor starting current relative to rated motor current	1.1 to 10 (in steps of 0.1)
IMOTOR START/IMotor Nom Rated motor current IMotor Nom Max. permissible starting time T _{Start Max}	1 to 6 A ¹⁾ (in steps of 0.01 A) 1 to 320 s (in steps of 1 s)
Equilibrium time T_{Equal} Minimum inhibit time	0 min to 320 min (in steps of 0.1 min) 0.2 min to 120 min (in steps of 0.1 min)
<i>T</i> _{MIN. INHIBIT TIME} Max. permissible number of warm starts	1 to 4 (in steps of 1)
Difference between cold and warm starts	1 to 2 (in steps of 1)
Extension k-factor for cooling simulations of rotor at zero	0.2 to 100 (in steps of 0.1)
speed $k_{\tau at STOP}$ Extension factor for cooling time constant with motor running $k\tau_{RUNNING}$	0.2 to 100 (in steps of 0.1)
Restarting limit	$\Theta_{\text{restart}} = \Theta_{\text{rot max perm}} \cdot \frac{n_{\text{c}} - 1}{n_{\text{c}}}$
	$\Theta_{restart}$ = Temperature limit below which restarting is possible $\Theta_{rot max perm}$ = Maximum permissible
	rotor overtemperature (= 100 % in operational measured value
1) For $I_{\text{nom}} = 1$ A, all limits divided by 5.	$n_c = \frac{\Theta_{rot}/\Theta_{rot trip}}{1}$ = Number of permissible start-ups from cold state

Siemens SI Edition No. 6 ENS

siemens-russia.com

Technical data		
Undercurrent monitoring (ANSI 37,)	
Signal from the operational measured values	Predefined with programmable logic	
Temperature monitoring box (ANS	il 38)	
Temperature detectors		
Connectable boxes Number of temperature detectors per box	1 or 2 Max. 6	
Type of measuring Mounting identification	Pt 100 Ω or Ni 100 Ω or Ni 120 Ω "Oil" or "Environment" or "Stator" or "Bearing" or "Other"	
Thresholds for indications For each measuring detector Stage 1	-50 °C to 250 °C (in steps of 1 °C) -58 °F to 482 °F (in steps of 1 °F) or ∞ (no indication)	
Stage 2	-50 °C to 250 °C (in steps of 1 °C) -58 °F to 482 °F (in steps of 1 °F) or ∞ (no indication)	
Undervoltage protection (ANSI 27)		
Operating modes/measuring quantities		
3-phase	Positive phase-sequence voltage or phase-to-phase voltages or phase-to-earth voltages	
1-phase	Single-phase phase-earth or phase-phase voltage	
Setting ranges Pickup thresholds V<, V<<		
dependent on voltage connection and chosen measuring quantity	10 to 120 V (in steps of 1 V) 10 to 210 V (in steps of 1 V)	
Dropout ratio <i>r</i> Delay times <i>T</i> Current Criteria "Bkr Closed I _{MIN} "	1.01 to 3 (in steps of 0.01) 0 to 100 s or ∞ (in steps of 0.01 s) 0.2 to 5 A ¹ (in steps of 0.01 A)	
Times Pickup times	Approx. 50 ms	
Dropout times	As pickup times	
Tolerances Pickup thresholds	1 % of setting value or 1 V	
Times	1 % of setting value or 10 ms	
Overvoltage protection (ANSI 59) Operating modes/measuring quantities		
3-phase	Positive phase-sequence voltage or negative phase-sequence voltage or phase-to-phase voltages or	
1-phase	phase-to-phase voltages Single-phase phase-earth or phase-phase voltage	
Setting ranges Pickup thresholds V>, V>> dependent on voltage connection and chosen	40 to 260 V (in steps of 1 V) 40 to 150 V (in steps of 1 V)	
measuring quantity	2 to 150 V (in steps of 1 V)	
Dropout ratio <i>r</i> Delay times <i>T</i>	0.9 to 0.99 (in steps of 0.01) 0 to 100 s or ∞ (in steps of 0.01 s)	
Times Pickup times V Pickup times V_1, V_2 Despect times	Approx. 50 ms Approx. 60 ms	
Dropout times	As pickup times	

1) For $I_{\text{nom}} = 1$ A, all limits divided by 5.

Siemens SIP · Edition No. 6

Tolerances Pickup thresholds Times	1 % of setting value or 1 V 1 % of setting value or 10 ms	
Frequency protection (ANSI 81)		
Number of frequency elements	4	
Setting ranges		
Pickup thresholds for $f_{nom} = 50$ Hz Pickup thresholds for $f_{nom} = 60$ Hz Dropout differential = pickup threshold - dropout threshold Delay times	40 to 60 Hz (in steps of 0.01 Hz) 50 to 70 Hz (in steps of 0.01 Hz) 0.02 Hz to 1.00 Hz (in steps of 0.01 Hz)	
Undervoltage blocking, with positive-sequence voltage V_1	0 to 100 s or ∞ (in steps of 0.01 s) 10 to 150 V (in steps of 1 V)	
Times Pickup times Dropout times	Approx. 150 ms Approx. 150 ms	
Dropout Ratio undervoltage blocking	Approx. 1.05	5
Tolerances Pickup thresholds Frequency Undervoltage blocking	5 mHz (at $V = V_N$, $f = f_N$) 10 mHz (at $V = V_N$) 3 % of setting value or 1 V 3 % of the setting value or 10 ms	
Delay times	5 % of the setting value of 10 ms	
Fault locator (ANSI 21FL)		
Output of the fault distance	in Ω primary and secondary, in km or miles line length, in % of line length	
Starting signal	Trip command, dropout of a protection element, via binary input	
Setting ranges Reactance (secondary)	0.001 to 1.9 $\Omega/\text{km}^{1)}$ (in steps of 0.0001) 0.001 to 3 $\Omega/\text{mile}^{1)}$ (in steps of 0.0001)	
Tolerances Measurement tolerance acc. to VDE 0435, Part 303 for sinusoi- dal measurement quantities	2.5 % fault location, or 0.025 Ω (without intermediate infeed) for 30 ° ≤ φ K ≤ 90 ° and V _k /V _{nom} ≥ 0.1 and <i>I_k</i> / <i>I</i> _{nom} ≥ 1	
Additional functions		
Operational measured values		
Currents I_{L1}, I_{L2}, I_{L3} Positive-sequence component I_1 Negative-sequence component I_2 I_E or $3I_0$	In A (kA) primary, in A secondary or in % I_{nom}	
Range Tolerance ²⁾	10 to 200 % <i>I</i> _{nom} 1 % of measured value or 0.5 % <i>I</i> _{nom}	
$\label{eq:phase-to-earth voltages} \\ V_{L1-E}, V_{L2-E}, V_{L3-E} \\ Phase-to-phase voltages \\ V_{L1-L2}, V_{L2-L3}, V_{L3-L1}, V_E \text{ or } V_0 \\ Positive-sequence component V_1 \\ Negative-sequence component V_2 \\ } $	In kV primary, in V secondary or in % $V_{\rm nom}$	
Range Tolerance ²⁾	10 to 120 % $V_{\rm nom}$ 1 % of measured value or 0.5 % of $V_{\rm nom}$	
<i>S</i> , apparent power	In kVAr (MVAr or GVAr) primary and in % of S_{nom}	
Range Tolerance ²⁾	0 to 120 % S_{nom} 1 % of S_{nom} for V/V_{nom} and $I/I_{\text{nom}} = 50$ to 120 %	
P, active power	With sign, total and phase-segregated in	
2) At rated frequency.	kW (MW or GW) primary and in % S _{nom}	IFNS
	siemens-r	ussia.com

Operational measured values (cont'd) Range

Tolerance²⁾

Q, reactive power

Range Tolerance²⁾

 $\cos \varphi$, power factor (p.f.) Range Tolerance²⁾

Frequency f

 $\Theta / \Theta_{\text{Trip}}$

Range Tolerance²⁾ Temperature overload protection

Range Tolerance²⁾ Temperature restart inhibit $\Theta_L / \Theta_{L Trip}$ Range Tolerance²⁾

Restart threshold ORestart/OL Trip

Reclose time T_{Reclose}

Currents of sensitive ground fault detection (total, real, and reactive current) IEE, IEE real, IEE reactive

Range Tolerance²⁾

RTD-box

Long-term averages

Time window Frequency of updates Long-term averages of currents of real power of reactive power of apparent power

Max. / Min. report

Report of measured values Reset, automatic

Reset, manual

Min./Max. values for current

1) At $I_{nom} = 1$ A, all limits multiplied with 5.

2) At rated frequency.

0 to 120 % Snom 1 % of S_{nom} for V/V_{nom} and $I/I_{\text{nom}} = 50$ to 120 % and $|\cos \varphi| = 0.707$ to 1 with $S_{\rm nom} = \sqrt{3} \cdot V_{\rm nom} \cdot I_{\rm nom}$ With sign, total and phase-segregated in kVAr (MVAr or GVAr)primary and in % Snom 0 to 120 % S_{nom} 1 % of Snom for V/V_{nom} and $I/I_{\text{nom}} = 50$ to 120 % and $|\sin \varphi| = 0.707$ to 1 with $S_{\rm nom} = \sqrt{3} \cdot V_{\rm nom} \cdot I_{\rm nom}$ Total and phase segregated - 1 to + 2 % for $|\cos \varphi| \ge 0.707$ In Hz $f_{\rm nom} \pm 5 \, \text{Hz}$ 20 mHz In % 0 to 400 % 5 % class accuracy per IEC 60255-8 In % 0 to 400 % 5 % class accuracy per IEC 60255-8 In % In min In A (kA) primary and in mA secondary

0 mA to 1600 mA 2 % of measured value or 1 mA See section "Temperature monitoring box"

5, 15, 30 or 60 minuets	
Adjustable	
I _{L1dmd} , I _{L2dmd} , I _{L3dmd} , I _{1dmd} in A (kA) P _{dmd} in W (kW, MW) Q _{dmd} in VAr (kVAr, MVAr) S _{dmd} in VAr (kVAr, MVAr)	
With date and time	
Time of day adjustable (in minutes, 0 to 1439 min) Time frame and starting time adjustable (in days, 1 to 365 days, and ∞)	
Using binary input, using keypad, via communication	
<i>I</i> _{L1} , <i>I</i> _{L2} , <i>I</i> _{L3} , <i>I</i> ₁ (positive-sequence component)	

Min./Max. values for voltages	V _{L1-E} , V _{L2-E} , V _{L3-E} V ₁ (positive-sequence component) V _{L1-L2} , V _{L2-L3} , V _{L3-L1}
Min./Max. values for power	S, P, Q, $\cos \varphi$, frequency
Min./Max. values for overload protection	Θ/Θ _{Trip}
Min./Max. values for mean values	I _{L1dmd} , I _{L2dmd} , I _{L3dmd} I ₁ (positive-sequence component); S _{dmd} , P _{dmd} , Q _{dmd}
Local measured values monitoring	
Current asymmetry	$I_{\text{max}}/I_{\text{min}}$ > balance factor, for $I > I_{\text{balance limit}}$
Voltage asymmetry	$V_{\text{max}}/V_{\text{min}}$ > balance factor, for V > V_{lim}
Current phase sequence	Clockwise (ABC) / counter-clockwise (ACB)
Voltage phase sequence	Clockwise (ABC) / counter-clockwise (ACB)
Limit value monitoring	Predefined limit values, user-defined expansions via CFC
Fuse failure monitor	
For all network types	With the option of blocking affected protection functions
Fault recording	
Recording of indications of the last 8 power system faults	
Recording of indications of the last 3 power system ground faults	
Time stamping	
Resolution for event log (operational annunciations)	1 ms
Resolution for trip log (fault annunciations)	1 ms
Maximum time deviation (internal clock)	0.01 %
Battery	Lithium battery 3 V/1 Ah, type CR 1/2 AA, message "Battery Fault" for insufficient battery charge
Oscillographic fault recording	
Maximum 8 fault records saved, memory maintained by buffer bat- tery in case of loss of power supply	
Recording time	Total 20 s Pre-trigger and post-fault recording and memory time adjustable
Sampling rate for 50 Hz Sampling rate for 60 Hz	1 sample/1.25 ms (16 samples/cycle) 1 sample/1.04 ms (16 samples/cycle)
Energy/power	
Meter values for power Wp, Wq (real and reactive power demand)	in kWh (MWh or GWh) and kVARh (MVARh or GVARh)
Tolerance ¹⁾	$\leq 2 \%$ for $I > 0.1 I_{\text{nom}}, V > 0.1 V_{\text{nom}}$ and $ \cos \varphi $ (p.f.) ≥ 0.707
Statistics	
Saved number of trips	Up to 9 digits
Number of automatic reclosing commands (segregated according to 1^{st} and $\ge 2^{nd}$ cycle)	Up to 9 digits

00	hni	ical	de	110
		CUI	UUU	

Circuit-breaker wear	
Methods	• ΣI^x with $x = 1 \dots 3$
	 2-point method (remaining service life) Σt²t
Operation	Phase-selective accumulation of mea- sured values on TRIP command, up to 8 digits, phase-selective limit values, monitoring indication
Motor statistics	
Total number of motor start-ups Total operating time Total down-time Ratio operating time/down-time Active energy and reactive energy Motor start-up data: - Start-up time - Start-up current (primary) - Start-up voltage (primary)	0 to 9999 (resolution 1) 0 to 99999 h (resolution 1 h) 0 to 99999 h (resolution 1 h) 0 to 100 % (resolution 0.1 %) See operational measured values Of the last 5 start-ups 0.30 s to 9999.99 s (resolution 10 ms) 0 A to 1000 kA (resolution 1 A) 0 V to 100 kV (resolution 1 V)
Operating hours counter	
Display range Criterion	Up to 7 digits Overshoot of an adjustable current threshold (BkrClosed I _{MIN})
Trip circuit monitoring	
With one or two binary inputs	
Commissioning aids	
Phase rotation field check, operational measured values, circuit-breaker/switching device test, creation of a test measurement report	
Clock	
Time synchronization	DCF77/IRIG-B signal (telegram format IRIG-B000), binary input, communication
Setting group switchover of the fun	ction parameters
Number of available setting groups Switchover performed	4 (parameter group A, B, C and D) Via keypad, DIGSI, system (SCADA) interface or binary input
Control	
Number of switching units	Depends on the binary inputs and outputs
Interlocking	Programmable
Circuit-breaker signals	Feedback, close, open, intermediate position
Control commands	Single command / double command 1, 1 plus 1 common or 2 trip contacts
Programmable controller	CFC logic, graphic input tool
Local control	Control via menu, assignment of a function key
Remote control	Via communication interfaces, using a substation automation and control system (e.g. SICAM), DIGSI 4 (e.g. via modem)

CE conformity

This product is in conformity with the Directives of the European Communities on the harmonization of the laws of the Member States relating to electromagnetic compatibility (EMC Council Directive 89/336/EEC) and electrical equipment designed for use within certain voltage limits (Council Directive 73/23/EEC).

This unit conforms to the international standard IEC 60255, and the German standard DIN 57435/Part 303 (corresponding to VDE 0435/Part 303).

Further applicable standards: ANSI/IEEE C37.90.0 and C37.90.1.

The unit conforms to the international standard IEC 60255, and the German standard DIN 57435/Part 303 (corresponding to VDE 0435/Part 303).

This conformity is the result of a test that was performed by Siemens AG in accordance with Article 10 of the Council Directive complying with the generic standards EN 50081-2 and EN 50082-2 for the EMC Directive and standard EN 60255-6 for the "low-voltage Directive".

SIEMENS

Selection		

7SJ62 multifunction protection relay	Order No. 75J62		
Housing, inputs, outputs			
Housing 1/3 19", 4 line text display, 3 x U, 4 x I, 8 BI, 8 BO, 1 live status-co	ntact 1		
Housing $\frac{1}{3}$ 19", 4 line text display, 3 x U, 4 x I, 11 BI, 6 BO, 1 live status-co			
Housing $\frac{1}{3}$ 19", 4 line text display, 4 x U, 4 x I, 8 BI, 8 BO, 1 live status-con			
Housing 1/3 19", 4 line text display, 4 x U, 4 x I, 11 BI, 6 BO, 1 live status-co			
Housing 1/2 19", graphic display, 4 x U, 4 x I, 8 BI, 8 BO, 1 live status conta			
Housing 1/219", graphic display, 4 x U, 4 x I, 11 BI, 6 BO, 1 live status cont	$tact^{7)}$ 6		
Measuring inputs $(3 \times V/4 \times V, 4 \times I)$			
$I_{\rm ph} = 1 \ {\rm A}^{1}, I_{\rm e} = 1 \ {\rm A}^{1} \ ({\rm min.} = 0.05 \ {\rm A})$			
Position 15 only with A_r , C_r , E_r , G	1		
$I_{\rm ph} = 1 {\rm A}^{1}, I_{\rm e} = {\rm sensitive (min. = 0.001 A)}$,		
Position 15 only with B, D, F, H	2		
$I_{\rm ph} = 5 {\rm A}^1$, $I_{\rm e} = 5 {\rm A}^1$ (min. = 0.25 A)	2		
Position 15 only with A , C , E , G	5		
$I_{\rm ph} = 5 \text{ A}^{1}$, $I_{\rm e} = \text{sensitive (min. = 0.001 \text{ A})}$	5		
$P_{ph} = 5 \text{ A}^{-1}$, $P_e = \text{sensitive (min. = 0.001 \text{ A})}$ Position 15 only with <i>B</i> , <i>D</i> , <i>F</i> , <i>H</i>	6		
$I_{\rm ph} = 5 {\rm A}^1$, $I_{\rm e} = 1 {\rm A}^1$ (min. = 0.05 A)	<u> </u>		
Position 15 only with A, C, E, G	7		
	,		
Rated auxiliary voltage (power supply, indication voltage)			
24 to 48 V DC, threshold binary input 19 DC^{3}		2	
$60 \text{ to } 125 \text{ V DC}^2$, threshold binary input 19 DC ³⁾		4	
110 to 250 V DC^{2} , 115 to 230 V ⁴ AC, threshold binary input 88 V DC^{3})	5	
$110 \text{ to } 250 \text{ V DC}^{-1}$, 115 to 230 V ⁴ AC, threshold binary input 176 V DC	,3)	6	
For panel surface mounting, two-tier terminal top/bottom For panel flush mounting, plug-in terminal, (2/3 pin connector) For panel flush mounting, screw-type terminal (direct connection/ring-	type cable lue	B D gs) E	
or panel nush mounting, serew type terminal (anect connection/mig	type cable la	53)	
Region-specific default settings/function versions and language settings			
Region DE, 50 Hz, IEC, language: German, selectable		Α	
Region World, 50/60 Hz, IEC/ANSI, language: English (GB), selectabl	le	В	
Region US, 60 Hz, ANSI, language: English (US), selectable		С	
Region FR, 50/60 Hz, IEC/ANSI, language: French, selectable		D	
Region World, 50/60 Hz, IEC/ANSI, language: Spanish, selectable		E	
		F	
Region IT, 50/60 Hz, IEC/ANSI, language: Italian (language selectable)	anged)	G	
Region IT, 50/60 Hz, IEC/ANSI, language: Italian (language selectable) Region RU, 50/60 Hz, IEC/ANSI, language: Russian(language can be ch	anged)	G	
Region IT, 50/60 Hz, IEC/ANSI, language: Italian (language selectable) Region RU, 50/60 Hz, IEC/ANSI, language: Russian(language can be ch System interface (Port B): Refer to page 5/114	anged)	G	
Region IT, 50/60 Hz, IEC/ANSI, language: Italian (language selectable) Region RU, 50/60 Hz, IEC/ANSI, language: Russian(language can be ch System interface (Port B): Refer to page 5/114 No system interface	anged)	G	0
Region IT, 50/60 Hz, IEC/ANSI, language: Italian (language selectable) Region RU, 50/60 Hz, IEC/ANSI, language: Russian(language can be ch System interface (Port B): Refer to page 5/114 No system interface	anged)	G	0
Region IT, 50/60 Hz, IEC/ANSI, language: Italian (language selectable) Region RU, 50/60 Hz, IEC/ANSI, language: Russian(language can be ch System interface (Port B): Refer to page 5/114 No system interface Protocols see page 5/114	anged)	G	0
Region IT, 50/60 Hz, IEC/ANSI, language: Italian (language selectable) Region RU, 50/60 Hz, IEC/ANSI, language: Russian(language can be ch System interface (Port B): Refer to page 5/114 No system interface Protocols see page 5/114 Service interface (Port C) No interface at rear side	anged)	G	0
Region IT, 50/60 Hz, IEC/ANSI, language: Italian (language selectable) Region RU, 50/60 Hz, IEC/ANSI, language: Russian(language can be ch System interface (Port B): Refer to page 5/114 No system interface Protocols see page 5/114 Service interface (Port C) No interface at rear side DIGSI 4/modem, electrical RS232	anged)	G	
Region IT, 50/60 Hz, IEC/ANSI, language: Italian (language selectable) Region RU, 50/60 Hz, IEC/ANSI, language: Russian(language can be ch System interface (Port B): Refer to page 5/114 No system interface Protocols see page 5/114 Service interface (Port C) No interface at rear side DIGSI 4/modem, electrical RS232 DIGSI 4/modem/RTD-box ⁵ , electrical RS485		G	0
Region IT, 50/60 Hz, IEC/ANSI, language: opanish, seccetable Region IT, 50/60 Hz, IEC/ANSI, language: Italian (language selectable) Region RU, 50/60 Hz, IEC/ANSI, language: Russian(language can be ch System interface (Port B): Refer to page 5/114 No system interface Protocols see page 5/114 Service interface (Port C) No interface at rear side DIGSI 4/modem, electrical RS232 DIGSI 4/modem/RTD-box ⁵⁾ , electrical RS485 DIGSI 4/modem/RTD-box ⁵⁾⁶ , optical 820 nm wave length, ST connect		G	
Region IT, 50/60 Hz, IEC/ANSI, language: Italian (language selectable) Region RU, 50/60 Hz, IEC/ANSI, language: Russian(language can be ch System interface (Port B): Refer to page 5/114 No system interface Protocols see page 5/114 Service interface (Port C) No interface at rear side DIGSI 4/modem, electrical RS232 DIGSI 4/modem/RTD-box ⁵⁾ , electrical RS485 DIGSI 4/modem/RTD-box ⁵⁾⁶ , optical 820 nm wave length, ST connect		G	0 1 2
Region IT, 50/60 Hz, IEC/ANSI, language: Italian (language selectable) Region RU, 50/60 Hz, IEC/ANSI, language: Russian(language can be ch System interface (Port B): Refer to page 5/114 No system interface Protocols see page 5/114 Service interface (Port C) No interface at rear side DIGSI 4/modem, electrical RS232 DIGSI 4/modem/RTD-box ⁵⁾ , electrical RS485		G	0 1 2

Siemens SI Sedition Not ENS

- 1) Rated current can be selected by means of jumpers.
- 2) Transition between the two auxiliary voltage ranges can be selected by means of jumpers.
- 3) The binary input thresholds can be selected per binary input by means of jumpers.
- 4) 230 V AC, starting from device version .../EE.
- 5) Temperature monitoring box 7XV5662-□AD10, refer to "Accessories".
- 6) When using the temperature monitoring box at an optical interface, the additional RS485 fiber-optic converter
 7XV5650-0□A00 is required.
- 7) starting from device version .../GG and FW-Version V4.82

Selection and	orderina	aata
Sciection and	oracing	aata

Description	e				Order No.	_	_
7SJ62 multi	tunctio	on prot	ection I	relay	7SJ62□□ - □□□□□ - □		Ĺ
Designation				ANSI No.	Description	A	
Basic version					Control		
				50/51	Time-overcurrent protection <i>I</i> >, <i>I</i> >>, <i>I</i> >>>, <i>I</i> _p		
				50N/51N	Earth-fault protection I_E , I_E , I_E , I_E , I_E		
				50N/51N	Insensitive earth-fault protection via $\prod_{i=1}^{n} f_{i} = \prod_{i=1}^{n} f_{i}$		
				50/50N	IEE function: I_{EE} >, I_{EE} >>, I_{EEp}^{-1} Flexible protection functions (index quantities derived		
				30/30IN	from current): Additional time-overcurrent protection		
					stages <i>I</i> ₂ >, <i>I</i> >>>>, <i>I</i> _E >>>>		
				51 V	Voltage-dependent inverse-time overcurrent protection		
				49	Overload protection (with 2 time constants)		
				46	Phase balance current protection		
					(negative-sequence protection)		
				37	Undercurrent monitoring		
				47	Phase sequence		
				59N/64	Displacement voltage		
				50BF	Breaker failure protection		
				74TC	Trip circuit supervision		
					4 setting groups, cold-load pickup		
					Inrush blocking		
				86	Lockout	+	
			V, P, f	27/59	Under-/overvoltage		
				810/U	Under-/overfrequency		
					Flexible protection (index quantities derived from		
				32/55/81R	current and voltages): Voltage, power, p.f., rate-of-frequency-change protection		E
		IEF	V, P, f		Under-/overvoltage		
				81O/U	Under-/overfrequency		
					Flexible protection (index quantities derived from		
				32/55/81R	current and voltages): Voltage, power, p.f.,		
					rate-of-frequency-change protection Intermittent earth fault		E
	Dir			67/67N	Direction determination for overcurrent,	1	-
	DI				phases and earth		-
	Dir		V, P, f	67/67N	Direction determination for overcurrent, phases and earth		
				27/59	Under-/overvoltage		
				81O/U	Under-/overfrequency		
					Flexible protection (index quantities derived from		
				32/55/81R	current and voltages): Voltage, power, p.f., rate-of-frequency-change protection		3
	Di-	IEE		67/67NT		+	-
-	Dir	IEF		67/67N	Direction determination for overcurrent,		
					phases and earth Intermittent earth fault		-
					merimeen cartiniaan F	\uparrow	-
Directional	Dir			67/67N	Direction determination for overcurrent,		
earth-fault					phases and earth		
detection				67Ns	Directional sensitive earth-fault detection		
				87N	High-impedance restricted earth fault	- [2
Directional			V, P, f	67Ns	Directional sensitive earth-fault detection		
earth-fault				87N	High-impedance restricted earth fault		
detection				27/59	Under-/overvoltage		
				810/U	Under-/overfrequency		
					Flexible protection (index quantities derived from		
				32/55/81R	current and voltages): Voltage, power, p.f., rate-of-frequency-change protection		-
Directional	Di-	IEE		67/671	Direction determination for overcurrent,	+	_
Directional earth-fault	Dir	IEF		67/67N	phases and earth		
detection				67Ns	Directional sensitive earth-fault detection		
				87N	High-impedance restricted earth fault		
_				0/11	Intermittent earth fault		2

Basic version included

V, P, f =Voltage, power,

frequency protection

Dir = Directional overcurrent protection

IEF = Intermittent earth fault

1) Only with insensitive earth-current transformer when position 7 = 1, 5, 7.

2) For isolated/compensated networks only with sensitive earth-current transformer when position 7 = 2, 6.

Selection and ordering data

75162 multifunction protection relay

Description

Order No.

code

Order

Continued on next page

Siemens SI Sedition ENS

siemens-russia.com

7SJ62 multifunction protection relay			7SJ62□□ - □□□□□ - □		<u> </u>	<u>-0000</u>
Designation		ANSI No.	Description			
Basic version		50/51 50N/51N 50N/51N 50/50N	Control Time-overcurrent protection $I>$, $I>>$, $I>>>$, I_p Earth-fault protection $I_E>$, $I_E>>$, $I_E>>$, I_{Ep} Insensitive earth-fault protection via IEE function: $I_{EE}>$, $I_{EE}>$, I_{EE} , I_{EE} , I_{EE} Plexible protection functions (index quantities derived from current): Additional time- overcurrent protection			
		51 V 49 46	stages I_2 ,			
		37 47 59N/64 50BF 74TC 86	Undercurrent monitoring Phase sequence Displacement voltage Breaker failure protection Trip circuit supervision 4 setting groups, cold-load pickup Inrush blocking Lockout			
Directional earth-fault detection		67Ns 87N	Directional sensitive earth-fault detection High-impedance restricted earth fault	F B	2)	
Directional earth-fault detection	Motor V, P, f	67Ns 87N 48/14 66/86 51M 27/59 81O/U 27/47/59(N) 32/55/81R	Directional sensitive earth-fault detection High-impedance restricted earth fault Starting time supervision, locked rotor Restart inhibit Load jam protection, motor statistics Under-/overvoltage Under-/overfrequency Flexible protection (index quantities derived from current and voltages): Voltage, power, p.f., rate-of-frequency-change protection	1 H F	2)	
Directional earth-fault detection	Motor <i>V</i> , <i>P</i> , <i>f</i> Dir	67/67N 67Ns 87N 48/14 66/86 51M 27/59 81O/U 27/47/59(N) 32/55/81R	Direction determination for overcurrent, phases and earth Directional sensitive earth-fault detection High-impedance restricted earth fault Starting time supervision, locked rotor Restart inhibit Load jam protection, motor statistics Under-/overvoltage Under-/overfrequency Flexible protection (index quantities derived from current and voltages): Voltage, power, p.f., rate-of-frequency-change protection	ъ Н	2)	
Directional earth-fault detection	Motor IEF <i>V</i> , <i>P</i> , <i>f</i> Dir	67Ns 87N 48/14 66/86 51M 27/59 81O/U	Direction determination for overcurrent, phases and earth Directional sensitive earth-fault detection High-impedance restricted earth fault Intermittent earth fault Starting time supervision, locked rotor Restart inhibit Load jam protection, motor statistics Undervoltage/overvoltage Underfrequency/overfrequency Flexible protection (index quantities derived from current and voltages): Voltage, power, p.f., rate-of-frequency-change protection	ו R H	2)	
			Car			

Dir

IEF

Basic version included V, P, f =Voltage, power,

frequency protection

= Intermittent earth fault 1) Only with insensitive earth-current transformer when position 7 = 1, 5, 7. 2) For isolated/compensated networks only with sensitive earth-current

transformer when position 7 = 2, 6.

= Directional overcurrent protection

Selection and ordering data

Description		Order No.		Order code
7SJ62 multifunction protection relay		75J62□□ - □□□□□ - □□□		-000
Designation	ANSI No.	Description		
Basic version	50/51 50N/51N 50N/51N 50/50N	Control Time-overcurrent protection $I>, I>>, I>>>, I_p$ Earth-fault protection $I_E>, I_E>>, I_E>>>, I_{Ep}$ Insensitive earth-fault protection via IEE function: $I_{EE}>, I_{EE}>>, I_{EEp}^{-1}$ Flexible protection functions (index quantities		
	50,501	derived from current): Additional time- overcurrent protection stages <i>I</i> ₂ >, <i>I</i> >>>>, <i>I</i> _E >>>>		
	51 V 49	Voltage-dependent inverse-time overcurrent protection Overload protection (with 2 time constants)		
	49 46	Phase balance current protection (negative-sequence protection)		
	37 47	Undercurrent monitoring Phase sequence		
	59N/64	Displacement voltage		
	50BF 74TC	Breaker failure protection Trip circuit supervision 4 setting groups, cold-load pickup Inrush blocking		
	86	Lockout		
Motor V, P, f Dir	67/67N	Direction determination for overcurrent, phases and earth		
	48/14 66/86 51M	Starting time supervision, locked rotor Restart inhibit Load jam protection, motor statistics		
	27/59 81O/U	Under-/overfrequency		
	27/47/59(N 32/55/81R) Flexible protection (index quantities derived from current and voltages): Voltage, power, p.f.,	G	
Motor	48/14 66/86	Starting time supervision, locked rotor Restart inhibit		
	51M	Load jam protection, motor statistics H		
ARC, fault locator, synchro-che	79 21FL 79, 21FL 25	Without With auto-reclosure With fault locator With auto-reclosure, with fault locator With synchro-check ⁴	0 1 2 3 4 ⁵⁾	
		With synchro-check ⁴⁾ , auto-reclosure, fault locator	7 ⁵⁾	

Basic version included

V, *P*, *f* = Voltage, power, frequency protection

- Dir = Directional overcurrent protection
- IEF = Intermittent earth fault
- 1) Only with insensitive earth-current transformer when position 7 = 1, 5, 7.
- 2) For isolated/compensated networks only with sensitive earth-current transformer when position 7 = 2, 6.
- 3) This variant will be supplied with a previous firmware version.
- 4) Synchro-check (no asynchronous switching), one function group; available only with devices 7SJ623 and 7SJ624
- 5) Ordering option only available for devices 7SJ623 and 7SJ624

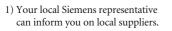
Order number for system port B	Description	Order No.	Order code
	7SJ62 multifunction protection relay	75J6200 - 00000 - 000	
	System interface (on rear of unit, Port B)		$\blacksquare \blacksquare \blacksquare$
	No system interface	0	
	IEC 60870-5-103 protocol, RS232	1	
	IEC 60870-5-103 protocol, RS485	2	
	IEC 60870-5-103 protocol, 820 nm fiber, ST connector	3	
	PROFIBUS-FMS Slave, RS485	4	
	PROFIBUS-FMS Slave, 820 nm wavelength, single ring, ST	C connector ¹⁾ 5	
	PROFIBUS-FMS Slave, 820 nm wavelength, double ring, S		
	PROFIBUS-DP Slave, RS485	9	L 0 A
	PROFIBUS-DP Slave, 820 nm wavelength, double ring, ST o	connector ¹⁾ 9	L 0 B
	MODBUS, RS485	9	L 0 D
	MODBUS, 820 nm wavelength, ST connector ²⁾	9	L 0 E
	DNP 3.0, RS485	9	L 0 G
	DNP 3.0, 820 nm wavelength, ST connector ²⁾	9	L 0 H
	IEC 60870-5-103 protocol, redundant, RS485, RJ45 conne	ctor ²⁾ 9	L 0 P
	IEC 61850, 100 Mbit Ethernet, electrical, double, RJ45 con	nector (EN 100) 9	LOR
	IEC 61850, 100 Mbit Ethernet, optical, double, LC connect	tor (EN 100) $^{2)}$ 9	L 0 S

Not with position 9 = "B"; if 9 = "B", please order 7SJ6 unit with RS485 port and separate fiber-optic converters. For single ring, please order converter 6GK1502-2CB10, not available with position 9 = "B". For double ring, please order converter 6GK1502-3CB10, not available with position 9 = "B". The converter requires a 24 V AC power supply (e.g. power supply 7XV5810-0BA00)

2) Not available with position 9 = "B"

Position	n	Order No. + Order code
6	I/O's: 11 BI/6 BO, 1 live status contact	7SJ6225-5EC91-3FC1+L0G
7	Current transformer: 5 A	5
8	Power supply: 110 to 250 V DC, 115 V AC to 230 V AC	5
9	Unit version: Flush-mounting housing, screw-type terminals	E
10	Region: US, English language (US); 60 Hz, ANSI	С
11	Communication: System interface: DNP 3.0, RS485	9 LOG
12	Communication: DIGSI 4, electric RS232	1
13	Measuring/fault recording: Extended measuring and fault recor	rds 3
14/15	Protection function package: Basic version plus directional TOO	c FC
16	With auto-reclosure	1

Description		Order No.
DIGSI 4		
Software for	configuration and operation of Siemens protection units	
running unde	er MS Windows 2000/XP Professional Edition	
Basis	Full version with license for 10 computers, on CD-ROM	
	(authorization by serial number)	7XS5400-0AA00
Professional	DIGSI 4 Basis and additionally SIGRA (fault record analysis),	
	CFC Editor (logic editor), Display Editor (editor for default	
	and control displays) and DIGSI 4 Remote (remote operation)	7XS5402-0AA00
Professional	+ IEC 61850	
	Complete version:	
	DIGSI 4 Basis and additionally SIGRA (fault record analysis),	
	CFC Editor (logic editor), Display Editor (editor for default	
	and control displays) and DIGSI 4 Remote (remote operation)	
	+ IEC 61850 system configurator	7XS5403-0AA00
IEC 61850 Sys	tem configurator	
Software for	configuration of stations with IEC 61850 communication under	
DIGSI, runni	ng under MS Windows 2000 or XP Professional Edition	
Optional pac	kage for DIGSI 4 Basis or Professional	
License for 1	0 PCs. Authorization by serial number. On CD-ROM	7XS5460-0AA00
(generally co	ning under MS Windows 2000 or XP Professional Edition. ntained in DIGSI Professional, but can be ordered additionally)	7755410 04400
Authorizatio	n by serial number. On CD-ROM.	7XS5410-0AA00
Temperature	monitoring box	
24 to 60 V A		7/4/5662 24010
90 to 240 V A		/XV5667-741111
		7XV5662-2AD10 7XV5662-5AD10
Varistor/Volto		7XV5662-2AD10 7XV5662-5AD10
Voltage arres	IC/DC	
0	IC/DC	
240 Vrms; 60	IC/DC	
	C/DC age arrester ter for high-impedance REF protection	7XV5662-5AD10
	AC/DC age arrester ter for high-impedance REF protection 0 A; 1S/S 256	7XV5662-5AD10 C53207-A401-D76-1
Connecting c	AC/DC age arrester ter for high-impedance REF protection 10 A; 1S/S 256 10 A; 1S/S 1088	7XV5662-5AD10 C53207-A401-D76-1
Cable betwee	AC/DC age arrester ter for high-impedance REF protection 00 A; 1S/S 256 10 A; 1S/S 1088 able n PC/notebook (9-pin con.) and protection unit (9-pin connector)	7XV5662-5AD10 C53207-A401-D76-1
Cable betwee	AC/DC age arrester ter for high-impedance REF protection 10 A; 1S/S 256 10 A; 1S/S 1088 able	7XV5662-5AD10 C53207-A401-D76-1
Cable betwee (contained in	AC/DC age arrester ter for high-impedance REF protection 00 A; 1S/S 256 10 A; 1S/S 1088 able n PC/notebook (9-pin con.) and protection unit (9-pin connector)	7XV5662-5AD10 C53207-A401-D76-1 C53207-A401-D77-1
Cable betwee (contained in	AC/DC age arrester ter for high-impedance REF protection 0 A; 1S/S 256 0 A; 1S/S 1088 able n PC/notebook (9-pin con.) and protection unit (9-pin connector) DIGSI 4, but can be ordered additionally) n temperature monitoring box and SIPROTEC 4 unit	7XV5662-5AD10 C53207-A401-D76-1 C53207-A401-D77-1
Cable betwee (contained in Cable betwee	AC/DC age arrester ter for high-impedance REF protection 0 A; 1S/S 256 0 A; 1S/S 1088 able n PC/notebook (9-pin con.) and protection unit (9-pin connector) DIGSI 4, but can be ordered additionally) n temperature monitoring box and SIPROTEC 4 unit /16.4 ft	7XV5662-5AD10 C53207-A401-D76-1 C53207-A401-D77-1 7XV5100-4
Cable betwee (contained in Cable betwee - length 5 m	AC/DC age arrester ter for high-impedance REF protection 0 A; 1S/S 256 0 A; 1S/S 1088 able n PC/notebook (9-pin con.) and protection unit (9-pin connector) DIGSI 4, but can be ordered additionally) n temperature monitoring box and SIPROTEC 4 unit /16.4 ft 1/82 ft	7XV5662-5AD10 C53207-A401-D76-1 C53207-A401-D77-1 7XV5100-4 7XV5103-7AA05
Cable betwee (contained in Cable betwee - length 5 m - length 25 m - length 50 m	AC/DC age arrester ter for high-impedance REF protection 0 A; 1S/S 256 0 A; 1S/S 1088 able n PC/notebook (9-pin con.) and protection unit (9-pin connector) DIGSI 4, but can be ordered additionally) n temperature monitoring box and SIPROTEC 4 unit /16.4 ft 1/82 ft 1/164 ft	7XV5662-5AD10 C53207-A401-D76-1 C53207-A401-D77-1 7XV5100-4 7XV5103-7AA05 7XV5103-7AA25
Cable betwee (contained in Cable betwee - length 5 m - length 25 m	AC/DC age arrester ter for high-impedance REF protection 0 A; 1S/S 256 0 A; 1S/S 1088 able n PC/notebook (9-pin con.) and protection unit (9-pin connector) DIGSI 4, but can be ordered additionally) n temperature monitoring box and SIPROTEC 4 unit /16.4 ft 1/82 ft 1/164 ft	7XV5662-5AD10 C53207-A401-D76-1 C53207-A401-D77-1 7XV5100-4 7XV5103-7AA05 7XV5103-7AA25



5

1) x = please inquire for latest edition (exact Order No.).

Accessories

Accessories		Description	Order No.	Size of package	Supplier
	SP2289-afp.eps	Terminal safety cover Voltage/current terminal 18-pole/12-pole	C73334-A1-C31-1	1	Siemens
		Voltage/current terminal 12-pole/8-pole	C73334-A1-C32-1	1	Siemens
		Connector 2-pin	C73334-A1-C35-1	1	Siemens
Mounting rail		Connector 3-pin	C73334-A1-C36-1	1	Siemens
s		Crimp connector CI2 0.5 to 1 mm ²	0-827039-1	4000 taped on reel	AMP ¹⁾
SP2090-afp. epc	SP2091-afp.eps	Crimp connector CI2 0.5 to 1 mm ²	0-827396-1	1	AMP ¹⁾
SP209	-SP209	Crimp connector: Type III+ 0.75 to 1.5 mm ²	0-163084-2	1	$AMP^{(1)}_{(1)}$
2-pin connector	3-pin connector	Crimp connector: Type III+ 0.75 to 1.5 mm ²	0-163083-7	4000 taped on reel	AMP ¹⁾
		Crimping tool for Type III+	0-539635-1	1	AMP ¹⁾
		and matching female	0-539668-2	1	AMP ¹⁾
S S		Crimping tool for CI2	0-734372-1	1	AMP ¹⁾
afb.e	D - ebc	and matching female	1-734387-1	1	AMP ¹⁾
SP 2093 afb. aps	92-af	Short-circuit links			
	SP2092-afp	for current terminals	C73334-A1-C33-1	1	Siemens
Short-circuit links	Short-circuit links	for other terminals	C73334-A1-C34-1	1	Siemens
for current termi- nals	for other terminals	Mounting rail for 19" rack	C73165-A63-D200-1	1	Siemens

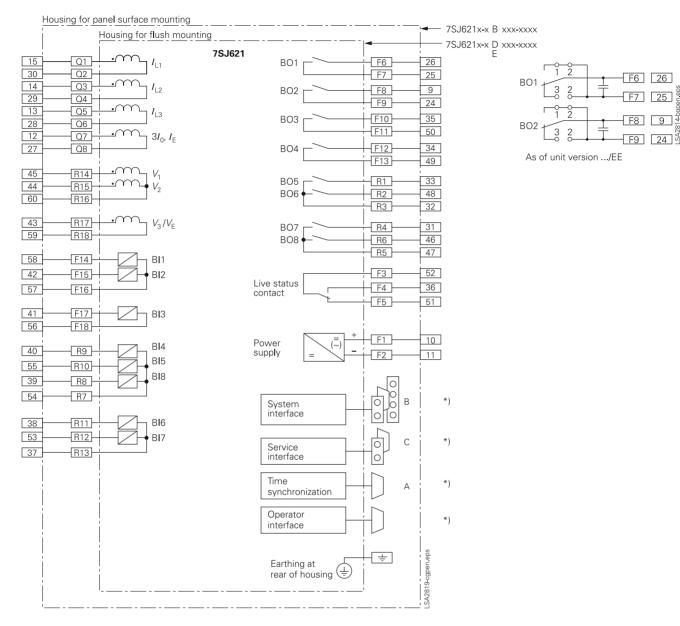
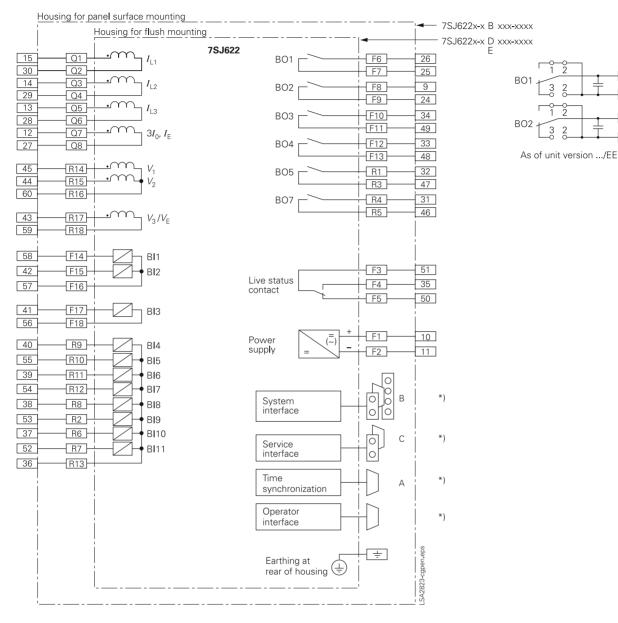



Fig. 5/101 7SJ621 connection diagram

*) For pinout of communication ports see part 15 of this catalog. For the allocation of the terminals of the panel surface mounting version refer to the manual (http://www.siemens.com/siprotec).

Connection diagram

5

Fig. 5/102 7SJ622 connection diagram

*) For pinout of communication ports see part 15 of this catalog. For the allocation of the terminals of the panel surface mounting version refer to the manual (http://www.siemens.com/siprotec).

F6 26

F7 25

F9 24 S

F8 9

Connection diagram

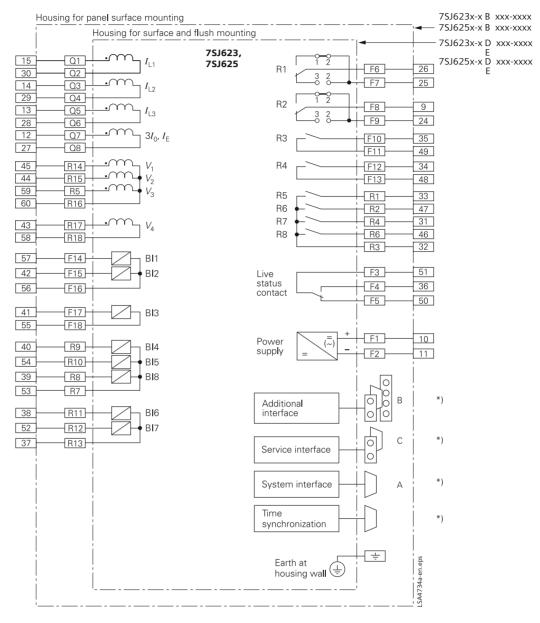


Fig. 5/103 7SJ623, 7SJ625 connection diagram

*) For pinout of communication ports see part 15 of this catalog. For the allocation of the terminals of the panel surface mounting version refer to the manual (http://www.siemens.com/siprotec).

Connection diagram

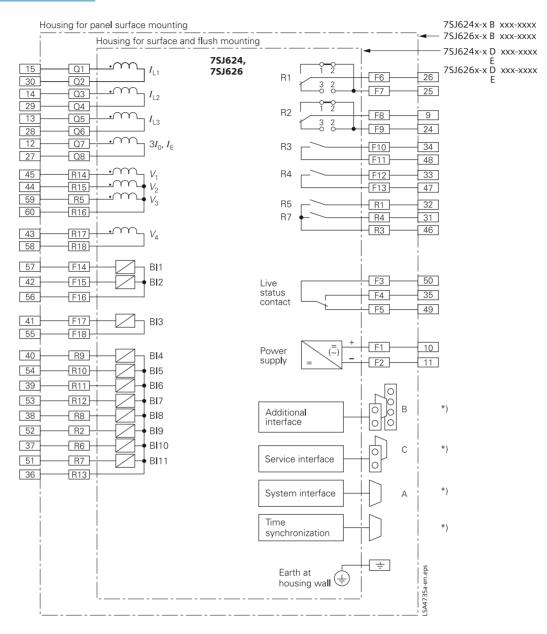


Fig. 5/104 7SJ624, 7SJ626 connection diagram

*) For pinout of communication ports see part 15 of this catalog. For the allocation of the terminals of the panel surface mounting version refer to the manual (http://www.siemens.com/siprotec).

5/120

SIPROTEC 4 7SJ63 Multifunction Protection Relay

Fig. 5/105 SIPROTEC 4 7SJ63 multifunction protection relay

Description

The SIPROTEC 4 7SJ63 can be used as a protective control and monitoring relay for distribution feeders and transmission lines of any voltage in networks that are earthed (grounded), low-resistance earthed, unearthed, or of a compensated neutral point structure. The relay is suited for networks that are radial or looped, and for lines with single or multi-terminal feeds. Regarding the time-overcurrent/directional timeovercurrent protection the characteristics can be either definite time, inverse time or user-defined.

The SIPROTEC 4 7SJ63 is equipped with motor protection applicable for asynchronous machines of all sizes. Motor protection comprises undercurrent monitoring, starting time supervision, restart inhibit, locked rotor.

The relay provides easy-to-use local control and automation functions. The number of controllable switchgear depends only on the number of available inputs and outputs. The integrated programmable logic (CFC) allows the user to implement their own functions, e.g. for the automation of switchgear (interlocking). The user is able to generate userdefined messages as well.

Function overview

Protection functions

- Time-overcurrent protection (definite-time/inverse-time/user-def.)
- Directional time-overcurrent protection (definite-time/inverse-time/user-def.)
- Sensitive dir./non-dir. earth-fault detection
- Displacement voltage
- Intermittent earth-fault protection
- High-impedance restricted earth fault
- Inrush restraint
- Motor protection
- Overload protection
- Temperature monitoring
- Under-/overvoltage protection
- Under-/overfrequency protection
- Breaker failure protection
- Negative-sequence protection
- Phase-sequence monitoring
- Auto-reclosure
- Fault locator
- Lockout

Control functions/programmable logic

- Flexible number of switching devices
- Position of switching elements is shown on the graphic display
- Local/remote switching via keyoperated switch
- Control via keyboard, binary inputs, DIGSI 4 or SCADA system
- Extended user-defined logic with CFC (e.g. interlocking)

Monitoring functions

- Operational measured values V, I, f,...
- Energy metering values $W_{\rm p}$, $W_{\rm q}$
- Circuit-breaker wear monitoring
- Slave pointer
- Trip circuit supervision
- Fuse failure monitor
- 8 oscillographic fault records

Communication interfaces

- System interface
- IEC 60870-5-103, IEC 61850 – PROFIBUS-FMS /-DP
- DNP 3.0 / MODBUS RTU
- Service interface for DIGSI 4 (modem)
- Front interface for DIGSI 4
- Time synchronization via IRIG-B/DCF77

Application

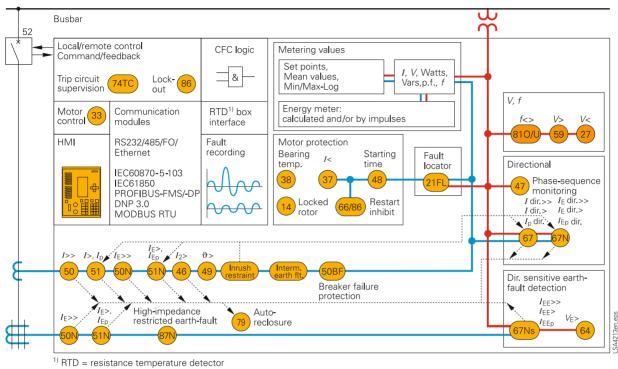


Fig. 5/106 Function diagram

The SIPROTEC 4 7SJ63 unit is a numerical protection relay that also performs control and monitoring functions and therefore supports the user in cost-effective power system management, and ensures reliable supply of electric power to the customers. Local operation has been designed according to ergonomic criteria. A large, easy-to-read graphic display was a major design aim.

Control

The integrated control function permits control of disconnect devices (electrically operated/motorized switches) or circuit-breakers via the integrated operator panel, binary inputs, DIGSI 4 or the control and protection system (e.g. SICAM). The present status (or position) of the primary equipment can be displayed. 7SJ63 supports substations with single and duplicate busbars. The number of elements that can be controlled (usually 1 to 5) is only restricted by the number of inputs and outputs available. A full range of command processing functions is provided.

Programmable logic

The integrated logic characteristics (CFC) allow the user to implement their own functions for automation of switchgear (interlocking) or a substation via a graphic user interface. The user can also generate userdefined messages.

Line protection

The 7SJ63 units can be used for line protection of high and medium-voltage networks with earthed (grounded), low-resistance earthed, isolated or compensated neutral point.

Motor protection

When protecting motors, the 7SJ63 relays are suitable for asynchronous machines of all sizes.

Transformer protection

The 7SJ63 units perform all functions of backup protection supplementary to transformer differential protection. The inrush suppression effectively prevents tripping by inrush currents.

The high-impedance restricted earth-fault protection detects short-circuits and insulation faults on the transformer.

Backup protection

The relays can be used universally for backup protection.

Metering values

Extensive measured values, limit values and metering values permit improved systems management.

Application

ANSI No.	IEC	Protection functions
(50, 50N)	I>, I>> $I_{\rm E}>, I_{\rm E}>>$	Definite-time overcurrent protection (phase/neutral)
(51,51N)	<i>I</i> p, <i>I</i> _{Ep}	Inverse-time overcurrent protection (phase/neutral)
(67,67N)	I_{dir} , I_{dir} , $I_{\text{p dir}}$ I_{Edir} , I_{Edir} , $I_{\text{Ep dir}}$	Directional time-overcurrent protection (definite/inverse, phase/neutral), Directional comparison protection
67Ns/50N	S $I_{\rm EE}$, $I_{\rm EE}$, $I_{\rm EE}$	Directional/non-directional sensitive earth-fault detection
_		Cold load pick-up (dynamic setting change)
59N/64	$V_{\rm E}/V_0>$	Displacement voltage, zero-sequence voltage
_	$I_{\rm IE}>$	Intermittent earth fault
(87N)		High-impedance restricted earth-fault protection
(50BF)		Breaker failure protection
79		Auto-reclosure
79 46	I ₂ >	Phase-balance current protection (negative-sequence protection)
(47)	V_2 >, phase seq.	Unbalance-voltage protection and/or phase-sequence monitoring
49 (48) (14)	ϑ>	Thermal overload protection
48		Starting time supervision
14		Locked rotor protection
66/86		Restart inhibit
37)	I<	Undercurrent monitoring
38		Temperature monitoring via external device (RTD-box) e.g. bearing temperature monitoring
27,59	<i>V</i> <, <i>V</i> >	Undervoltage/overvoltage protection
(810/U)	f>,f<	Overfrequency/underfrequency protection
(21FL)		Fault locator

Construction

Connection techniques and housing with many advantages

1/2 and 1/1-rack sizes

These are the available housing widths of the 7SJ63 relays, referred to a 19" module frame system. This means that previous models can always be replaced. The height is a uniform 244 mm for flush-mounting housings and 266 mm for surface-mounting housings for all housing widths. All cables can be connected with or without ring lugs. Plug-in terminals are available as an option.

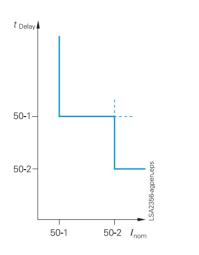
It is thus possible to employ prefabricated cable harnesses. In the case of surface mounting on a panel, the connection terminals are located above and below in the form of screw-type terminals. The communication interfaces are located in a sloped case at the top and bottom of the housing. The housing can also be supplied optionally with a detached operator panel (refer to Fig. 5/109), or without operator panel, in order to allow optimum operation for all types of applications.

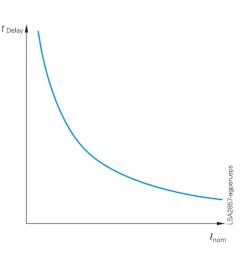
Fig. 5/107 Flush-mounting housing with screw-type terminals

Fig. 5/108 Rear view of flush-mounting housing with covered connection terminals and wirings

Fig. 5/109 Housing with plug-in terminals and detached operator panel

Fig. 5/110 Surface-mounting housing with screw-type terminals




Fig. 5/111 Communication interfaces in a sloped case in a surface-mounting housing

Time-overcurrent protection (ANSI 50, 50N, 51, 51N)

This function is based on the phase-selective measurement of the three phase currents and the earth current (four transformers). Two definite-time overcurrent protection elements (DMT) exist both for the phases and for the earth. The current threshold and the delay time can be set within a wide range. In addition, inverse-time overcurrent protection characteristics (IDMTL) can be activated.

Definite-time overcurrent protection

Fig. 5/113 Inverse-time overcurrent protection

Available inverse-time characteristics

Characteristics acc. to	ANSI/IEEE	IEC 60255-3
Inverse	•	•
Short inverse	•	
Long inverse	٠	•
Moderately inverse	•	
Very inverse	•	•
Extremely inverse	•	•

Reset characteristics

For easier time coordination with electromechanical relays, reset characteristics according to ANSI C37.112 and IEC 60255-3 / BS 142 standards are applied. When using the reset characteristic (disk emulation), a reset process is initiated after the fault current has disappeared. This reset process corresponds to the reverse movement of the Ferraris disk of an electromechanical relay (thus: disk emulation).

User-definable characteristics

Instead of the predefined time characteristics according to ANSI, tripping characteristics can be defined by the user for phase and earth units separately. Up to 20 current/ time value pairs may be programmed. They are set as pairs of numbers or graphically in DIGSI 4.

Inrush restraint

The relay features second harmonic restraint. If the second harmonic is detected during transformer energization, pickup of non-directional and directional normal elements are blocked.

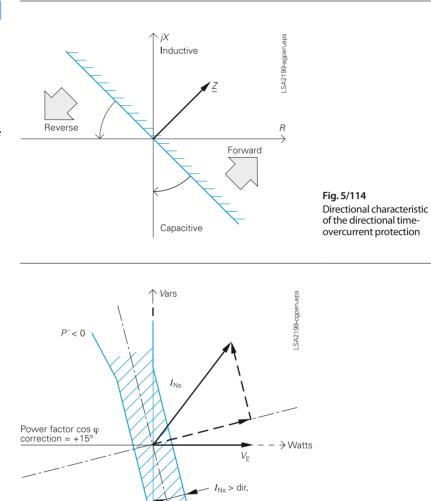
Cold load pickup/dynamic setting change

For directional and non-directional timeovercurrent protection functions the initiation thresholds and tripping times can be switched via binary inputs or by time control.

Directional time-overcurrent protection (ANSI 67, 67N)

Directional phase and earth protection are separate functions. They operate in parallel to the non-directional overcurrent elements. Their pickup values and delay times can be set separately. Definite-time and inverse-time characteristic is offered. The tripping characteristic can be rotated about \pm 180 degrees.

By means of voltage memory, directionality can be determined reliably even for close-in (local) faults. If the switching device closes onto a fault and the voltage is too low to determine direction, directio- nality (directional decision) is made with voltage from the voltage memory. If no voltage exists in the memory, tripping occurs according to the coordination schedule.


For earth protection, users can choose whether the direction is to be determined via zero-sequence system or negative-sequence system quantities (selectable). Using negative-sequence variables can be advantageous in cases where the zero voltage tends to be very low due to unfavorable zero-sequence impedances.

Directional comparison protection (cross-coupling)

It is used for selective protection of sections fed from two sources with instantaneous tripping, i.e. without the disadvantage of time coordination. The directional comparison protection is suitable if the distances between the protection stations are not significant and pilot wires are available for signal transmission. In addition to the directional comparison protection, the directional coordinated time-overcurrent protection is used for complete selective backup protection. If operated in a closed-circuit connection, an interruption of the transmission line is detected.

(Sensitive) directional earth-fault detection (ANSI 64, 67Ns, 67N)

For isolated-neutral and compensated networks, the direction of power flow in the zero sequence is calculated from the zero-sequence current I_0 and zero-sequence voltage V_0 . For networks with an isolated neutral, the reactive current component is evaluated; for compensated networks, the active current component or residual resistive current is evaluated. For special network conditions,

e.g. high-resistance earthed networks with ohmic-capacitive earth-fault current or low-resistance earthed networks with ohmic-inductive current, the tripping characteristics can be rotated approximately \pm 45 degrees.

Two modes of earth-fault direction detection can be implemented: tripping or "signalling only mode".

It has the following functions:

< 0

Reverse

- TRIP via the displacement voltage $V_{\rm E}$.
- Two instantaneous elements or one instantaneous plus one user-defined characteristic.
- Each element can be set in forward, reverse, or non-directional.
- The function can also be operated in the insensitive mode as an additional short-circuit protection.

Fig. 5/115 Directional determination using cosine measurements for compensated networks

(Sensitive) earth-fault detection (ANSI 50Ns, 51Ns / 50N, 51N)

Forward

For high-resistance earthed networks, a sensitive input transformer is connected to a phase-balance neutral current transformer (also called core-balance CT).

The function can also be operated in the insensitive mode as an additional short-circuit protection.

Intermittent earth-fault protection

Intermittent (re-striking) faults occur due to insulation weaknesses in cables or as a result of water penetrating cable joints. Such faults either simply cease at some stage or develop into lasting short-circuits. During intermittent activity, however, star-point resistors in networks that are impedance-earthed may undergo thermal overloading. The normal earth-fault protection cannot reliably detect and interrupt the current pulses, some of which can be very brief.

The selectivity required with intermittent earth faults is achieved by summating the duration of the individual pulses and by triggering when a (settable) summed time is reached. The response threshold $I_{\rm IE}$ > evaluates the r.m.s. value, referred to one systems period.

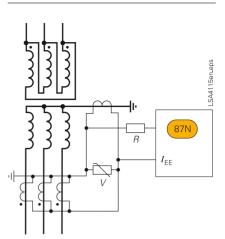
Phase-balance current protection (ANSI 46) (Negative-sequence protection)

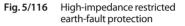
In line protection, the two-element phasebalance current/negative-sequence protection permits detection on the high side of high-resistance phase-to-phase faults and phase-to-earth faults that are on the low side of a transformer (e.g. with the switch group Dy 5). This provides backup protection for high-resistance faults beyond the transformer.

Breaker failure protection (ANSI 50BF)

If a faulted portion of the electrical circuit is not disconnected upon issuance of a trip command, another command can be initiated using the breaker failure protection which operates the circuit-breaker, e.g. of an upstream (higher-level) protection relay. Breaker failure is detected if, after a trip command, current is still flowing in the faulted circuit. As an option, it is possible to make use of the circuit-breaker position indication.

High-impedance restricted earth-fault protection (ANSI 87N)


The high-impedance measurement principle is an uncomplicated and sensitive method for detecting earth faults, especially on transformers. It can also be applied to motors, generators and reactors when these are operated on an earthed network. When the high-impedance measurement principle is applied, all current transformers in the protected area are connected in parallel and operated on one common resistor of relatively high R whose voltage is measured (see Fig. 5/116). In the case of 7SJ6 units, the voltage is measured by detecting the current through the (external) resistor R at the sensitive current measurement input I_{EE} . The varistor V serves to limit the voltage in the event of an internal fault. It cuts off the high momentary voltage spikes occurring at transformer saturation. At the same time, this results in smoothing of the voltage without any noteworthy reduction of the average value. If no faults have occurred and in the event of external faults, the system is at equilibrium, and the voltage through the resistor is approximately zero. In the event of internal faults, an imbalance occurs which leads to a voltage and a current flow through the resistor R.


The current transformers must be of the same type and must at least offer a separate core for the high-impedance restricted earth-fault protection. They must in particular have the same transformation ratio and an approximately identical knee-point voltage. They should also demonstrate only minimal measuring errors.

Auto-reclosure (ANSI 79)

Multiple reclosures can be defined by the user and lockout will occur if a fault is present after the last reclosure. The following functions are possible:

- 3-pole ARC for all types of faults
- · Separate settings for phase and earth faults
- Multiple ARC, one rapid auto-reclosure (RAR) and up to nine delayed auto-reclosures (DAR)
- Starting of the ARC depends on the trip command selection (e.g. 46, 50, 51, 67)
- Blocking option of the ARC via binary inputs
- ARC can be initiated externally or via CFC
- The directional and non-directional elements can either be blocked or operated non-delayed depending on the autoreclosure cycle
- Dynamic setting change of the directional and non-directional elements can be activated depending on the ready AR

Thermal overload protection (ANSI 49)

For protecting cables and transformers, an overload protection with an integrated pre-warning element for temperature and current can be applied. The temperature is calculated using a thermal homogeneousbody model (according to IEC 60255-8), which takes account both of the energy entering the equipment and the energy losses. The calculated temperature is constantly adjusted accordingly. Thus, account is taken of the previous load and the load fluctuations.

For thermal protection of motors (especially the stator) a further time constant can be set so that the thermal ratios can be detected correctly while the motor is rotating and when it is stopped. The ambient temperature or the temperature of the coolant can be detected serially via an external temperature monitoring box (resistance-temperature detector box, also called RTD- box). The thermal replica of the overload function is automatically adapted to the ambient conditions. If there is no RTD-box it is assumed that the ambient temperatures are constant.

Settable dropout delay times

If the devices are used in parallel with electromechanical relays in networks with intermittent faults, the long dropout times of the electromechanical devices (several hundred milliseconds) can lead to problems in terms of time grading. Clean time grading is only possible if the dropout time is approximately the same. This is why the parameter of dropout times can be defined for certain functions such as time-overcurrent protection, earth short-circuit and phase-balance current protection.

Motor protection

Restart inhibit (ANSI 66/86)

If a motor is started up too many times in succession, the rotor can be subject to thermal overload, especially the upper edges of the bars. The rotor temperature is calculated from the stator current. The reclosing lockout only permits start-up of the motor if the rotor has sufficient thermal reserves for a complete start-up (see Fig. 5/117).

Emergency start-up

This function disables the reclosing lockout via a binary input by storing the state of the thermal replica as long as the binary input is active. It is also possible to reset the thermal replica to zero.

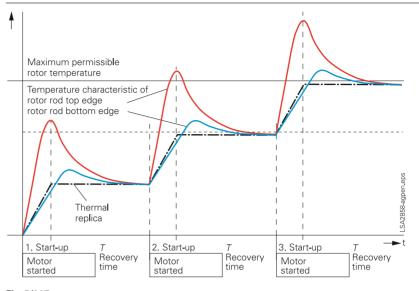
Temperature monitoring (ANSI 38)

Up to two temperature monitoring boxes with a total of 12 measuring sensors can be used for temperature monitoring and detection by the protection relay. The thermal status of motors, generators and transformers can be monitored with this device. Additionally, the temperature of the bearings of rotating machines are monitored for limit value violation. The temperatures are being measured with the help of temperature detectors at various locations of the device to be protected. This data is transmitted to the protection relay via one or two temperature monitoring boxes (see "Accessories", page 5/153).

Starting time supervision (ANSI 48/14)

Starting time supervision protects the motor against long unwanted start-ups that might occur in the event of excessive load torque or excessive voltage drops within the motor, or if the rotor is locked. Rotor temperature is calculated from measured stator current. The tripping time is calculated according to the following equation:

for $I > I_{MOTOR START}$


$$t = \left(\frac{I_{\rm A}}{I}\right)^2 \cdot T_{\rm A}$$

I = Actual current flowing I_{MOTOR START} = Pickup current to detect a motor start

- t = Tripping time
- $I_{\rm A}$ = Rated motor starting current

*T*_A = Tripping time at rated motor starting current

1) The 45 to 55, 55 to 65 Hz range is available for $f_{\rm N} = 50/60$ Hz.

If the trip time is rated according to the above formula, even a prolonged start-up and reduced voltage (and reduced start-up current) will be evaluated correctly. The tripping time is inverse (current dependent).

A binary signal is set by a speed sensor to detect a blocked rotor. An instantaneous tripping is effected.

Phase-balance current protection (ANSI 46) (*Negative-sequence protection*)

The negative-sequence / phase-balance current protection detects a phase failure or load unbalance due to network asymmetry and protects the rotor from impermissible temperature rise.

Undercurrent monitoring (ANSI 37)

With this function, a sudden drop in current, which can occur due to a reduced motor load, is detected. This may be due to shaft breakage, no-load operation of pumps or fan failure.

Voltage protection

Overvoltage protection (ANSI 59)

The two-element overvoltage protection detects unwanted network and machine overvoltage conditions. The function can operate either with phase-to-phase voltage (default) or with the negative phase-sequence system voltage. Three-phase and single-phase connections are possible.

Undervoltage protection (ANSI 27)

The two-element undervoltage protection provides protection against dangerous voltage drops (especially for electric machines). Applications include the isolation of generators or motors from the network to avoid undesired operating states and a possible loss of stability. Proper operating conditions of electrical machines are best evaluated with the positive-sequence quantities. The protection function is active over a wide frequency range (45 to 55, 55 to 65 Hz)¹⁾. Even when falling below this frequency range the function continues to work, however, with a greater tolerance band.

The function can operate either with the positive phase-sequence system voltage (default) or with the phase-to-phase voltages, and can be monitored with a current criterion. Three-phase and single-phase connections are possible.

Frequency protection (ANSI 810/U)

Frequency protection can be used for overfrequency and underfrequency protection. Electric machines and parts of the system are protected from unwanted speed deviations. Unwanted frequency changes in the network can be detected and the load can be removed at a specified frequency setting. Frequency protection can be used over a wide frequency range (45 to 55, 55 to 65 Hz)¹⁾. There are four elements (selectable as overfrequency or underfrequency) and each element can be delayed separately. Blocking of the frequency protection can be performed if using a binary input or by using an undervoltage element.

Protection functions/Functions

Fault locator (ANSI 21FL)

The fault locator specifies the distance to a fault location in kilometers or miles or the reactance of a second fault operation.

Circuit-breaker wear monitoring

Methods for determining circuit-breaker contact wear or the remaining service life of a circuit-breaker (CB) allow CB maintenance intervals to be aligned to their actual degree of wear. The benefit lies in reduced maintenance costs.

There is no mathematically exact method of calculating the wear or the remaining service life of circuit-breakers that takes into account the arc-chamber's physical conditions when the CB opens. This is why various methods of determining CB wear have evolved which reflect the different operator philosophies. To do justice to these, the devices offer several methods:

- Σ*Ι*
- ΣI^x , with x = 1...3

The devices additionally offer a new method for determining the remaining service life:

• Two-point method

The CB manufacturers double-logarithmic switching cycle diagram (see Fig. 5/118) and the breaking current at the time of contact opening serve as the basis for this method. After CB opening, the two-point method calculates the number of still possible switching cycles. To this end, the two points P1 and P2 only have to be set on the device. These are specified in the CB's technical data.

All of these methods are phase-selective and a limit value can be set in order to obtain an alarm if the actual value falls below or exceeds the limit value during determination of the remaining service life.

Customized functions (ANSI 32, 51V, 55, etc.)

Additional functions, which are not time critical, can be implemented via the CFC using measured values. Typical functions include reverse power, voltage controlled overcurrent, phase angle detection, and zerosequence voltage detection.

Commissioning

Commissioning could hardly be easier and is fully supported by DIGSI 4. The status of the binary inputs can be read individually and the state of the binary outputs can be set individually. The operation of switching elements (circuit-breakers, disconnect devices) can be checked using the switching functions of the bay controller. The analog measured values are represented as wide-ranging operational measured values. To prevent transmission of information to the control center during maintenance, the bay controller communications can be disabled to prevent unnecessary data from being transmitted. During commissioning, all indications with test marking for test purposes can be connected to a control and protection system.

Test operation

During commissioning, all indications can be passed to an automatic control system for test purposes.

Control and automatic functions

Control

In addition to the protection functions, the SIPROTEC 4 units also support all control and monitoring functions that are required for operating medium-voltage or high-voltage substations.

The main application is reliable control of switching and other processes.

The status of primary equipment or auxiliary devices can be obtained from auxiliary contacts and communicated to the 7SJ63 via binary inputs. Therefore it is possible to detect and indicate both the OPEN and CLOSED position or a fault or intermediate circuit-breaker or auxiliary contact position.

The switchgear or circuit-breaker can be controlled via:

- integrated operator panel
- binary inputs
- substation control and protection system
 DIGSI 4

Automation / user-defined logic

With integrated logic, the user can set, via a graphic interface (CFC), specific functions for the automation of switchgear or substation. Functions are activated via function keys, binary input or via communication interface.

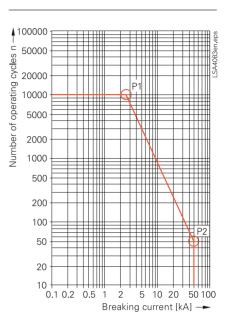


Fig. 5/118 CB switching cycle diagram

Switching authority

Switching authority is determined according to parameters, communication or by keyoperated switch (when available). If a source is set to "LOCAL", only local switching operations are possible. The following sequence of switching authority is laid down: "LOCAL"; DIGSI PC program, "REMOTE".

Key-operated switch

7SJ63 units are fitted with key-operated switch function for local/remote changeover and changeover between interlocked switching and test operation.

Command processing

All the functionality of command processing is offered. This includes the processing of single and double commands with or without feedback, sophisticated monitoring of the control hardware and software, checking of the external process, control actions using functions such as runtime monitoring and automatic command termination after output. Here are some typical applications:

- Single and double commands using 1, 1 plus 1 common or 2 trip contacts
- User-definable bay interlocks
- Operating sequences combining several switching operations such as control of circuit-breakers, disconnectors and earthing switches
- Triggering of switching operations, indications or alarm by combination with existing information

Function

Motor control

The SIPROTEC 4 7SJ63 with high performance relays is well-suited for direct activation of the circuit-breaker, disconnector and earthing switch operating mechanisms in automated substations.

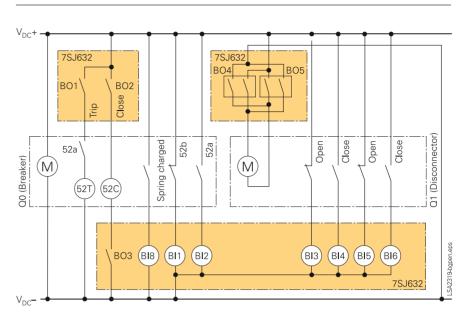
Interlocking of the individual switching devices takes place with the aid of programmable logic. Additional auxiliary relays can be eliminated. This results in less wiring and engineering effort.

Assignment of feedback to command

The positions of the circuit-breaker or switching devices and transformer taps are acquired by feedback. These indication inputs are logically assigned to the corresponding command outputs. The unit can therefore distinguish whether the indication change is a consequence of switching operation or whether it is a spontaneous change of state.

Chatter disable

Chatter disable feature evaluates whether, in a configured period of time, the number of status changes of indication input exceeds a specified figure. If exceeded, the indication input is blocked for a certain period, so that the event list will not record excessive operations.


Indication filtering and delay

Binary indications can be filtered or delayed.

Filtering serves to suppress brief changes in potential at the indication input. The indication is passed on only if the indication voltage is still present after a set period of time. In the event of indication delay, there is a wait for a preset time. The information is passed on only if the indication voltage is still present after this time.

Indication derivation

A further indication (or a command) can be derived from an existing indication. Group indications can also be formed. The volume of information to the system interface can thus be reduced and restricted to the most important signals.

Typical wiring for 7SJ632 motor direct control (simplified representation without fuses) Binary output BO4 and BO5 are interlocked so that only one set of contacts are closed at a time.

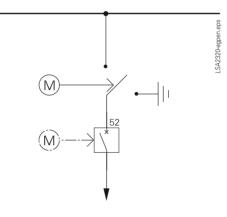
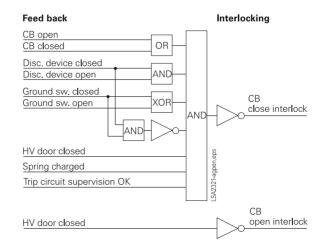



Fig. 5/120 Example: Single busbar with circuit-breaker and motor-controlled three-position switch

Functions

Measured values

The r.m.s. values are calculated from the acquired current and voltage along with the power factor, frequency, active and reactive power. The following functions are available for measured value processing:

- Currents I_{L1} , I_{L2} , I_{L3} , I_E , I_{EE} (67Ns)
- Voltages *V*_{L1}, *V*_{L2}, *V*_{L3}, *V*_{L1L2}, *V*_{L2L3}, *V*_{L3L1}
- Symmetrical components *I*₁, *I*₂, 3*I*₀; *V*₁, *V*₂, *V*₀
- Power Watts, Vars, VA/P, Q, S (P, Q: total and phase-selective)
- Power factor (cos φ) (total and phase-selective)
- Frequency
- Energy ± kWh, ± kVarh, forward and reverse power flow
- Mean as well as minimum and maximum current and voltage values
- Operating hours counter
- Mean operating temperature of overload function
- Limit value monitoring Limit values are monitored using programmable logic in the CFC. Commands can be derived from this limit value indication.
- Zero suppression In a certain range of very low measured values, the value is set to zero to suppress interference.

Metered values

For internal metering, the unit can calculate an energy metered value from the measured current and voltage values. If an external meter with a metering pulse output is available, the SIPROTEC 4 unit can obtain and process metering pulses via an indication input.

The metered values can be displayed and passed on to a control center as an accumulation with reset. A distinction is made between forward, reverse, active and reactive energy.

Measuring transducers

- Characteristic with knee For measuring transducers it sometimes makes sense to extend a small range of the input value, e.g. for the frequency that is only relevant in the range 45 to 55, 55 to 65 Hz. This can be achieved by using a knee characteristic.
- Live-zero monitoring 4 - 20 mA circuits are monitored for open-circuit detection.

Switchgear cubicles for high/medium voltage

All units are designed specifically to meet the requirements of high/medium-voltage applications.

In general, no separate measuring instruments (e.g. for current, voltage, frequency measuring transducer ...) or additional control components are necessary.

Fig. 5/122 NX PLUS panel (gas-insulated)

Communicatior

In terms of communication, the units offer substantial flexibility in the context of connection to industrial and power automation standards. Communication can be extended or added on thanks to modules for retrofitting on which the common protocols run. Therefore, also in the future it will be possible to optimally integrate units into the changing communication infrastructure, for example in Ethernet networks (which will also be used increasingly in the power supply sector in the years to come).

Serial front interface

There is a serial RS232 interface on the front of all the units. All of the unit's functions can be set on a PC by means of the DIGSI 4 protection operation program. Commissioning tools and fault analysis are also built into the program and are available through this interface.

Rear-mounted interfaces¹⁾

A number of communication modules suitable for various applications can be fitted in the rear of the flush-mounting housing. In the flush-mounting housing, the modules can be easily replaced by the user. The interface modules support the following applications:

• Time synchronization interface All units feature a permanently integrated electrical time synchronization interface. It can be used to feed timing telegrams in IRIG-B or DCF77 format into the units via time synchronization receivers.

• System interface Communication with a central control system takes place through this interface. Radial or ring type station bus topologies can be configured depending on the chosen interface. Furthermore, the units can exchange data through this interface via Ethernet and IEC 61850 protocol and can also be operated by DIGSI.

• Service interface

The service interface was conceived for remote access to a number of protection units via DIGSI. On all units, it can be an electrical RS232/RS485 or an optical interface. For special applications, a maximum of two temperature monitoring boxes (RTD-box) can be connected to this interface as an alternative.

System interface protocols (retrofittable)

IEC 61850 protocol

The Ethernet-based IEC 61850 protocol is the worldwide standard for protection and control systems used by power supply corporations. Siemens was the first manufacturer to support this standard. By means of this protocol, information can also be exchanged directly between bay units so as to set up simple masterless systems for bay and system interlocking. Access to the units via the Ethernet bus is also possible with DIGSI.

IEC 60870-5-103 protocol

The IEC 60870-5-103 protocol is an international standard for the transmission of protective data and fault recordings. All messages from the unit and also control commands can be transferred by means of published, Siemens-specific extensions to the protocol.

PROFIBUS-DP protocol

PROFIBUS-DP is the most widespread protocol in industrial automation. Via PROFIBUS-DP, SIPROTEC units make their information available to a SIMATIC controller or, in the control direction, receive commands from a central SIMATIC. Measured values can also be transferred.

MODBUS RTU protocol

This uncomplicated, serial protocol is mainly used in industry and by power supply corporations, and is supported by a number of unit manufacturers. SIPROTEC units function as MODBUS slaves, making their information available to a master or receiving information from it. A time-stamped event list is available.

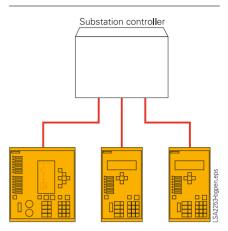


Fig. 5/123

IEC 60870-5-103: Radial fiber-optic connection

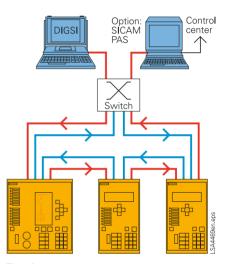


Fig. 5/124

Bus structure for station bus with Ethernet and IEC 61850, fiber-optic ring

1) For units in panel surface-mounting housings please refer to note on page 5/130.

Communication

DNP 3.0 protocol

Power supply corporations use the serial DNP 3.0 (Distributed Network Protocol) for the station and network control levels. SIPROTEC units function as DNP slaves, supplying their information to a master system or receiving information from it.

System solutions for protection and station control

Together with the SICAM power automation system, SIPROTEC 4 can be used with PROFIBUS-FMS. Over the low-cost electrical RS485 bus, or interference-free via the optical double ring, the units exchange information with the control system.

Units featuring IEC 60870-5-103 interfaces can be connected to SICAM in parallel via the RS485 bus or radially by fiber-optic link. Through this interface, the system is open for the connection of units of other manufacturers (see Fig. 5/123).

Because of the standardized interfaces, SIPROTEC units can also be integrated into systems of other manufacturers or in SIMATIC. Electrical RS485 or optical interfaces are available. The optimum physical data transfer medium can be chosen thanks to opto-electrical converters. Thus, the RS485 bus allows low-cost wiring in the cubicles and an interference-free optical connection to the master can be established.

For IEC 61850, an interoperable system solution is offered with SICAM PAS. Via the 100 Mbits/s Ethernet bus, the units are linked with PAS electrically or optically to the station PC. The interface is standardized, thus also enabling direct connection of units of other manufacturers to the Ethernet bus. With IEC 61850, however, the units can also be used in other manufacturers' systems (see Fig. 5/124).

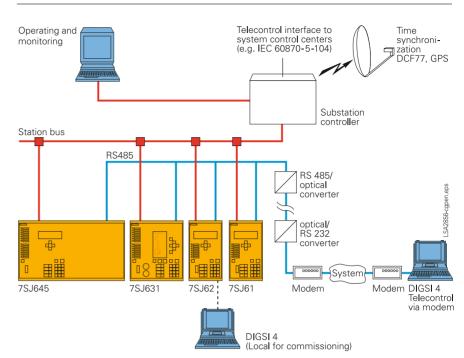
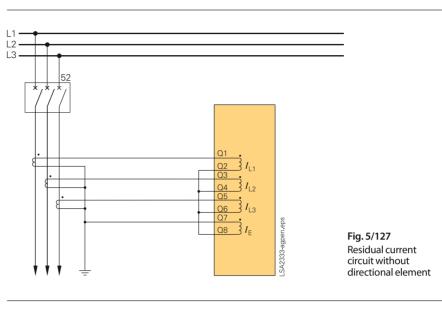


Fig. 5/125

System solution/communication

Fig. 5/126 Optical Ethernet communication module for IEC 61850 with integrated Ethernet-switch



Typical connections

Connection of current and voltage transformers

Standard connection

For earthed networks, the earth current is obtained from the phase currents by the residual current circuit.

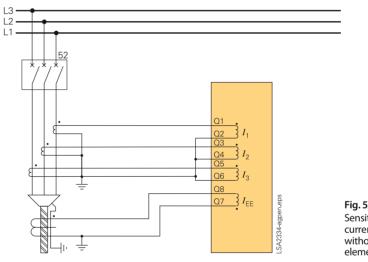
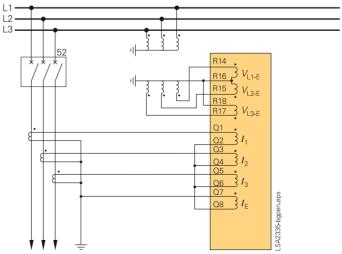
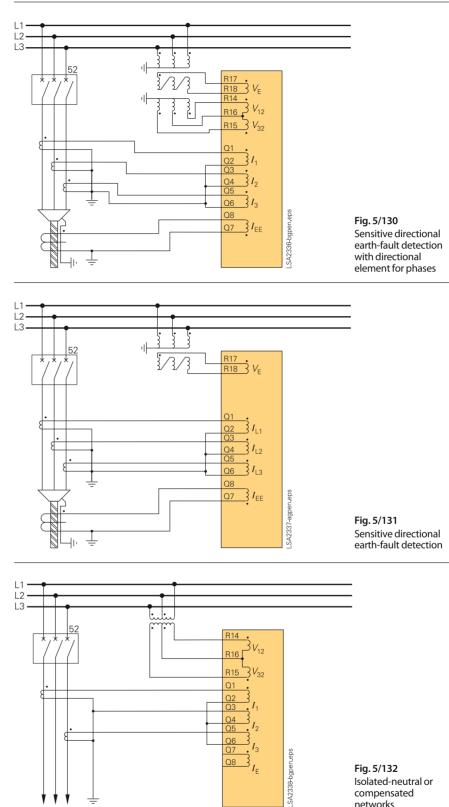


Fig. 5/128 Sensitive earth current detection without directional element




Fig. 5/129 Residual current circuit with directional element

Connection for compensated networks

The figure shows the connection of two phase-to-earth voltages and the VE voltage of the open delta winding and a phasebalance neutral current transformer for the earth current. This connection maintains maximum precision for directional earthfault detection and must be used in compensated networks.

Figure 5/130 shows sensitive directional earth-fault detection.

Connection for isolated-neutral or compensated networks only

If directional earth-fault protection is not used, the connection can be made with only two phase current transformers. Directional phase short-circuit protection can be achieved by using only two primary transformers.

SIEMENS

Typical applications

Overview of connection types

Type of network	Function	Current connection	Voltage connection
(Low-resistance) earthed network	Time-overcurrent protection phase/earth non-directional	Residual circuit, with 3 phase-current transformers required, phase-balance neutral current transformer possible	-
(Low-resistance) earthed networks	Sensitive earth-fault protection	Phase-balance neutral current transformers required	-
Isolated or compensated networks	Time-overcurrent protection phases non-directional	Residual circuit, with 3 or 2 phase current transformers possible	-
(Low-resistance) earthed networks	Time-overcurrent protection phases directional	Residual circuit, with 3 phase-current transformers possible	Phase-to-earth connection or phase-to-phase connection
Isolated or compensated networks	Time-overcurrent protection phases directional	Residual circuit, with 3 or 2 phase- current transformers possible	Phase-to-earth connection or phase-to-phase connection
(Low-resistance) earthed networks	Time-overcurrent protection earth directional	Residual circuit, with 3 phase-current transformers required, phase-balance neutral current transformers possible	Phase-to-earth connection required
Isolated networks	Sensitive earth-fault protection	Residual circuit, if earth current $> 0.05 I_N$ on secondary side, otherwise phase-balance neutral current transformers required	3 times phase-to-earth connection or phase-to-earth connection with open delta winding
Compensated networks	Sensitive earth-fault protection $\cos \varphi$ measurement	Phase-balance neutral current transformers required	Phase-to-earth connection with open delta winding required

Connection of circuit-breaker

Undervoltage releases

Undervoltage releases are used for automatic tripping of high-voltage motors.

Example:

DC supply voltage of control system fails and manual electric tripping is no longer possible.

Automatic tripping takes place when voltage across the coil drops below the trip limit. In Fig. 5/133, tripping occurs due to failure of DC supply voltage, by automatic opening of the live status contact upon failure of the protection unit or by short-circuiting the trip coil in event of a network fault.

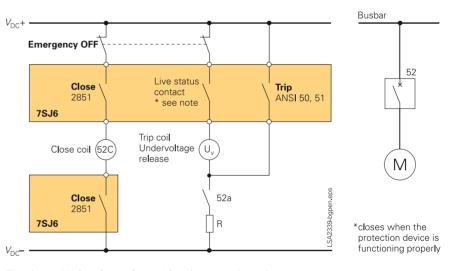


Fig. 5/133 Undervoltage release with make contact (50, 51)

Typical applications

In Fig. 5/134 tripping is by failure of auxiliary voltage and by interruption of tripping circuit in the event of network failure. Upon failure of the protection unit, the tripping circuit is also interrupted, since contact held by internal logic drops back into open position.

Trip circuit supervision (ANSI 74TC)

One or two binary inputs can be used for monitoring the circuit-breaker trip coil including its incoming cables. An alarm signal occurs whenever the circuit is interrupted.

Lockout (ANSI 86)

All binary outputs can be stored like LEDs and reset using the LED reset key. The lockout state is also stored in the event of supply voltage failure. Reclosure can only occur after the lockout state is reset.

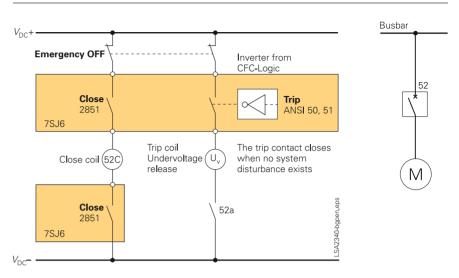
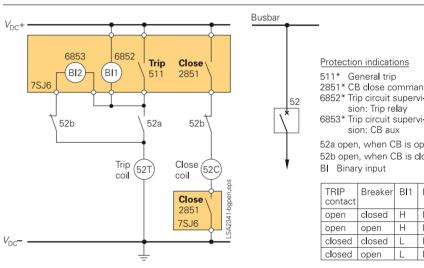



Fig. 5/134 Undervoltage release with locking contact (trip signal 50 is inverted)

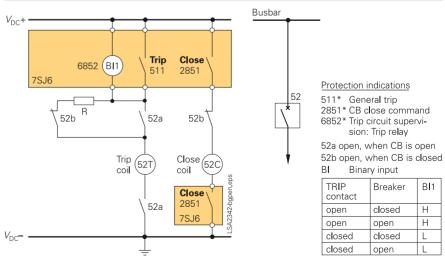
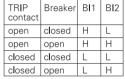



Fig. 5/136 Trip circuit supervision with 1 binary input

2851* CB close command 6852* Trip circuit supervi-6853* Trip circuit supervi-52a open, when CB is open 52b open, when CB is closed

contact		
open	closed	Н
open	open	Н
closed	closed	L
closed	open	L

General unit data				Binary inputs/indic	ation inp	uts					
Measuring circuits				Туре		7SJ631	7SJ632	7SJ633	7SJ635	7SJ636	
System frequency		50 / 60 Hz (settable)		Number (marshalla	ble)	11	24	20	37	33	
Current transformer				Voltage range		24 - 250	V DC				
Rated current Inom	1 or 5 A (settable)			Pickup threshold m by plug-in jumpers	odifiable						
Option: sensitive earth-fault CT	•	$I_{\rm EE} < 1.6$ A		Pickup threshold D	C	19 V DO	~	88 V D0	-		
Power consumption at $I_{nom} = 1 A$ at $I_{nom} = 5 A$		Approx. 0.05 VA per phase Approx. 0.3 VA per phase		For rated control vo					V DC		
for sensitive earth-fault CT at Overload capability	1 A	Approx. 0.05 VA		Power consumption energized	1		(independ 6 / 8	-	perating vo 36;	oltage)	
Thermal (effective)		$100 \ge I_{\text{nom}}$ for 1 s			0			for BI 7 /			
		30 x I _{nom} fo 4 x I _{nom} con			Binary outputs/con	nmand oi	ıtputs				
Dynamic (impulse current)		$250 \ge I_{\text{nom}}$ (Туре		7SJ631	7SJ632	7SJ633	7SJ635	7SJ636
Overload capability if equipped	with				Command/indication	on relay	8	11	11	14	14
sensitive earth-fault CT Thermal (effective)		300 A for 1			Contacts per comm indication relay	and/	1 NO / 1	form A			
		100 A for 1 15 A contir			Live status contact		1 NO / NC (jumper) / form A / B				
Dynamic (impulse current)		750 A (half			Switching capacity	Make	1000 W	/VA			
Voltage transformer						Break		VA / 40 W L/R ≤ 50		/	
Rated voltage V _{nom}	100 17	100 V to 225 V			Switching voltage		≤ 250 V	/ DC			
Power consumption at $V_{\text{nom}} = 1$		< 0.3 VA per phase			Permissible current		5 A cont	tinuous,			
Overload capability in voltage path (phase-neutral voltage) Thermal (effective)		230 V continuous				30 A for 0.5 s making current, 2000 switching cycles					
Measuring transducer inputs		200 1 00110	intuotuo		Power relay (for mo	otor contro	ol)				
Туре		7SJ633 7SJ636		Туре		7SJ631 7SJ632 7SJ635					
Number		2	2					7SJ633 7SJ636			
Input current		DC 0 - 20 r	nA		Number		0	2 (4)	4 (8)		
Input resistance		10 Ω			Number of contacts	/relav	0	2 (1) 2 NO / 1	. ,		
Power consumption		5.8 mW at	24 mA		Switching capacity		1000 W			0 V / 500 V	N at 24 V
Auxiliary voltage (via integrated	d conv	erter)			owneeding cupacity	Break) V / 500 V	
Rated auxiliary voltage V_{aux} DC		24/48 V	60/125 V	110/250 V	Switching voltage	Dicuk	$\leq 250 \text{ V}$			5 1 7 500 1	1 ut 21 v
Permissible tolerance DC		19 - 58 V	48 - 150 V	88 - 300 V	Permissible current		5 A cont				
Ripple voltage, peak-to-peak		$\leq 12 \% \text{ of }$	rated auxilia	ary voltage			30 A for	,			
Power consumption		7SJ631	7SJ632 7SJ633	7SJ635 7SJ636							
	prox. prox.	4 W 10 W	5.5 W 16 W	7 W 20 W							
Backup time during loss/short-circuit of auxiliary direct voltage		≥ 50 ms at V > 110 V DC ≥ 20 ms at V > 24 V DC									
Rated auxiliary voltage Vaux AC	2	115 V	230 V								
Permissible tolerance AC	2	92 - 132 V	184 - 265 \	V							
Power consumption		7SJ631	7SJ632 7SJ633	7SJ635 7SJ636							
		3 W 12 W	5 W 18 W	7 W 23 W							
Backup time during loss/short-circuit of auxiliary alternating voltage		≥200 ms									

4 to 5 kV; 10/150 ns; 50 surges per s

amplitude and pulse-modulated

100 kHz, 1 MHz, 10 and 50 MHz,

EN 50081-* (generic specification)

35 V/m; 25 to 1000 MHz;

2.5 kV (peak value, polarity

alternating)

 $R_{\rm i} = 200 \ \Omega$

150 kHz to 30 MHz

30 to 1000 MHz

Limit class B

both polarities; duration 2 s, $R_i = 80 \Omega$

Technical data

Electrical tests

Specification

Standards

IEC 60255 ANSI C37.90, C37.90.1, C37.90.2, UL508

IEC 60255-5; ANSI/IEEE C37.90.0

2.5 kV (r.m.s. value), 50/60 Hz

3.5 kV DC

500 V AC

at intervals of 5 s

Insulation tests

Standards

Voltage test (100 % test) all circuits except for auxiliary voltage and RS485/RS232 and time synchronization

Auxiliary voltage

Communication ports and time synchronization

Impulse voltage test (type test) all circuits, except communication ports and time synchronization, class III

EMC tests for interference immunity; type tests

Standards

High-frequency test IEC 60255-22-1, class III and VDE 0435 Part 303, class III

Electrostatic discharge IEC 60255-22-2 class IV and EN 61000-4-2, class IV

Irradiation with radio-frequency field, non-modulated IEC 60255-22-3 (Report) class III

Irradiation with radio-frequency field, amplitude-modulated IEC 61000-4-3; class III

Irradiation with radio-frequency field, pulse-modulated IEC 61000-4-3/ENV 50204; class III

Fast transient interference/burst IEC 60255-22-4 and IEC 61000-4-4, burst length = 15 ms; class IV

High-energy surge voltages (Surge) IEC 61000-4-5; class III Auxiliary voltage

Binary inputs/outputs

Line-conducted HF, amplitude-modulated IEC 61000-4-6, class III

Power frequency magnetic field IEC 61000-4-8, class IV IEC 60255-6

Oscillatory surge withstand capability ANSI/IEEE C37.90.1

IEC 60255-6; IEC 60255-22 (product standard) EN 50082-2 (generic specification) DIN 57435 Part 303

5 kV (peak value); 1.2/50 µs; 0.5 J

3 positive and 3 negative impulses

2.5 kV (peak value); 1 MHz; $\tau = 15$ ms; 400 surges per s; test duration 2 s

8 kV contact discharge; 15 kV air gap discharge; both polarities; 150 pF; $R_i = 330 \Omega$ 10 V/m; 27 to 500 MHz

10 V/m, 80 to 1000 MHz; AM 80 %; 1 kHz

10 V/m, 900 MHz; repetition rate 200 Hz, on duration 50 %

4 kV; 5/50 ns; 5 kHz; repetition rate 300 ms; both polarities; $R_i = 50 \Omega$; test duration 1 min

From circuit to circuit: 2 kV; 12 Ω; 9 μF across contacts: 1 kV; 2 Ω;18 µF

From circuit to circuit: 2 kV; 42Ω ; 0.5μ F across contacts: 1 kV; 42 $\Omega; 0.5~\mu F$ 10 V; 150 kHz to 80 MHz; AM 80 %; 1 kHz

30 A/m; 50 Hz, continuous 300 A/m; 50 Hz, 3 s 0.5 mT, 50 Hz 2.5 to 3 kV (peak value), 1 to 1.5 MHz damped wave; 50 surges per s; duration 2 s, $R_i = 150$ to 200 Ω

Fast transient surge withstand capability ANSI/IEEE C37.90.1 Radiated electromagnetic

interference ANSI/IEEE C37.90.2

Damped wave IEC 60694 / IEC 61000-4-12

EMC tests for interference emission; type tests

Standard Conducted interferences only auxiliary voltage IEC/CISPR 22 Limit class B Radio interference field strength IEC/CISPR 11 Units with a detached operator panel

must be installed in a metal cubicle to maintain limit class B

Mechanical stress tests

Vibration, shock stress and seismic vibration

During operation Standards

Vibration IEC 60255-21-1, class 2 IEC 60068-2-6

Shock IEC 60255-21-2, class 1 IEC 60068-2-27

Seismic vibration IEC 60255-21-3, class 1 IEC 60068-3-3

During transportation Standards

Vibration IEC 60255-21-1, class 2 IEC 60068-2-6

Shock IEC 60255-21-2, Class 1 IEC 60068-2-27

Continuous shock IEC 60255-21-2, class 1 IEC 60068-2-29

IEC 60255-21 and IEC 60068-2 Sinusoidal 10 to 60 Hz; +/- 0.075 mm amplitude; 60 to 150 Hz; 1 g acceleration frequency sweep 1 octave/min 20 cycles in 3 perpendicular axes

Semi-sinusoidal Acceleration 5 g, duration 11 ms; 3 shocks in both directions of 3 axes Sinusoidal 1 to 8 Hz: ± 3.5 mm amplitude (horizontal axis) 1 to 8 Hz: \pm 1.5 mm amplitude (vertical axis) 8 to 35 Hz: 1 g acceleration (horizontal axis)

8 to 35 Hz: 0.5 g acceleration (vertical axis) Frequency sweep 1 octave/min 1 cycle in 3 perpendicular axes

IEC 60255-21 and IEC 60068-2

Sinusoidal 5 to 8 Hz: \pm 7.5 mm amplitude; 8 to 150 Hz; 2 g acceleration, frequency sweep 1 octave/min 20 cycles in 3 perpendicular axes

Semi-sinusoidal Acceleration 15 g, duration 11 ms 3 shocks in both directions of 3 axes

Semi-sinusoidal Acceleration 10 g, duration 16 ms 1000 shocks in both directions of 3 axes

Technical date

Climatic stress tests

Temperatures	
Type-tested acc. to IEC 60068-2-1 and -2, test Bd, for 16 h	-25 °C to +85 °C /-13 °F to +185 °F
Temporarily permissible operating temperature, tested for 96 h	-20 °C to +70 °C /-4 °F to +158 °F
Recommended permanent operat-	-5 °C to +55 °C /+25 °F to +131 °F

ing temperature acc. to IEC 60255-6 (Legibility of display may be impaired above +55 °C /+131 °F) – Limiting temperature during

- permanent storage – Limiting temperature during
- transport

Humidity

Permissible humidity It is recommended to arrange the units in such a way that they are not exposed to direct sunlight or pronounced temperature changes that could cause condensation.

Unit design

Housing	7XP20	
Dimensions	See dimension drav this catalog	vings, part 15 of
Weight in kg Surface-mounting housing Flush-mounting housing Housing for detached operator panel Detached operator panel	Housing width 1/2 7.5 6.5 8.0 2.5	Housing width 1/1 15 13 15 2.5
Degree of protection acc. to EN 60529 Surface-mounting housing Flush-mounting housing Operator safety	IP 51 Front: IP 51, rear: I IP 2x with cover	P 20;

-25 °C to +55 °C /-13 °F to +131 °F

-25 °C to +70 °C /-13 °F to +158 °F

Annual average 75 % relative humid-

ity; on 56 days a year up to 95 % rela-

tive humidity; condensation not

permissible!

Serial interfaces

Operating interface (front of unit)				
Connection	Non-isolated, RS232; front panel, 9-pin subminiature connector			
Transmission rate	min. 4800 baud, max. 115200 baud			
Service/modem interface (rear of ur	nit)			
Isolated interface for data transfer	Port C: DIGSI 4/modem/RTD-box			
Transmission rate	Factory setting 38400 baud min. 4800 baud, max. 115200 baud			
RS232/RS485				
Connection For flush-mounting housing/ surface-mounting housing with detached operator panel For surface-mounting housing with two-tier terminal at the top/bottom part	9-pin subminiature connector, mounting location "C" At the bottom part of the housing: shielded data cable			
Distance RS232	15 m /49.2 ft			
Distance RS485	Max. 1 km/3300 ft			
Test voltage	500 V AC against earth			

System interface (rear of unit)	
IEC 60870-5-103 protocol	
Isolated interface for data transfer to a control center	Port B
Transmission rate	Factory setting: 9600 baud, min. 9600 baud, max. 19200 baud
RS232/RS485	
Connection	
For flush-mounting housing/ surface-mounting housing with detached operator panel	Mounting location "B"
For surface-mounting housing with two-tier terminal on the top/bottom part	At the bottom part of the housing: shielded data cable
Distance RS232	Max. 15 m/49 ft
Distance RS485	Max. 1 km/3300 ft
Test voltage	500 V AC against earth
Fiber optic	
Connection fiber-optic cable	Integrated ST connector for
Connection noer-optic cable	Integrated ST connector for fiber-optic connection
For flush-mounting housing/ surface-mounting housing with detached operator panel	Mounting location "B"
For surface-mounting housing with two-tier terminal on the top/bottom part	At the bottom part of the housing
Optical wavelength	820 nm
Permissible path attenuation	Max. 8 dB, for glass fiber 62.5/125 µm
Distance	Max. 1.5 km/0.9 miles
IEC 61850 protocol	
Isolated interface for data transfer: - to a control center - with DIGSI - between SIPROTEC 4 relays	Port B, 100 Base T acc. to IEEE802.3
Transmission rate	100 Mbit
Ethernet, electrical	
Connection For flush-mounting housing/ surface-mounting housing with detached operator panel	Two RJ45 connectors Mounting location "B"
Distance	Max. 20 m / 65.6 ft
Test voltage	500 V AC against earth
Ethernet, optical	
Connection	Intergr. LC connector for FO
For flush-mounting housing/ surface-mounting housing with detached operator panel	connection Mounting location "B"
Optical wavelength Distance	1300 nmm 1.5 km/0.9 miles
PROFIBUS-FMS/DP	
Isolated interface for data transfer to a control center	Port B
Transmission rate	Up to 1.5 Mbaud

5

Technical data

RS485

Connection

For flush-mounting housing/ surface-mounting housing with detached operator panel For surface-mounting housing with two-tier terminal on the top/bottom part Distance

Test voltage

Fiber optic

Connection fiber-optic cable For flush-mounting housing/ surface-mounting housing with detached operator panel For surface-mounting housing with two-tier terminal on the top/bottom part

Optical wavelength

Permissible path attenuation Distance

MODBUS RTU, ASCII, DNP 3.0

Isolated interface for data transfer to a control center

Transmission rate

RS485

Connection

For flush-mounting housing/ surface-mounting housing with detached operator panel For surface-mounting housing with two-tier terminal at the top/bottom part

Distance

Test voltage

Fiber-optic

Connection fiber-optic cable

For flush-mounting housing/ surface-mounting housing with detached operator panel For surface-mounting housing with two-tier terminal at the top/bottom part Optical wavelength

Permissible path attenuation

Distance

Connection

Voltage levels

9-pin subminiature connector, mounting location "B"

At the bottom part of the housing: shielded data cable

..

1000 m/3300 ft ≤ 93.75 kbaud; 500 m/1500 ft ≤ 187.5 kbaud; 200 m/600 ft ≤ 1.5 Mbaud; 100 m/300 ft ≤ 12 Mbaud 500 V AC against earth

Integr. ST connector for FO connection, mounting location "B"

At the bottom part of the housing <u>Important:</u> Please refer to footnotes ¹⁾ and ²⁾ on page 5/174 820 nm Max. 8 dB, for glass fiber 62.5/125 µm

500 kB/s 1.6 km/0.99 miles 1500 kB/s 530 m/0.33 miles

Port B

Up to 19200 baud

9-pin subminiature connector, mounting location "B"

At bottom part of the housing: shielded data cable

Max. 1 km/3300 ft max. 32 units recommended 500 V AC against earth

Integrated ST connector for fiber-optic connection Mounting location "B"

At the bottom part of the housing <u>Important:</u> Please refer to footnotes ¹⁾ and ²⁾ on page 5/174 820 nm Max 8 dB. for glass fiber 62.5/125 μm Max. 1.5 km/0.9 miles

Time synchronization DCF77/IRIG-B signal (Format IRIG-B000)

9-pin subminiature connector (SUB-D)
(terminal with surface-mounting housing)
5 V, 12 V or 24 V (optional)

Functions			
Definite-time overcurrent protection (ANSI 50, 50N, 67, 67N)	on, directional/non-directional		
Operating mode non-directional phase protection (ANSI 50)	3-phase (standard) or 2-phase (L1 and L3)		
Setting ranges			
Pickup phase elements $I>$, $I>>$ Pickup earth elements $I_E>$, $I_E>$	0.5 to 175 A or ∞ ¹⁾ (in steps of 0.01 A) > 0.25 to 175 A or ∞ ¹⁾ (in steps of 0.01 A)		
Delay times T Dropout delay time T_{DO}	0 to 60 s or ∞ (in steps of 0.01 s) 0 to 60 s (in steps of 0.01 s)		
Times Pickup times (without inrush restraint, with inrush restraint + 10 ms)			
With twice the setting value With five times the setting value	Non-directionalDirectionalApprox. 30 ms45 msApprox. 20 ms40 ms		
Dropout times	Approx. 40 ms		
Dropout ratio	Approx. 0.95 for $I/I_{\text{nom}} \ge 0.3$		
Tolerances Pickup Delay times <i>T</i> , T_{DO}	2 % of setting value or 50 mA ¹⁾ 1 % or 10 ms		
Inverse-time overcurrent protectio (ANSI 51, 51N, 67, 67N)	n, directional/non-directional		
Operating mode non-directional phase protection (ANSI 51)	3-phase (standard) or 2-phase (L1 and L3)		
Setting ranges Pickup phase element I_P Pickup earth element I_{EP} Time multiplier T (IEC characteristics) Time multiplier D (ANSI characteristics)	0.5 to 20 A or ∞^{11} (in steps of 0.01 A) 0.25 to 20 A or ∞^{11} (in steps of 0.01 A) 0.05 to 3.2 s or ∞ (in steps of 0.01 s) 0.05 to 15 s or ∞ (in steps of 0.01 s)		
Trip characteristics IEC	Normal inverse, very inverse,		
ANSI	extremely inverse, long inverse Inverse, short inverse, long inverse moderately inverse, very inverse, extremely inverse, definite inverse		
User-defined characteristic	Defined by a maximum of 20 value pairs of current and time delay		
Dropout setting			
Without disk emulation	Approx. $1.05 \cdot \text{setting value } I_p \text{ for } I_p/I_{\text{nom}} \ge 0.3$, corresponds to approx. $0.95 \cdot \text{pickup threshold}$		
With disk emulation	Approx. $0.90 \cdot \text{setting value } I_p$		
Tolerances Pickup/dropout thresholds $I_{\rm p}$, $I_{\rm Ep}$ Pickup time for $2 \le I/I_{\rm p} \le 20$	2 % of setting value or 50 mA ¹⁾ 5 % of reference (calculated) value + 2 % current tolerance, respectively 30 ms		

Dropout ratio for 0.05 $\leq I/I_{\rm p}$ ≤ 0.9

SIEMENS

siemens-russia.com

5 % of reference (calculated) value

30 ms

+ 2 % current tolerance, respectively

1) At $I_{nom} = 1$ A, all limits divided by 5.

Technical date

Direction detection	
For phase faults	
Polarization	With cross-polarized voltages; With voltage memory for measure- ment voltages that are too low
Forward range Rotation of reference voltage $V_{\text{ref,rot}}$	V _{ref,rot} ± 86° - 180° to 180° (in steps of 1°)
Direction sensitivity	For one and two-phase faults unlimited; For three-phase faults dynamically unlimited; Steady-state approx. 7 V phase-to-phase
For earth faults	
Polarization	With zero-sequence quantities $3V_0$, $3I_0$ or with negative-sequence quantities $3V_2$, $3I_2$
Forward range Rotation of reference voltage $V_{\rm ref,rot}$	$V_{\text{ref,rot}} \pm 86^{\circ}$ - 180° to 180° (in steps of 1°)
Direction sensitivity Zero-sequence quantities $3V_0$, $3I_0$ Negative -sequence quantities $3V_2$, $3I_2$	$V_{\rm E} \approx 2.5$ V displacement voltage, measured; $3V_0 \approx 5$ V displacement voltage, calculated $3V_2 \approx 5$ V negative-sequence voltage; $3I_2 \approx 225$ mA negative-sequence cur- rent ¹
Tolerances (phase angle error un- der reference conditions) For phase and earth faults	± 3 ° electrical
Inrush blocking	
Influenced functions	Time-overcurrent elements, I >, I_E >, I_p , I_{Ep} (directional, non-directional)
Lower function limit	1.25 A ¹⁾
Upper function limit (setting range)	1.5 to 125 A ¹⁾ (in steps of 0.01 A)
Setting range I _{2f} /I	10 to 45 % (in steps of 1 %)
Crossblock (I _{L1} , I _{L2} , I _{L3})	ON/OFF
Dynamic setting change	
Controllable function	Directional and non-directional pickup, tripping time
Start criteria	Current criteria, CB position via aux. contacts, binary input, auto-reclosure ready
Time control	3 timers
Current criteria	Current threshold (reset on dropping below threshold; monitoring with timer)

(Sensitive) earth-fault detection (ANSI 64, 50 Ns, 51Ns, 67Ns)

(Sensitive) earth-fault detection (Ar	131 04, 30 113, 3 1115, 07 115)		
Displacement voltage starting for a	ll types of earth fault (ANSI 64)		
Setting ranges Pickup threshold V_E > (measured) Pickup threshold $3V_0$ > (calcu- lated) Delay time $T_{Delay pickup}$ Additional trip delay T_{VDELAY}	 1.8 to 170 V (in steps of 0.1 V) 10 to 225 V (in steps of 0.1 V) 0.04 to 320 s or ∞ (in steps of 0.01 s) 0.1 to 40000 s or ∞ (in steps of 0.01 s) 		
Times Pickup time	Approx. 60 ms		
Dropout ratio	0.95 or (pickup value -0.6 V)		
Tolerances Pickup threshold V_E (measured) Pickup threshold $3V_0$ (calculated) Delay times	3 % of setting value or 0.3 V 3 % of setting value or 3 V 1 % of setting value or 10 ms		
Phase detection for earth fault in an u	nearthed system		
Measuring principle	Voltage measurement (phase-to-earth)		
Setting ranges $V_{\rm phmin}$ (earth-fault phase)	10 to 100 V (in steps of 1 V)		
$V_{\rm phmax}$ (unfaulted phases)	10 to 100 V (in steps of 1 V)		
Measuring tolerance acc. to DIN 57435 part 303	3 % of setting value, or 1 V		
Earth-fault pickup for all types of ear	th faults		
Definite-time characteristic (ANSI 50	DNs)		
Setting ranges Pickup threshold I_{EE} , I_{EE} >> For sensitive input For normal input Delay times T for I_{EE} >, I_{EE} >> Dropout delay time T_{DO}	0.001 to 1.5 A (in steps of 0.001 A) 0.25 to 175 A ¹⁾ (in steps of 0.01 A) 0 to 320 s or ∞ (in steps of 0.01 s) 0 to 60 s (in steps of 0.01 s)		
Times Pickup times	Approx. 60 ms (non-directional) Approx. 80 ms (directional		
Dropout ratio	Approx. 0.95		
Tolerances Pickup threshold <i>I</i> _{EE} >, <i>I</i> _{EE} >> Delay times	2 % of setting value or 1 mA 1 % of setting value or 20 ms		
Earth-fault pickup for all types of ear	th faults		
Inverse-time characteristic (ANSI 51Ns)			

Inverse-time characteristic (ANSI 51Ns)

User-defined characteristic

Logarithmic inverse

Setting ranges Pickup threshold I_{EEp} For sensitive input For normal input User defined Time multiplier T Logarithmic inverse Time multiplier T_{IEEp} mul Delay time T_{IEEp} Min time delay T_{IEEpmin} Max. time delay T_{IEEpmax}

```
current and delay time values T
t = T_{\text{IEEpmax}} - T_{\text{IEEp}} \cdot \ln \frac{I}{I_{\text{EEp}}}
```

Defined by a maximum of 20 pairs of

0.001 A to 1.4 A (in steps of 0.001 A) 0.25 to 20 $A^{1)}$ (in steps of 0.01 A)

0.1 to 4 s or ∞ (in steps of 0.01 s)

 $\begin{array}{l} 0.05 \mbox{ to } 15 \mbox{ s or } \infty \mbox{ (in steps of } 0.01 \mbox{ s)} \\ 0.1 \mbox{ to } 4 \mbox{ s or } \infty \mbox{ (in steps of } 0.01 \mbox{ s)} \\ 0 \mbox{ to } 32 \mbox{ s (in steps of } 0.01 \mbox{ s)} \\ 0 \mbox{ to } 32 \mbox{ s (in steps of } 0.01 \mbox{ s)} \end{array}$

Note: Due to the high sensitivity the linear range of the measuring input IN with integrated sensitive input transformer is from 0.001 A to 1.6 A. For currents greater than 1.6 A, correct directionality can no longer be guaranteed. 1) For $I_{nom} = 1$ A, all limits divided by 5.

SIEMENS

siemens-russia.com

Technical data			
Times		Times	
Pickup times	Approx. 60 ms (non-directional)	Pickup times	
	Approx 80 ms (directional)	Current = $1.25 \cdot \text{pickup value}$ Current $\ge 2 \cdot \text{pickup value}$	Approx. 30 ms Approx. 22 ms
Pickup threshold	Approx. $1.1 \cdot I_{EEp}$	Dropout time	Approx. 22 ms
Dropout ratio	Approx. $1.05 \cdot I_{EEp}$	Tolerances	Approx. 22 ms
Tolerances		Pickup threshold $I_{\rm IE}>$	3 % of setting value, or 50 $mA^{1)}$
Pickup threshold <i>I</i> _{EEp} Delay times in linear range	2 % of setting value or 1 mA 7 % of reference value for $2 \le I/I_{EEp}$	Times $T_{\rm V}$, $T_{\rm sum}$, $T_{\rm res}$	1 % of setting value or 10 ms
2 cm/ times in mean range	$\leq 20 + 2$ % current tolerance, or 70 ms	Thermal overload protection (AN	
Direction detection for all types of each	arth-faults (ANSI 67Ns)	Setting ranges	
Direction measurement	$I_{\rm E}$ and $V_{\rm E}$ measured or	Factor k	0.1 to 4 (in steps of 0.01)
	$3I_0$ and $3V_0$ calculated	Time constant	1 to 999.9 min (in steps of 0.1 min)
Measuring principle	Active/reactive power measurement	Warning overtemperature	50 to 100 % with reference
Setting ranges		$\Theta_{alarm}/\Theta_{trip}$	to the tripping overtemperature
Measuring enable <i>I</i> _{Release direct} . For sensitive input	0.001 to 1.2 A (in steps of 0.001 A)		(in steps of 1 %)
For normal input	$0.25 \text{ to } 150 \text{ A}^{(1)} \text{ (in steps of 0.001 \text{ A})}$	Current warning stage I_{alarm}	0.5 to 20 A (in steps of 0.01 A)
Measuring method	$\cos \varphi$ and $\sin \varphi$	11	1 to 10 with reference to the time
Direction phasor $\varphi_{\text{Correction}}$ Dropout delay $T_{\text{Reset delay}}$	- 45 ° to + 45 ° (in steps of 0.1 °) 1 to 60 s (in steps of 1 s)	k_{τ} factor	constant with the machine running (in steps of 0.1)
Angle correction for cable CT		Rated overtemperature (for <i>I</i> _{nom})	· •
Angle correction F1, F2	0 ° to 5 ° (in steps of 0.1 °)	Tripping characteristic	
Current value <i>I</i> 1, <i>I</i> 2 For sensitive input	0.001 to 1.5 A (in steps of 0.001 A)	For $(I/k \cdot I_{nom}) \le 8$	$t = \tau_{\text{th}} \cdot \ln \frac{\left(I / \text{k} \cdot I_{\text{nom}}\right)^2 - \left(I_{\text{pre}} / \text{k} \cdot I_{\text{nom}}\right)^2}{\left(I / \text{k} \cdot I_{\text{nom}}\right)^2 - 1}$
For normal input	0.25 to 175 A ¹⁾ (in steps of 0.01 A)		$(I/k \cdot I_{\text{nom}})^2 - 1$
Tolerances			
Pickup measuring enable	2 % of the setting value or 1 mA		·
Angle tolerance			t = Tripping time τ_{th} = Temperature rise time constant
overcurrent protection	It protection (ANSI 87N) / single-phase		I = Load current
Setting ranges			$I_{\text{pre}} = \text{Preload current}$
Pickup thresholds I>, I>>			k = Setting factor acc. to VDE 0435 Part 3011 and IEC 60255-8
For sensitive input	0.003 to 1.5 A or ∞ (in steps of 0.001 A)		$I_{\rm nom} =$ Rated (nominal) current of the
For normal input Delay times T_1 >, T_1 >>	0.25 to 175 A^{11} or ∞ (in steps of 0.01 A) 0 to 60 s or ∞ (in steps of 0.01 s)		protection relay
Times	(I	Dropout ratios	
Pickup times		$\Theta / \Theta_{\mathrm{Trip}} \\ \Theta / \Theta_{\mathrm{Alarm}}$	Drops out with Θ_{Alarm} Approx. 0.99
Minimum	Approx. 20 ms	I/I _{Alarm}	Approx. 0.97
Typical Dropout times	Approx. 30 ms Approx. 30 ms	Tolerances	
Dropout ratio	Approx. 0.95 for $I/I_{\text{nom}} \ge 0.5$	With reference to $\mathbf{k} \cdot I_{\text{nom}}$	Class 5 acc. to IEC 60255-8
Tolerances			5 % +/- 2 s acc. to IEC 60255-8
Pickup thresholds	3 % of setting value or	Auto-reclosure (ANSI 79)	0.4.0
	1 % rated current at $I_{\text{nom}} = 1 \text{ or } 5 \text{ A};$	Number of reclosures	0 to 9 Shot 1 to 4 individually adjustable
	5 % of setting value or 3 % rated current at $I_{nom} = 0.1$ A	Program for phase fault	
Delay times	1 % of setting value or 10 ms	Start-up by	Time-overcurrent elements
Intermittent earth-fault protection			(dir., non-dir.), negative sequence,
Setting ranges			binary input
Pickup threshold		Program for earth fault Start-up by	Time-overcurrent elements
For $I_{\rm E}$ $I_{\rm E}$ >	0.25 to 175 A ¹⁾ (in steps of 0.01 A) 0.25 to 175 A ¹⁾ (in steps of 0.01 A)		(dir., non-dir.), sensitive earth-fault
For $3I_0$ I_{IE} For I_{EE} I_{IE}	0.25 to 1.5 A (in steps of 0.01 A)		protection, binary input
Pickup prolon- T_V	0 to 10 s (in steps of 0.01 s)	Blocking of ARC	Pickup of protection functions,
gation time			three-phase fault detected by a protec- tive element, binary input,
Earth-fault accu- T_{sum}	0 to 100 s (in steps of 0.01 s)		last TRIP command after the reclosing
mulation time			cycle is complete (unsuccessful
Reset time for T_{res} accumulation	1 to 600 s (in steps of 1 s)		reclosing), TRIP command by the breaker failure
Number of pickups for	2 to 10 (in steps of 1)		protection (50BF),
intermittent earth fault			opening the CB without ARC initiation, external CLOSE command
			CATCHIAI OLOGE COMMINANCE

1) At $I_{nom} = 1$ A, all limits divided by 5.

Technical dat

Auto-reclosure (ANSI 79) (cont'd)

Setting ranges Dead time (separate for phase and earth and individual for shots 1 to 4)	0.01 to 320 s (in steps of 0.01 s)
Blocking duration for manual- CLOSE detection	0.5 s to 320 s or 0 (in steps of 0.01 s)
Blocking duration after reclosure	0.5 s to 320 s (in steps of 0.01 s)
Blocking duration after dynamic blocking	0.01 to 320 s (in steps of 0.01 s)
Start-signal monitoring time	0.01 to 320 s or ∞ (in steps of 0.01 s)
Circuit-breaker supervision time	0.1 to 320 s (in steps of 0.01 s)
Max. delay of dead-time start	0 to 1800 s or ∞ (in steps of 0.1 s)
Maximum dead time extension	0.5 to 320 s or ∞(in steps of 0.01 s)
Action time	0.01 to 320 s or ∞ (in steps of 0.01 s)

The delay times of the following protection function can be altered individually by the ARC for shots 1 to 4 (setting value T = T, non-delayed T = 0, blocking $T = \infty$):

$$\begin{split} I &>, I >, I_p, I_{dir} >>, I_{dir} >, I_{pdir} \\ I_E &>, I_E >, I_{Ep}, I_{Edir} >>, I_{Edir} >, I_{Edir} >, I_{Edir} \end{split}$$

Additional functions Lockout (final trip), delay of dead-time start via binary input (monitored), dead-time extension via binary input (monitored), co-ordination with other protection relays, circuit-breaker monitoring, evaluation of the CB contacts

Breaker failure protection (ANSI 50 BF)

Setting ranges Pickup threshold CB <i>I</i> >	0.2 to 5 A ¹⁾ (in steps of 0.01 A)
Delay time	0.06 to 60 s or ∞ (in steps of 0.01 s)
Times Pickup times with internal start start via control with external start Dropout times	is contained in the delay time is contained in the delay time is contained in the delay time Approx. 25 ms
Tolerances Pickup value Delay time	2 % of setting value (50 mA) ¹⁾ 1 % or 20 ms

Negative-sequence current detection (ANSI 46)

Definite-time characteristic (ANSI 46-1 and 46-2)

Setting ranges	
Pickup current I_2 >, I_2 >>	0.5 to 15 A or ∞ (in steps of 0.01 A)
Delay times	0 to 60 s or ∞ (in steps of 0.01 s)
Dropout delay time $T_{\rm DO}$	0 to 60 s (in steps of 0.01 s)
Functional limit	All phase currents $\leq 20 \text{ A}^{1)}$
Times	
Pickup times	Approx. 35 ms
Dropout times	Approx. 35 ms
Dropout ratio	Approx. 0.95 for $I_2 / I_{nom} > 0.3$
Tolerances	
Pickup thresholds	3 % of the setting value or 50 mA ¹
Delay times	1 % or 10 ms

Inverse-time characteristic (ANSI 46-TOC)

Setting ranges Pickup current Time multiplier T (IEC characteristics) Time multiplier D (ANSI characteristics)	0.5 to 10 A^{11} (in steps of 0.01 A) 0.05 to 3.2 s or ∞ (in steps of 0.01 s) 0.5 to 15 s or ∞ (in steps of 0.01 s)
Functional limit	All phase currents $\leq 20 \text{ A}^{1)}$
Trip characteristics IEC ANSI	Normal inverse, very inverse, extremely inverse Inverse, moderately inverse, very inverse, extremely inverse
Pickup threshold	Approx. 1.1 \cdot I_{2p} setting value
Dropout IEC and ANSI (without disk emulation) ANSI with disk emulation	Approx. 1.05 \cdot I_{2p} setting value, which is approx. 0.95 \cdot pickup threshold Approx. 0.90 \cdot I_{2p} setting value
Tolerances Pickup threshold Time for $2 \le M \le 20$	3 % of the setting value or 50 mA ¹⁾ 5 % of setpoint (calculated) +2 % current tolerance, at least 30 ms

Starting time monitoring for motors (ANSI 48)

Setting ranges	
Motor starting current ISTARTUP	2.5 to 80 A ¹⁾ (in steps of 0.01)
Pickup threshold IMOTOR START	2 to 50 A^{1} (in steps of 0.01)
Permissible starting	1 to 180 s (in steps of 0.1 s)
time T _{STARTUP}	
Permissible blocked rotor	0.5 to 120 s or ∞ (in steps of 0.1 s)
time TLOCKED-ROTOR	、 I ,
Tripping time characteristic	$(\mathbf{I})^2$

For I > I_MOTOR START

 $t = \left(\frac{I_{\text{STARTUP}}}{I}\right)^2 \cdot T_{\text{STARTUP}}$ $I_{\text{STARTUP}} = \text{Rated motor starting}$ currentI = Actual current flowing

 T_{STARTUP} = Tripping time for rated motor starting current

t = Tripping time in seconds Approx. 0.95

Dropout ratio *I*_{MOTOR START} Tolerances

Pickup threshold Delay time 2 % of setting value or 50 mA¹⁾ 5 % or 30 ms

Restart inhibit for motors (ANSI 66)

Se

Setting ranges	
Motor starting current relative to rated motor current	1.1 to 10 (in steps of 0.1)
$I_{\text{MOTOR START}}/I_{\text{Motor Nom}}$ Rated motor current $I_{\text{Motor Nom}}$ Max. permissible starting time	1 to 6 A ¹⁾ (in steps of 0.01 A) 3 to 320 s (in steps of 1 s)
$T_{\text{Start Max}}$ Equilibrium time T_{Equal} Minimum inhibit time	0 min to 320 min (in steps of 0.1 min) 0.2 min to 120 min (in steps of 0.1 min)
<i>T</i> _{MIN. INHIBIT TIME} Max. permissible number of warm starts	1 to 4 (in steps of 1)
Difference between cold and warm starts	1 to 2 (in steps of 1)
Extension k-factor for cooling simulations of rotor at zero speed k _{t at STOP}	0.2 to 100 (in steps of 0.1)
Extension factor for cooling time constant with motor running k _{t RUNNING}	0.2 to 100 (in steps of 0.1)
Restarting limit	
-	$\Theta_{\text{restart}} = \Theta_{\text{rot max perm}} \cdot \frac{n_c - 1}{n_c}$
	$ \begin{split} \Theta_{\text{restart}} &= \text{Temperature limit below} \\ & \text{which restarting is possible} \\ \Theta_{\text{rot max perm}} &= \text{Maximum permissible} \\ & \text{rotor overtemperature} \\ & (= 100 \ \% \ \text{in operational} \\ & \text{measured value} \\ & \Theta_{\text{rot}} / \Theta_{\text{rot trip}}) \end{split} $
	<i>n</i> _c = Number of permissible start-ups from cold state
Undercurrent monitoring (ANSI 37)	
Signal from the operational measured values	Predefined with programmable logic
Temperature monitoring box (ANSI	38)
Temperature detectors	
Connectable boxes Number of temperature detectors per box	1 or 2 Max. 6
Type of measuring Mounting identification	Pt 100 Ω or Ni 100 Ω or Ni 120 Ω "Oil" or "Environment" or "Stator" or "Bearing" or "Other"
Thresholds for indications	

Thresholds for indications For each measuring detector Stage 1

Stage 2

-50 °C to 250 °C (in steps of 1 °C) -58 °F to 482 °F (in steps of 1 °F) or ∞ (no indication) -50 °C to 250 °C (in steps of 1 °C) -58 °F to 482 °F (in steps of 1 °F) or ∞ (no indication)

Undervoltage protection (ANSI 27)	
Operating modes/measuring quantities	
3-phase	Positive-sequence component or small- est of the phase-to-phase voltages
1-phase	Single-phase phase-earth or phase-phase voltage
Setting ranges Pickup thresholds V<, V<< 3-phase, phase-earth	10 to 210 V (in steps of 1 V)
connection 3-phase, phase-phase connection	10 to 120 V (in steps of 1 V)
1-phase connection	10 to 120 V (in steps of 1 V)
Dropout ratio <i>r</i> Delay times <i>T</i> Current Criteria "Bkr Closed I _{MIN} "	1.01 to 3 (in steps of 0.01) 0 to 100 s or ∞ (in steps of 0.01 s) 0.2 to 5 A ¹⁾ (in steps of 0.01 A)
Dropout threshold $r \cdot V < (<)$	Max. 130 V for phase-phase voltages Max. 225 V phase-earth voltages
Times Pickup times V<, V<<, V ₁ <, V ₁ << Dropout times	Approx. 50 ms As pickup times
Tolerances Pickup thresholds Times	3 % of setting value or 1 V 1 % of setting value or 10 ms
Overvoltage protection (ANSI 59)	
Operating modes/measuring quantities	
3-phase	Negative-sequence component or largest of the phase-to-phase voltages
1-phase	Single-phase phase-earth or phase-phase voltage
Setting ranges Pickup thresholds V>, V>> 3-phase, phase-earth connec- tion, largest phase-phase voltage	40 to 260 V (in steps of 1 V)
3-phase, phase-phase connec- tion, largest phase-phase voltage	40 to 150 V (in steps of 1 V)
3-phase, negative-sequence voltage	2 to 150 V (in steps of 1 V)
1-phase connection	40 to 150 V (in steps of 1 V)
Dropout ratio <i>r</i> Delay times <i>T</i>	0.9 to 0.99 (in steps of 0.01) 0 to 100 s or ∞ (in steps of 0.01 s)
Times Pickup times V>, V>> Pickup times V ₂ >, V ₂ >> Dropout times	Approx. 50 ms Approx. 60 ms As pickup times
Tolerances	1 1 1
Pickup thresholds Times	3 % of setting value or 1 V 1 % of setting value or 10 ms

SIEMENS siemens-russia.com

Technical date

5

Frequency protection (ANSI 81)	
Number of frequency elements	4
Setting ranges Pickup thresholds for $f_{nom} = 50$ Hz Pickup thresholds for $f_{nom} = 60$ Hz Delay times Undervoltage blocking, with positive-sequence voltage V_1	 45.5 to 54.5 Hz (in steps of 0.01 Hz) 55.5 to 64.5 Hz (in steps of 0.01 Hz) 0 to 100 s or ∞ (in steps of 0.01 s) 10 to 150 V (in steps of 1 V)
Times Pickup times Dropout times	Approx. 150 ms Approx. 150 ms
Dropout $\Delta f =$ pickup value - dropout value Ratio undervoltage blocking	Approx. 20 mHz Approx. 1.05
Tolerances Pickup thresholds Frequency Undervoltage blocking Delay times	10 mHz 3 % of setting value or 1 V 3 % of the setting value or 10 ms
Fault locator (ANSI 21FL)	
Output of the fault distance	In Ω secondary, in km / mile of line length
Starting signal	Trip command, dropout of a protec- tion element, via binary input
Setting ranges Reactance (secondary)	$\begin{array}{l} 0.001 \mbox{ to } 1.9 \ \Omega/km^{1)} \ (\mbox{in steps of } 0.0001) \\ 0.001 \mbox{ to } 3 \ \Omega/mile^{1)} \ (\mbox{in steps of } 0.0001) \end{array}$
Tolerances Measurement tolerance acc. to VDE 0435, Part 303 for sinusoi- dal measurement quantities	2.5 % fault location, or 0.025 Ω (without intermediate infeed) for 30 ° $\leq \varphi K \leq$ 90 ° and V _K /V _{nom} \geq 0.1 and $I_K/I_{nom} \geq$ 1
Additional functions	
Operational measured values	
Currents I_{L1}, I_{L2}, I_{L3} Positive-sequence component I_1 Negative-sequence component I_2 I_E or $3I_0$	In A (kA) primary, in A secondary or in % I _{nom}
Range Tolerance ²⁾	10 to 200 % <i>I</i> _{nom} 1 % of measured value or 0.5 % <i>I</i> _{nom}
Phase-to-earth voltages V_{L1-E} , V_{L2-E} , V_{L3-E} Phase-to-phase voltages V_{L1-L2} , V_{L2-L3} , V_{L3-L1} , V_E or V_0 Positive-sequence component V_1 Negative-sequence component V_2	In kV primary, in V secondary or in % $V_{\rm nom}$
Range Tolerance ²⁾	10 to 120 % $V_{\rm nom}$ 1 % of measured value or 0.5 % of $V_{\rm nom}$
S, apparent power	In kVAr (MVAr or GVAr) primary and in % of $S_{\rm nom}$
Range Tolerance ²⁾	0 to 120 % S_{nom} 1 % of S_{nom} for V/V_{nom} and $I/I_{nom} = 50$ to 120 %
<i>P</i> , active power	With sign, total and phase-segregated in kW (MW or GW) primary and in % S _{nom}
Range Tolerance ²⁾	0 to 120 % S_{nom} 2 % of S_{nom} for V/V_{nom} and $I/I_{\text{nom}} = 50$ to 120 % and $ \cos \varphi = 0.707$ to 1 with
	$S_{\rm nom} = \sqrt{3} \cdot V_{\rm nom} \cdot I_{\rm nom}$

Q, reactive power	With sign, total and phase-segregated in kVAr (MVAr or GVAr) primary and in % S_{nom}
Range Tolerance ²⁾	0 to 120 % S_{nom} 2 % of S_{nom} for V/V_{nom} and $I/I_{\text{nom}} = 50$ to 120 % and $ \sin \varphi = 0.707$ to 1 with $S_{\text{nom}} = \sqrt{3} \cdot V_{\text{nom}} \cdot I_{\text{nom}}$
$\cos \varphi$, power factor (p.f.)	Total and phase segregated
Range Tolerance ²⁾	$\begin{array}{c} -1 \text{ to } +1 \\ 3 \% \text{ for } \left \cos \varphi \right \ge 0.707 \end{array}$
Frequency f	In Hz
Range Tolerance ²⁾	$f_{\rm nom} \pm 5 {\rm Hz}$ 20 mHz
Temperature overload protection $\Theta/\Theta_{\text{Trip}}$	In %
Range Tolerance ²⁾	0 to 400 % 5 % class accuracy per IEC 60255-8
Temperature restart inhibit Θ_L / Θ_L Trip	In %
Range Tolerance ²⁾	0 to 400 % 5 % class accuracy per IEC 60255-8
Restart threshold $\Theta_{Restart}/\Theta_{L Trip}$	In %
Reclose time T_{Reclose}	In min
Currents of sensitive ground fault detection (total, real, and reactive current) <i>I</i> _{EE} , <i>I</i> _{EE} real, <i>I</i> _{EE} reactive	In A (kA) primary and in mA secondary
Range Tolerance ²⁾	0 mA to 1600 mA 2 % of measured value or 1 mA
Measuring transducer Operating range Accuracy range Tolerance ²⁾	0 to 24 mA 1 to 20 mA 1.5 %, relative to rated value of 20 mA
	rement transducer for pressure and
Operating measured value Operating range (presetting)	Pressure in hPa 0 hPa to 1200 hPa Temp in °C / °F
Operating range (presetting)	0 °C to 240 °C or 32 °F to 464 °F
RTD-box	See section "Temperature monitoring box"
Long-term averages	
Time window	5, 15, 30 or 60 minuets
Frequency of updates	Adjustable
Long-term averages of currents of real power of reactive power of apparent power	I _{L1dmd} , I _{L2dmd} , I _{L3dmd} , I _{1dmd} in A (kA) P _{dmd} in W (kW, MW) Q _{dmd} in VAr (kVAr, MVAr) S _{dmd} in VAr (kVAr, MVAr)

1) At $I_{\text{nom}} = 1$ A, all limits multiplied with 5. 1) At rated frequency.

Technical date

Max. / Min. report	
Report of measured values	With date and time
Reset, automatic	Time of day adjustable (in minutes, 0 to 1439 min) Time frame and starting time adjust- able (in days, 1 to 365 days, and ∞)
Reset, manual	Using binary input, using keypad, via communication
Min./Max. values for current	<i>I</i> _{L1} , <i>I</i> _{L2} , <i>I</i> _{L3} , <i>I</i> ₁ (positive-sequence component)
Min./Max. values for voltages	V_{L1-E} , V_{L2-E} , V_{L3-E} V_1 (positive-sequence component) V_{L1-L2} , V_{L2-L3} , V_{L3-L1}
Min./Max. values for power	S, P, Q, $\cos \varphi$, frequency
Min./Max. values for overload protection	$\Theta/\Theta_{\mathrm{Trip}}$
Min./Max. values for mean values	I _{L1dmd} , I _{L2dmd} , I _{L3dmd} I ₁ (positive-sequence component); S _{dmd} , P _{dmd} , Q _{dmd}
Local measured values monitoring	1
Current asymmetry	$I_{\text{max}}/I_{\text{min}}$ > balance factor, for $I > I_{\text{balance limit}}$
Voltage asymmetry	$V_{\text{max}}/V_{\text{min}}$ > balance factor, for V > V_{lim}
Current sum	$\begin{split} & i_{L1} + i_{L2} + i_{L3} + k_{iE} \cdot i_{E} > \text{limit value,} \\ &\text{with} \\ &k_{iE} = \frac{I_{\text{earth}} \text{ CT PRIM } / I_{\text{earth}} \text{ CT SEC}}{\text{ CT PRIM } / \text{CT SEC}} \end{split}$
Current phase sequence	Clockwise (ABC) / counter-clockwise (ACB)
Voltage phase sequence	Clockwise (ABC) / counter-clockwise (ACB)
Limit value monitoring	Predefined limit values, user-defined expansions via CFC
Fault recording	
Recording of indications of the last 8 power system faults	
Recording of indications of the last 3 power system ground faults	
Time stamping	
Resolution for event log (operational annunciations)	1 ms
Resolution for trip log (fault annunciations)	1 ms
Maximum time deviation (internal clock)	0.01 %
Battery	Lithium battery 3 V/1 Ah, type CR 1/2 AA, message "Battery Fault" for insufficient battery charge
Oscillographic fault recording	
Maximum 8 fault records saved, memory maintained by buffer bat- tery in case of loss of power supply Recording time	Total 5 s
	Pre-trigger and post-fault recording and memory time adjustable

and memory time adjustableSampling rate for 50 Hz1 sample/1.25 ms (16 samples/cycle)Sampling rate for 60 Hz1 sample/1.04 ms (16 samples/cycle)

Energy/po

Energy/power	
Meter values for power Wp, Wq (real and reactive power demand)	in kWh (MWh or GWh) and kVARh (MVARh or GVARh)
Tolerance ¹⁾	\leq 5 % for <i>I</i> > 0.5 <i>I</i> _{nom} , <i>V</i> > 0.5 <i>V</i> _{nom} and $ \cos \varphi $ (p.f.) \geq 0.707
Statistics	
Saved number of trips	Up to 9 digits
Number of automatic reclosing commands (segregated according to 1^{st} and $\ge 2^{nd}$ cycle)	Up to 9 digits
Circuit-breaker wear	
Methods	 Σ<i>l</i>^x with x = 13 2-point method (remaining service life)
Operation	Phase-selective accumulation of mea- sured values on TRIP command, up to 8 digits, phase-selective limit values, monitoring indication
Operating hours counter	
Display range	Up to 7 digits
Criterion	Overshoot of an adjustable current threshold (BkrClosed <i>I</i> _{MIN})
Trip circuit monitoring	
With one or two binary inputs	
Commissioning aids	
Phase rotation field check, operational measured values, circuit-breaker / switching device test, creation of a test measurement report	
Clock	
Time synchronization	DCF77/IRIG-B signal (telegram format IRIG-B000), binary input, communication
Control	
Number of switching units	Depends on the binary inputs and outputs
Interlocking	Programmable
Circuit-breaker signals	Feedback, close, open, intermediate position
Control commands	Single command / double command 1, 1 plus 1 common or 2 trip contacts
Programmable controller	CFC logic, graphic input tool
Local control	Control via menu, control with control keys
Remote control	Via communication interfaces, using a substation automation and control system (e.g. SICAM), DIGSI 4 (e.g. via modem)

1) At rated frequency.

Setting group switchover of the function parameters

Switchover performed

Number of available setting groups 4 (parameter group A, B, C and D) Via keypad, DIGSI, system (SCADA) interface or binary input

CE conformity

This product is in conformity with the Directives of the European Communities on the harmonization of the laws of the Member States relating to electromagnetic compatibility (EMC Council Directive 89/336/EEC) and electrical equipment designed for use within certain voltage limits (Council Directive 73/23/EEC).

This unit conforms to the international standard IEC 60255, and the German standard DIN 57435/Part 303 (corresponding to VDE 0435/Part 303).

Further applicable standards: ANSI/IEEE C37.90.0 and C37.90.1.

The unit conforms to the international standard IEC 60255, and the German standard DIN 57435/Part 303 (corresponding to VDE 0435/Part 303).

This conformity is the result of a test that was performed by Siemens AG in accordance with Article 10 of the Council Directive complying with the generic standards EN 50081-2 and EN 50082-2 for the EMC Directive and standard EN 60255-6 for the "low-voltage Directive".

Selection and ordering data	Description	Order No.		
	7SJ63 multifunction protection relay		-00000	-0000
	Housing, binary inputs (BI) and outputs (BO), measuring transducer	ŢŢ	TTTTT	T T T T
	Housing ¹ / ₂ 19", 11 BI, 8 BO, 1 live status contact	2		
	Housing ¹ / ₂ 19", 24 BI, 11 BO, 4 (2) power relays, 1 live status contact Housing ¹ / ₂ 19", 20 BI, 11 BO, 2 measuring transducer inputs,			
	4 power relays, 1 live status contact	3		see
	Housing ¹ / ₁ 19", 37 BI, 14 BO, 8 (4) power relays, 1 live status contact	5		next
	Housing $1/1$ 19°, 33 BI, 14 BO, 2 measuring transducer inputs,			page
	8 (4) power relays, 1 live status contact	6		
	Measuring inputs $(3 \times V, 4 \times I)$			
	$I_{\rm ph} = 1 {\rm A}^{1)}, I_{\rm e} = 1 {\rm A}^{1)} ({\rm min.} = 0.05 {\rm A})$			
	Position 15 only with A, C, E, G	1		
	$I_{\text{ph}} = 1 \text{ A}^{1}$, $I_{\text{e}} = \text{sensitive (min. = 0.001 \text{ A})}$	2		
	Position 15 only with <i>B</i> , <i>D</i> , <i>F</i> , <i>H</i> $I_{\rm ph} = 5 {\rm A}^{1}$, $I_{\rm e} = 5 {\rm A}^{1}$ (min. = 0.25 A)	2		
	$P_{\text{ph}} = 5 \text{ A}^{-7}, I_e = 5 \text{ A}^{-7} (\text{min.} = 0.25 \text{ A})$ Position 15 only with <i>A</i> , <i>C</i> , <i>E</i> , <i>G</i>	5		
	$I_{\text{ph}} = 5 \text{ A}^{(1)}, I_{\text{e}} = \text{sensitive (min. = 0.001 A)}$			
	Position 15 only with <i>B</i> , <i>D</i> , <i>F</i> , <i>H</i>	6		
	$I_{\rm ph} = 5 {\rm A}^{1}, I_{\rm e} = 1 {\rm A}^{1} ({\rm min.} = 0.05 {\rm A})$			
	Position 15 only with A, C, E, G	7		
	Rated auxiliary voltage (power supply, indication voltage)			
	24 to 48 V DC, threshold binary input 19 V DC ³		2	
	$60 \text{ to } 125 \text{ V DC}^2$, threshold binary input 19 V DC ³		4	
	110 to 250 V DC ²⁾ , 115 to 230 V ⁴⁾ AC, threshold binary input 88 V DC ³)	5	
	Helteren les			
	Unit version For panel surface mounting, plug-in terminals, detached operator panel		A	
	For panel surface mounting, plug-in terminals, detached operator panel For panel surface mounting, 2-tier terminals top/bottom		B	
	For panel surface mounting, screw-type terminals op/bottom	ما	C	
	For panel flush mounting, plug-in terminals (2/3 pin connector)		D	
	For panel flush mounting, screw-type terminals			
	(direct connection/ring-type cable lugs)		E	
	Surface-mounting housing, screw-type terminals (direct connection/ring-	-type cable lugs),	
	without operator panel, panel mounting in low-voltage housing		F	
	Surface-mounting housing, plug-in terminals,			
	without operator panel, panel mounting in low-voltage housing		G	
	Pagion specific default settings (function versions and language settings			
	Region-specific default settings/function versions and language settings Region DE, 50 Hz, IEC, language: German, selectable			
	Region World, 50/60 Hz, IEC/ANSI, language: English (GB), selectable		B	
	Region US, 60 Hz, ANSI, language: English (US), selectable		C	
	Region FR, IEC/ANSI language: French, selectable		D	
	Region World, IEC/ANSI language: Spanish, selectable		E	
	System interface (Port B): Refer to page 5/152			
	No system interface		0	
	Protocols see page 5/152			
	Service interface (Port C)			
1) Rated current can be selected by means	No interface at rear side		0	
of jumpers.	DIGSI 4/modem, electrical RS232		1	
2) Transition between the two auxiliary	DIGSI 4/modem/RTD-box ⁵⁾ , electrical RS485		2	
voltage ranges can be selected by	DIGSI 4/modem/RTD-box ⁵⁾⁶⁾ , optical 820 nm wavelength, ST connected	or	3	
means of jumpers.	Manage wine of Kanada and in a			
3) The binary input thresholds can be	<i>Measuring/fault recording</i> Slave pointer, mean values, min/max values, fault recording			3
selected per binary input by means of jumpers.	Slave pointer, mean values, min/max values, laut recording			5

6) When using the temperature monitoring box at an optical interface, the additional RS485 fiber-optic converter 7XV5650-0□A00 is required.

4) 230 V AC, starting from unit version .../EE

5) Temperature monitoring box

7XV5662-□AD10, refer to "Accessories".

jumpers.

SIEMENS siemens-russia.com

Selection and ordering data

Description					Order No.	_	
7SJ63 mult	itunctio	n proi	tectio		75J63□□ – □□□□□ – □		
Designation ANSI No.				ANSI No.	Description	1	
Basic version 50/51 50N/51N					Control Time-overcurrent protection <i>I</i> >, <i>I</i> >>, <i>I</i> _P , reverse interlocking Earth-fault protection		
					$I_{\rm E}$, $I_{\rm E}$, $I_{\rm Ep}$ Insensitive earth-fault protection via IEE function: $I_{\rm EE}$, $I_{\rm EEP}$, $I_{\rm EEp}$ ¹		
				49 46	Overload protection (with 2 time constants) Phase balance current protection (negative-sequence protection)		
				37 47 59N/64	Undercurrent monitoring Phase sequence Displacement voltage		
				50BF 74TC	Breaker failure protection Trip circuit supervision 4 setting groups, cold-load pickup		
				86	Inrush blocking Lockout	F	A
-			V,f	27/59 810/U	Under-/overvoltage Under-/overfrequency	F	E
•		IEF	V,f	27/59 81O/U	Under-/overvoltage Under-/overfrequency Intermittent earth fault	D	E
•	Dir			67/67N 47	Direction determination for overcurrent, phases and earth Phase sequence	F	C
•	Dir		V,f	67/67N 27/59 810/U	Direction determination for overcurrent, phases and earth Under-/overvoltage Under-/overfrequency	F	G
•	Dir	IEF		67/67N	Direction determination for overcurrent, phases and earth Intermittent earth fault	D	C
Directional earth-fault	Dir			67/67N 67Ns	Direction determination for overcurrent, phases and earth Directional sensitive earth-fault detection		
detection				87N	High-impedance restricted earth fault	F	D
Directional earth-fault detection	Dir	IEF		67/67N 67Ns 87N	Direction determination for overcurrent, phases and earth Directional sensitive earth-fault detection High-impedance restricted earth fault Intermittent earth fault	D	D
Directional earth-fault detection				67Ns 87N	Directional sensitive earth-fault detection High-impedance restricted earth fault		
Directional earth-fault detection	Motor		V,f	67Ns 87N 48/14 66/86	Directional sensitive earth-fault detection High-impedance restricted earth fault Starting time supervision, locked rotor Restart inhibit	F	B
				27/59 810/U	Under-/overvoltage Under-/overfrequency	4	F

Basic version included

V, f = Voltage, frequency protection

Dir = Directional overcurrent protection

IEF = Intermittent earth fault

- 1) Only with insensitive earth-current transformer when position 7 = 1, 5, 7.
- 2) For isolated/compensated networks only with sensitive earth-current transformer when position 7 = 2, 6.

	orderind	

Description					Order No.		Order code
7SJ63 multi	ifunction	n prot	ectior	relay	7SJ6300 - 00000 -		
Designation				ANSI No.	Description		
Basic version					Control		
				50/51	Time-overcurrent protection		
					<i>I</i> >, <i>I</i> >>, <i>I</i> _p , reverse interlocking		
				50N/51N	Earth-fault protection		
				50NT/51NT	$I_{\rm E}$, $I_{\rm E}$, S , $I_{\rm Ep}$		
				50N/51N	Earth-fault protection via insensitive		
				49	IEE function: I_{EE} , I_{EE} , $I_{EEp}^{(1)}$		
				49 46	Overload protection (with 2 time constants)		
				40	Phase balance current protection (negative-sequence protection)		
				37	Undercurrent monitoring		
				47	Phase sequence		
				59N/64	Displacement voltage		
				50BF	Breaker failure protection		
				74TC	Trip circuit supervision		
					4 setting groups, cold-load pickup		
					Inrush blocking		
				86	Lockout		
Directional	Motor		V, f	67/67N	Direction determination for		
earth-fault	Dir		v,j	0//0/10	overcurrent, phases and earth		
detection	DI			67Ns	Directional sensitive earth-fault detection		
				87N	High-impedance restricted earth fault		
				48/14	Starting time supervision, locked rotor		
				66/86	Restart inhibit		
				27/59	Under-/overvoltage	21	
				81O/U	Under-/overfrequency	H H ²⁾	
Directional	Motor	IEF	Vf	67/67N	Direction determination for		
earth-fault	Dir	1.51	• • • • •	0//0/11	overcurrent, phases and earth		
detection				67Ns	Directional sensitive earth-fault detection		
				87N	High-impedance restricted earth fault		
					Intermittent earth fault		
				48/14	Starting time supervision, locked rotor		
				66/86	Restart inhibit		
				27/59	Under-/overvoltage	р ц 2)	
				810/U	Under-/overfrequency	R H ²⁾	
	Motor		V, f	67/67N	Direction determination for		
	Dir		2		overcurrent, phases and earth		
				48/14	Starting time supervision, locked rotor		
				66/86	Restart inhibit		
				27/59	Under-/overvoltage		
				81O/U	Under-/overfrequency	HG	
	Motor			48/14	Starting time supervision, locked rotor		
				66/86	Restart inhibit	HA	
ARC, fault lo	cator				Without	0	
				79	With auto-reclosure	1	
				21FL	With fault locator	2	
				79, 21FL	With auto-reclosure, with fault locator	3	

Basic version included

V, f = Voltage, frequency protection Dir = Directional overcurrent protection

- IEF = Intermittent earth fault
- 1) Only with insensitive earth-current transformer when position 7 = 1, 5, 7.
- 2) For isolated/compensated networks only with sensitive earth-current transformer when position 7 = 2, 6.
- 3) This variant might be supplied with a previous firmware version.

Order number for system port B	Description	Order No.	Order code
	7SJ63 multifunction protection relay	7SJ6300 - 00000 -	0000-000
	System interface (on rear of unit, Port B)		
	No system interface	0	
	IEC 60870-5-103 protocol, RS232	1	
	IEC 60870-5-103 protocol, RS485	2	
	IEC 60870-5-103 protocol, 820 nm fiber, ST co	onnector 3	
	PROFIBUS-FMS Slave, RS485	4	
	PROFIBUS-FMS Slave, 820 nm wavelength, sir	ngle ring, ST connector 1) 5	
	PROFIBUS-FMS Slave, 820 nm wavelength, do	buble ring, ST connector 1) 6	
	PROFIBUS-DP Slave, RS485	9	L 0 A
	PROFIBUS-DP Slave, 820 nm wavelength, doub	ble ring, ST connector 1) 9	L 0 B
	MODBUS, RS485	9	LOD
	MODBUS, 820 nm wavelength, ST connector ²	²) 9	L 0 E
	DNP 3.0, RS485	9	L 0 G
	DNP 3.0, 820 nm wavelength, ST connector ²)	9	L 0 H
	IEC 61850, 100 Mbit Ethernet, electrical, doubl	le, RJ45 connector (EN 100) 9	LOR
	IEC 61850, 100 Mbit Ethernet, optical, double,	LC connector $(EN 100)^{2}$ 9	LOS

 Not with position 9 = "B"; if 9 = "B", please order 7SJ6 unit with RS485 port and separate fiber-optic converters. For single ring, please order converter 6GK1502-2CB10, not available with position 9 = "B". For double ring, please order converter 6GK1502-3CB10, not available with position 9 = "B". The converter requires a 24 V AC power supply (e.g. power supply 7XV5810-0BA00).

2) Not available with position 9 = "B".

S	a	m	pl	е	01	d	e	

Positio	n	Order No. + Order code
6	I/O's: 24 BI/11 BO, 1 live status contact	7SJ6325-5EC91-3FC1+L0G
7	Current transformer: 5 A	5
8	Power supply: 110 to 250 V DC, 115 V AC to 230 V AC	5
9	Unit version: Flush-mounting housing, screw-type terminals	E
10	Region: US, English language (US); 60 Hz, ANSI	С
11	Communication: System interface: DNP 3.0, RS485	9 LOG
12	Communication: DIGSI 4, electrical RS232	1
13	Measuring/fault recording: Extended measuring and fault record	rds 3
14/15	Protection function package: Basic version plus directional TO	C FC
16	With auto-reclosure	1

es	Description	Order No.
	DIGSI 4	
	Software for configuration and operation of Siemens protection units	
	running under MS Windows 2000/XP Professional Edition	
	Basis Full version with license for 10 computers, on CD-ROM	
	(authorization by serial number)	7XS5400-0AA00
	Professional DIGSI 4 Basis and additionally SIGRA (fault record analysis),	
	CFC Editor (logic editor), Display Editor (editor for default	
	and control displays) and DIGSI 4 Remote (remote operation)	7XS5402-0AA00
	Professional + IEC 61850	
	Complete version:	
	DIGSI 4 Basis and additionally SIGRA (fault record analysis),	
	CFC Editor (logic editor), Display Editor (editor for default	
	and control displays) and DIGSI 4 Remote (remote operation)	
	+ IEC 61850 system configurator	7XS5403-0AA00
	IEC 61850 System configurator	
	Software for configuration of stations with IEC 61850 communication under	
	DIGSI, running under MS Windows 2000 or XP Professional Edition	
	Optional package for DIGSI 4 Basis or Professional	
	License for 10 PCs. Authorization by serial number. On CD-ROM	7XS5460-0AA00
	SIGRA 4	
	Software for graphic visualization, analysis and evaluation of fault records.	
	Can also be used for fault records of devices of other manufacturers (Comtrade	
	format). Running under MS Windows 2000 or XP Professional Edition.	
	(generally contained in DIGSI Professional, but can be ordered additionally)	
	Authorization by serial number. On CD-ROM.	7XS5410-0AA00
	Temperature monitoring box	
	24 to 60 V AC/DC	7XV5662-2AD10
	90 to 240 V AC/DC	7XV5662-5AD10
	Varistor/Voltage Arrester	
	Voltage arrester for high-impedance REF protection	C52207 4401 D7C 1
	125 Vrms; 600 A; 1S/S 256	C53207-A401-D76-1
	240 Vrms; 600 A; 1S/S 1088	C53207-A401-D77-1
	Connecting cable	
	Cable between PC/notebook (9-pin con.) and protection unit (9-pin connector)	
	(contained in DIGSI 4, but can be ordered additionally)	7XV5100-4
	Cable between temperature monitoring box and SIPROTEC 4 unit	
	- length 5 m /16.4 ft	7XV5103-7AA05
	- length 25 m /82 ft	7XV5103-7AA25
	- length 50 m /164 ft	7XV5103-7AA50
	<u> </u>	
	Manual for 7SJ63	

5

1) x = please inquire for latest edition (exact Order No.).

Accessories		Description	Order No.	Size of package	Supplier
s.		Terminal safety cover			
	9-arti	Voltage/current terminal 18-pole/12-pole	C73334-A1-C31-1	1	Siemens
SP2289 af p. eps		Voltage/current terminal 12-pole/8-pole	C73334-A1-C32-1	1	Siemens
Mounting mil	Ŭ	Connector 2-pin	C73334-A1-C35-1	1	Siemens
Mounting rail		Connector 3-pin	C73334-A1-C36-1	1	Siemens
		Crimp connector CI2 0.5 to 1 mm ²	0-827039-1	4000	AMP ¹⁾
		f		taped on reel	
SP2090-afp. ep	SP2091-afp.eps	Crimp connector CI2 0.5 to 1 mm ²	0-827396-1	1	AMP ¹⁾
SP209	SP209	Crimp connector: Type III+ 0.75 to 1.5 mm ²	0-163084-2	1	AMP ¹⁾
2-pin	3-pin	Crimp connector: Type III+ 0.75 to 1.5 mm ²	0-163083-7	4000	AMP ¹⁾
connector connector				taped on reel	
		Crimping tool for Type III+	0-539635-1	1	AMP ¹⁾
		and matching female	0-539668-2	1	AMP ¹⁾
s		Crimping tool for CI2	0-734372-1	1	AMP ¹⁾
SP2093.afb.eps	o ebs	and matching female	1-734387-1	1	AMP ¹⁾
	SP2092-afp	Short-circuit links			
	P20	for current terminals	C73334-A1-C33-1	1	Siemens
Short-circuit links	Short-circuit links	for other terminals	C73334-A1-C34-1	1	Siemens
for current termi- nals	for other terminals	Mounting rail for 19" rack	C73165-A63-D200-1	1	Siemens

1) Your local Siemens representative can inform you on local suppliers.

5

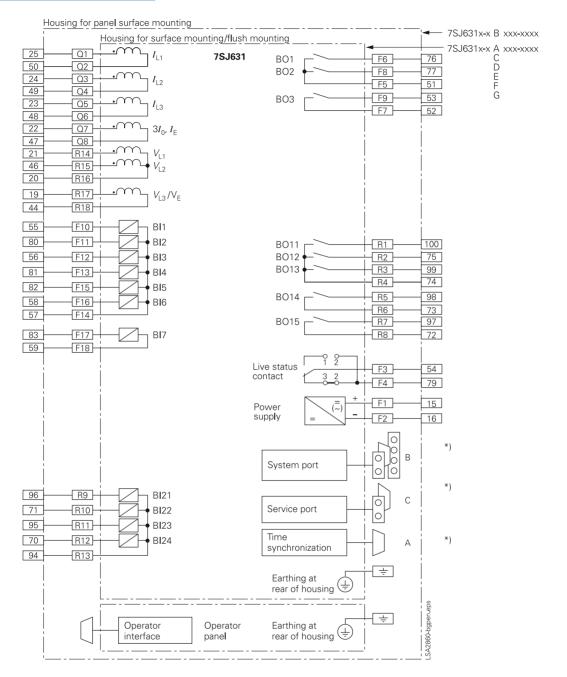
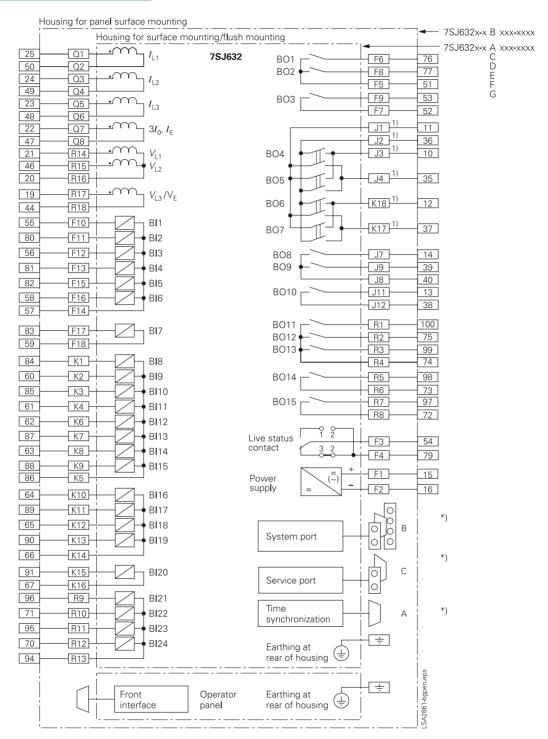



Fig. 5/137 7SJ631 connection diagram

*) For pinout of communication ports see part 15 of this catalog.

For the allocation of the terminals of the panel surface-mounting version refer to the manual (http://www.siemens.com/siprotec).

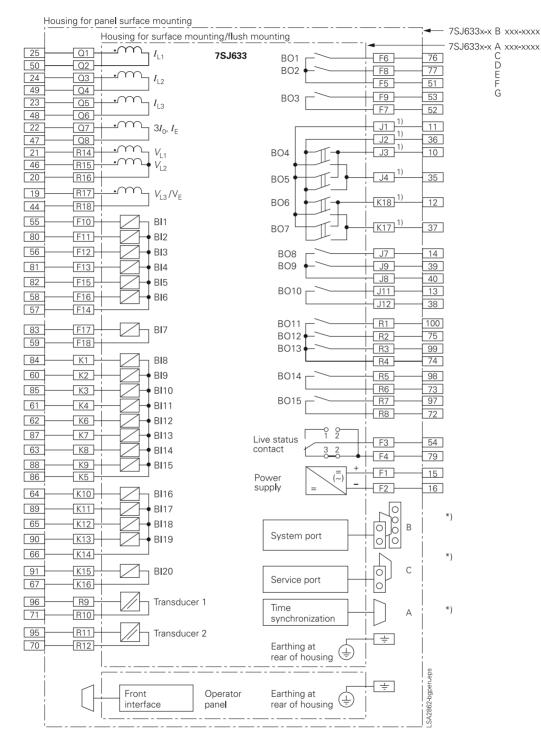
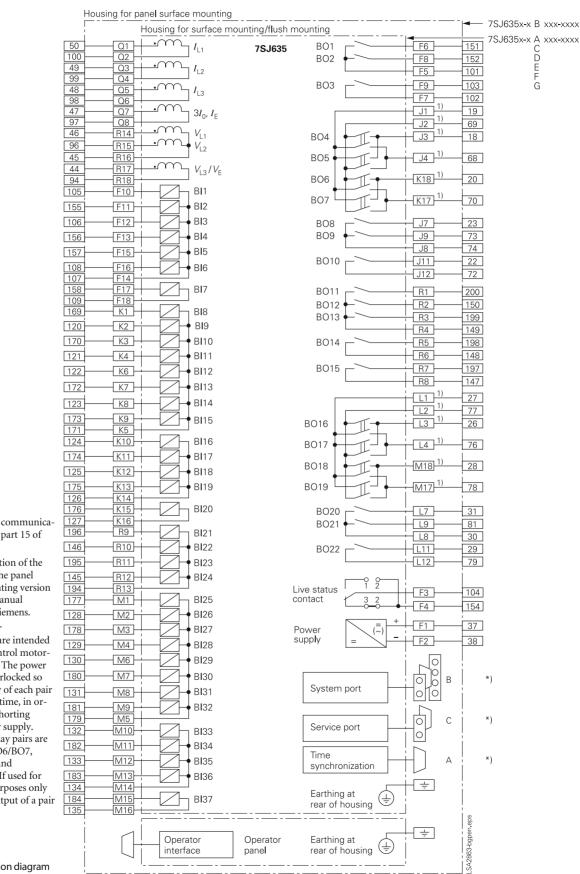


Fig. 5/138 7SJ632 connection diagram

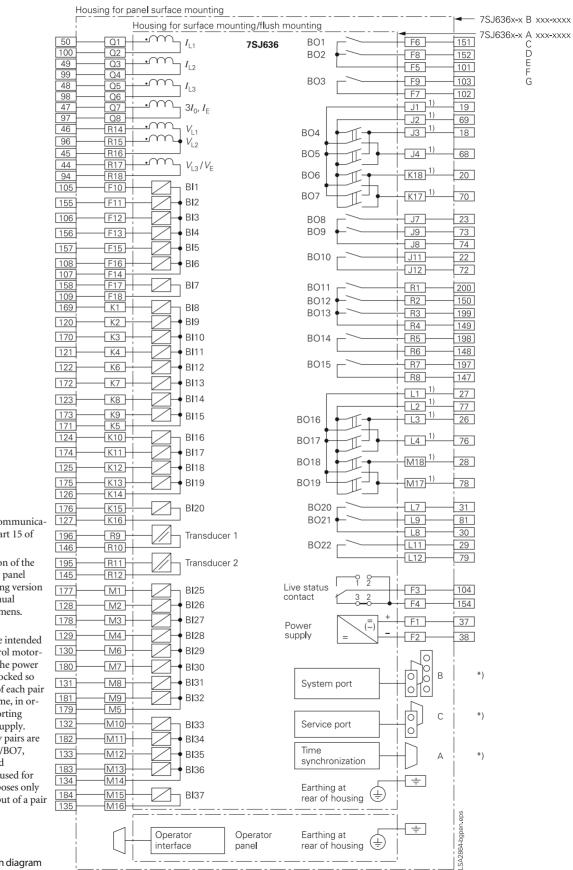
- *) For pinout of communication ports see part 15 of this catalog.
 - For the allocation of the terminals of the panel surface-mounting version refer to the manual (http://www.siemens.com/siprotec).
- Power relays are intended to directly control motorized switches. The power relays are interlocked so only one relay of each pair can close at a time, in order to avoid shorting out the power supply. The power relay pairs are BO4/BO5, BO6/BO7. If used for protection purposes only one binary output of a pair can be used.


Fig. 5/139 7SJ633 connection diagram

*) For pinout of communication ports see part 15 of this catalog.

For the allocation of the terminals of the panel surface-mounting version refer to the manual (http://www.siemens.com/siprotec).

 Power relays are intended to directly control motorized switches. The power relays are interlocked so only one relay of each pair can close at a time, in order to avoid shorting out the power supply. The power relay pairs are BO4/BO5, BO6/BO7. If used for protection purposes only one binary output of a pair can be used.


E

*) For pinout of communication ports see part 15 of this catalog.

- For the allocation of the terminals of the panel surface-mounting version refer to the manual (http://www.siemens. com/siprotec).
- Power relays are intended to directly control motorized switches. The power relays are interlocked so only one relay of each pair can close at a time, in order to avoid shorting out the power supply. The power relay pairs are BO4/BO5, BO6/BO7, BO16/BO17 and BO18/BO19. If used for protection purposes only one binary output of a pair can be used.

Fig. 5/140 7SJ635 connection diagram

Siemens SI

 *) For pinout of communication ports see part 15 of this catalog.
 For the allocation of the

terminals of the panel surface-mounting version refer to the manual (http://www.siemens. com/siprotec).

 Power relays are intended to directly control motorized switches. The power relays are interlocked so only one relay of each pair can close at a time, in order to avoid shorting out the power supply. The power relay pairs are BO4/BO5, BO6/BO7, BO16/BO17 and BO18/BO19. If used for protection purposes only one binary output of a pair can be used.

Fig. 5/141 7SJ636 connection diagram

SIEMENS

siemens-russia.com

5 Overcurrent Protection / 7SJ63

SIPROTEC 4 7SJ64 Multifunction Protection Relay with Synchronization

Description

The SIPROTEC 4 7SJ64 can be used as a protective control and monitoring relay for distribution feeders and transmission lines of any voltage in networks that are earthed (grounded), low-resistance earthed, unearthed, or of a compensated neutral point structure. The relay is suited for networks that are radial or looped, and for lines with single or multi-terminal feeds. The SIPROTEC 47SJ64 is equipped with a synchronization function which provides the operation modes 'synchronization check' (classical) and 'synchronous/asynchronous switching' (which takes the CB mechanical delay into consideration). Motor protection comprises undercurrent monitoring, starting time supervision, restart inhibit, locked rotor, load jam protection as well as motor statistics.

The 7SJ64 is featuring the "flexible protection functions". Up to 20 protection functions can be added according to individual requirements. Thus, for example, rate-of-frequency-change protection or reverse power protection can be implemented. The relay provides easy-to-use local control and automation functions. The number of controllable switchgear depends only on the number of available inputs and outputs. The integrated programmable logic (CFC) allows the user to implement their own functions, e.g. for the automation of switchgear (interlocking). CFC capacity is much larger compared to 7SJ63 due to extended CPU power. The user is able to generate user-defined messages as well.

The flexible communication interfaces are open for modern communication architectures with control systems.

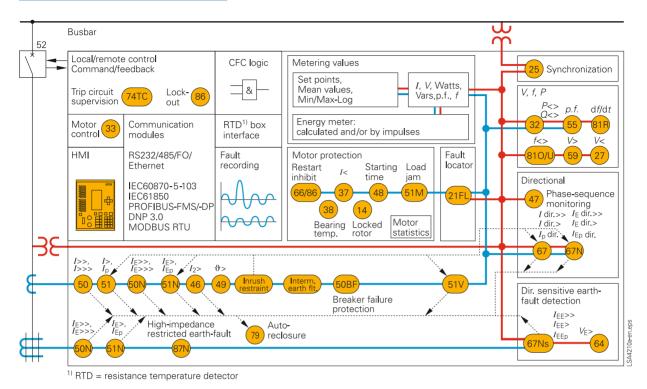
Function overview

Protection functions

- Time-overcurrent protection
- Directional time-overcurrent protection
- Sensitive dir./non-dir. earth-fault detection
- Displacement voltage
- Intermittent earth-fault protection
- High-impedance restricted earth fault
- Inrush restraint
- Motor protection
- Overload protection
- Temperature monitoring
- Under-/overvoltage protection
- Under-/overfrequency protection
- Rate-of-frequency-change protection
- Power protection (e.g. reverse, factor)
- Breaker failure protection
- Negative-sequence protection
- Phase-sequence monitoring
- Synchronization
- Auto-reclosure
- Fault locator
- Lockout

Control functions/programmable logic

- Flexible number of switching devices
- Position of switching elements is shown on the graphic display
- Local/remote switching via keyoperated switch
- Control via keyboard, binary inputs, DIGSI 4 or SCADA system
- Extended user-defined logic with CFC (e.g. interlocking)


Monitoring functions

- Operational measured values V, I, f,...
- Energy metering values $W_{\rm p}$, $W_{\rm q}$
- Circuit-breaker wear monitoring
- Slave pointer
- Trip circuit supervision
- Fuse failure monitor
- 8 oscillographic fault records
- Motor statistics

Communication interfaces

- System interface
- IEC 60870-5-103, IEC 61850 – PROFIBUS-FMS / DP
- DNP 3.0 / MODBUS RTU
- Service interface for DIGSI 4 (modem)
- Additional interface for temperature detection (RTD-box)
- Front interface for DIGSI 4
- Time synchronization via IRIG B/DCF77

Application

The SIPROTEC 4 7SJ64 unit is a numerical protection relay that also performs control and monitoring functions and therefore supports the user in cost-effective power system management, and ensures reliable supply of electric power to the customers. Local operation has been designed according to ergonomic criteria. A large, easy-to-read graphic display was a major design aim.

Control

The integrated control function permits control of disconnect devices (electrically operated/motorized switches) or circuit-breakers via the integrated operator panel, binary inputs, DIGSI 4 or the control and protection system (e.g. SICAM). The present status (or position) of the primary equipment can be displayed. 7SJ64 supports substations with single and duplicate busbars. The number of elements that can be controlled (usually 1 to 5) is only restricted by the number of inputs and outputs available. A full range of command processing functions is provided.

Programmable logic

The integrated logic characteristics (CFC) allow users to implement their own functions for automation of switchgear (interlocking) or a substation via a graphic user interface. Due to extended CPU power, the programmable logic capacity is much larger compared to 7SJ63. The user can also generate user-defined messages.

Line protection

The 7SJ64 units can be used for line protection of high and medium-voltage networks with earthed, low-resistance earthed, isolated or compensated neutral point.

Synchronization

In order to connect two components of a power system, the relay provides a synchronization function which verifies that switching ON does not endanger the stability of the power system.

The synchronization function provides the operation modes 'synchro-check' (classical) and 'synchronous/asynchronous switching' (which takes the c.-b. mechanical delay into consideration).

Motor protection

When protecting motors, the relays are suitable for asynchronous machines of all sizes.

Transformer protection

The 7SJ64 units perform all functions of backup protection supplementary to transformer differential protection. The inrush suppression effectively prevents tripping by inrush currents.

The high-impedance restricted earth-fault protection detects short-circuits and insulation faults of the transformer.

Backup protection

The relays can be used universally for backup protection.

Flexible protection functions

By configuring a connection between a standard protection logic and any measured or derived quantity, the functional scope of the relays can be easily expanded by up to 20 protection stages or protection functions.

Metering values

Extensive measured values, limit values and metered values permit improved system management.

Application

ANSI No.	IEC	Protection functions
50, 50N	I>, I>>, I>>> I _E >, I _E >>, I _E >>>	Definite-time overcurrent protection (phase/neutral)
(50, 50N)	$I >>>>, I_2 >$ $I_E >>>>$	Additional definite-time overcurrent protection stages (phase/neutral) via flexible protection functions
51,51V,51N	$I_{\rm p}, I_{\rm Ep}$	Inverse-time overcurrent protection (phase/neutral), phase function with voltage-dependent option
67,67N	I _{dir} >, I _{dir} >>, I _{p dir} I _{Edir} >, I _{Edir} >>, I _{Ep dir}	Directional time-overcurrent protection (definite/inverse, phase/neutral) Directional comparison protection
67Ns/50Ns	<i>I</i> _{EE} >, <i>I</i> _{EE} >>, <i>I</i> _{EEp}	Directional/non-directional sensitive earth-fault detection
_		Cold load pick-up (dynamic setting change)
59N/64	V _E , V ₀ >	Displacement voltage, zero-sequence voltage
_	$I_{\rm IE}>$	Intermittent earth fault
(87N)		High-impedance restricted earth-fault protection
50BF		Breaker failure protection
(79M)		Auto-reclosure
25		Synchronization
46	<i>I</i> ₂ >	Phase-balance current protection (negative-sequence protection)
(47)	<i>V</i> ₂ >, phase seq.	Unbalance-voltage protection and/or phase-sequence monitoring
49	ϑ>	Thermal overload protection
<u>(49)</u> (48)		Starting time supervision
(51M)		Load jam protection
14		Locked rotor protection
66/86		Restart inhibit
37)	I<	Undercurrent monitoring
38		Temperature monitoring via external device, e.g. bearing temperature monitoring
(27, 59)	<i>V</i> <, <i>V</i> >	Undervoltage/overvoltage protection
(59R)	dV/dt	Rate-of-voltage-change protection
32	P<>, Q<>	Reverse-power, forward-power protection
55	$\cos \varphi$	Power factor protection
(810/U)	f>,f<	Overfrequency/underfrequency protection
(81R)	df/dt	Rate-of-frequency-change protection
(21FL)		Fault locator

Construction

Connection techniques and housing with many advantages

1/3, 1/2 and 1/1-rack sizes

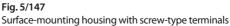
These are the available housing widths of the 7SJ64 relays, referred to a 19" module frame system. This means that previous models can always be replaced. The height is a uniform 244 mm for flush-mounting housings and 266 mm for surfacemounting housings for all housing widths. All cables can be connected with or without ring lugs. Plug-in terminals are available as an option.

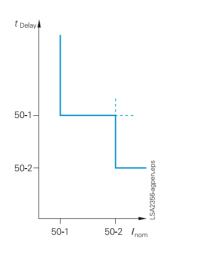
It is thus possible to employ prefabricated cable harnesses. In the case of surface mounting on a panel, the connection terminals are located above and below in the form of screw-type terminals. The communication interfaces are located in a sloped case at the top and bottom of the housing. The housing can also be supplied optionally with a detached operator panel (refer to Fig. 5/146), or without operator panel, in order to allow optimum operation for all types of applications.

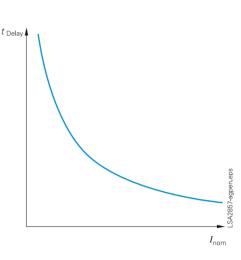
Fig. 5/144 Flush-mounting housing with screw-type terminals

Fig. 5/145 Front view of 7SJ64 with 1/3x19" housing

Fig. 5/146 Housing with plug-in terminals and detached operator panel






Fig. 5/148 Communication interfaces in a sloped case in a surface-mounting housing

Time-overcurrent protection (ANSI 50, 50N, 51,51V, 51N)

This function is based on the phase-selective measurement of the three phase currents and the earth current (four transformers). Three definite-time overcurrent protection elements (DMT) exist both for the phases and for the earth. The current threshold and the delay time can be set in a wide range. In addition, inverse-time overcurrent protection characteristics (IDMTL) can be activated. The inverse-time function provides – as an option – voltage-restraint or voltage-controlled operating modes. With the "flexible protection functions", further definite-time overcurrent stages can be implemented in the 7SJ64 unit.

Fig. 5/149

Definite-time overcurrent protection

Fig. 5/150 Inverse-time overcurrent protection

Available inverse-time characteristics

Characteristics acc. to	ANSI/IEEE	IEC 60255-3	
Inverse	•	•	
Short inverse	•		
Long inverse	•	•	
Moderately inverse	•		
Very inverse	•	•	
Extremely inverse	•	•	
Definite inverse	•		

Reset characteristics

For easier time coordination with electromechanical relays, reset characteristics according to ANSI C37.112 and IEC 60255-3 / BS 142 standards are applied. When using the reset characteristic (disk emulation), a reset process is initiated after the fault current has disappeared. This reset process corresponds to the reverse movement of the Ferraris disk of an electromechanical relay (thus: disk emulation).

User-definable characteristics

Instead of the predefined time characteristics according to ANSI, tripping characteristics can be defined by the user for phase and earth units separately. Up to 20 current/ time value pairs may be programmed. They are set as pairs of numbers or graphically in DIGSI 4.

Inrush restraint

The relay features second harmonic restraint. If the second harmonic is detected during transformer energization, pickup of non-directional and directional normal elements are blocked.

Cold load pickup/dynamic setting change

For directional and nondirectional timeovercurrent protection functions the initiation thresholds and tripping times can be switched via binary inputs or by time control.

Directional time-overcurrent protection (ANSI 67, 67N)

Directional phase and earth protection are separate functions. They operate in parallel to the non-directional overcurrent elements. Their pickup values and delay times can be set separately. Definite-time and inverse-time characteristic is offered. The tripping characteristic can be rotated about \pm 180 degrees.

By means of voltage memory, directionality can be determined reliably even for close-in (local) faults. If the switching device closes onto a fault and the voltage is too low to determine direction, directio- nality (directional decision) is made with voltage from the voltage memory. If no voltage exists in the memory, tripping occurs according to the coordination schedule.

For earth protection, users can choose whether the direction is to be determined via zero-sequence system or negative-sequence system quantities (selectable). Using negative-sequence variables can be advantageous in cases where the zero voltage tends to be very low due to unfavorable zero-sequence impedances.

Directional comparison protection (cross-coupling)

It is used for selective protection of sections fed from two sources with instantaneous tripping, i.e. without the disadvantage of time coordination. The directional comparison protection is suitable if the distances between the protection stations are not significant and pilot wires are available for signal transmission. In addition to the directional comparison protection, the directional coordinated time-overcurrent protection is used for complete selective backup protection. If operated in a closed-circuit connection, an interruption of the transmission line is detected.

(Sensitive) directional earth-fault detection (ANSI 64, 67Ns/67N)

For isolated-neutral and compensated networks, the direction of power flow in the zero sequence is calculated from the zero-sequence current I_0 and zero-sequence voltage V_0 . For networks with an isolated neutral, the reactive current component is evaluated; for compensated networks, the active current component or residual resistive current is evaluated.

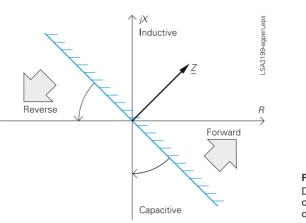


Fig. 5/151 Directional characteristic of the directional timeovercurrent protection

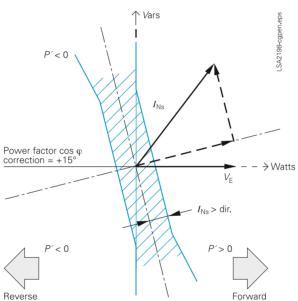


Fig. 5/152 Directional determination using cosine measurements for compensated networks

For special network conditions, e.g. high-resistance earthed networks with ohmic-capacitive earth-fault current or low-resistance earthed networks with ohmic-inductive current, the tripping characteristics can be rotated approximately \pm 45 degrees.

Two modes of earth-fault direction detection can be implemented: tripping or "signalling only mode".

It has the following functions:

- TRIP via the displacement voltage $V_{\rm E}$.
- Two instantaneous elements or one instantaneous plus one user-defined characteristic.
- Each element can be set in forward, reverse, or non-directional.

• The function can also be operated in the insensitive mode, as an additional short-circuit protection.

(Sensitive) earth-fault detection (ANSI 50Ns, 51Ns/50N, 51N)

For high-resistance earthed networks, a sensitive input transformer is connected to a phase-balance neutral current transformer (also called core-balance CT).

The function can also be operated in the insensitive mode, as an additional short-circuit protection.

Intermittent earth-fault protection

Intermittent (re-striking) faults occur due to insulation weaknesses in cables or as a result of water penetrating cable joints. Such faults either simply cease at some stage or develop into lasting short-circuits. During intermittent activity, however, star-point resistors in networks that are impedance-earthed may undergo thermal overloading. The normal earth-fault protection cannot reliably detect and interrupt the current pulses, some of which can be very brief.

The selectivity required with intermittent earth faults is achieved by summating the duration of the individual pulses and by triggering when a (settable) summed time is reached. The response threshold $I_{\rm IE}$ > evaluates the r.m.s. value, referred to one systems period.

Phase-balance current protection (ANSI 46) (*Negative-sequence protection*)

In line protection, the two-element phasebalance current/negative-sequence protection permits detection on the high side of high-resistance phase-to-phase faults and phase-to-earth faults that are on the low side of a transformer (e.g. with the switch group Dy 5). This provides backup protection for high-resistance faults beyond the transformer.

Breaker failure protection (ANSI 50BF)

If a faulted portion of the electrical circuit is not disconnected upon issuance of a trip command, another command can be initiated using the breaker failure protection which operates the circuit-breaker, e.g. of an upstream (higher-level) protection relay. Breaker failure is detected if, after a trip command, current is still flowing in the faulted circuit. As an option, it is possible to make use of the circuit-breaker position indication.

Auto-reclosures (ANSI 79)

Multiple reclosures can be defined by the user and lockout will occur if a fault is present after the last reclosure. The following functions are possible:

- 3-pole ARC for all types of faults
- Separate settings for phase and earth faults
- Multiple ARC, one rapid auto-reclosure (RAR) and up to nine delayed auto-reclosures (DAR)
- Starting of the ARC depends on the trip command selection (e.g. 46, 50, 51, 67)

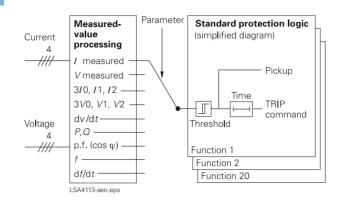


Fig. 5/153 Flexible protection functions

- Blocking option of the ARC via binary inputs
- ARC can be initiated externally or via CFC
- The directional and non-directional elements can either be blocked or operated non-delayed depending on the autoreclosure cycle
- Dynamic setting change of the directional and non-directional elements can be activated depending on the ready AR
- The AR CLOSE command can be given synchronous by use of the synchronization function.

Flexible protection functions

The 7SJ64 units enable the user to easily add on up to 20 protective functions. To this end, parameter definitions are used to link a standard protection logic with any chosen characteristic quantity (measured or derived quantity) (Fig. 5/153). The standard logic consists of the usual protection elements such as the pickup message, the parameterdefinable delay time, the TRIP command, a blocking possibility, etc. The mode of operation for current, voltage, power and power factor quantities can be three-phase or single-phase. Almost all quantities can be operated as greater than or less than stages. All stages operate with protection priority. Protection stages/functions attainable on the basis of the available characteristic quantities:

Function	ANSI No.
<i>I</i> >, <i>I</i> _E >	50, 50N
<i>V</i> <, <i>V</i> >, <i>V</i> _E >, d <i>V</i> /d <i>t</i>	27, 59, 59R, 64
$\overline{3I_0>, I_1>, I_2>, I_2/I_1} \\ 3V_0>, V_1><, V_2><$	50N, 46 59N, 47
P><, Q><	32
$\cos \varphi$ (p.f.)><	55
	81O, 81U
d <i>f</i> /d <i>t</i> ><	81R

For example, the following can be implemented:

- Reverse power protection (ANSI 32R)
- Rate-of-frequency-change protection (ANSI 81R)

Synchronization (ANSI 25)

• In case of switching ON the circuit-breaker, the units can check whether the two subnetworks are synchronized (classic synchro-check). Furthermore, the synchronizing function may operate in the "Synchronous/asynchronous switching" mode. The unit then distinguishes between synchronous and asynchronous networks:

In synchronous networks, frequency differences between the two subnetworks are almost non-existant. In this case, the circuitbreaker operating time does not need to be considered. Under asynchronous condition, however, this difference is markedly larger and the time window for switching is shorter. In this case, it is recommended to consider the operating time of the circuitbreaker.

The command is automatically pre-dated by the duration of the operating time of the circuit-breaker, thus ensuring that the contacts of the CB close at exactly the right time.

Up to 4 sets of parameters for the synchronizing function can be stored in the unit. This is an important feature when several circuit-breakers with different operating times are to be operated by one single relay.

Thermal overload protection (ANSI 49)

For protecting cables and transformers, an overload protection with an integrated pre-warning element for temperature and current can be applied. The temperature is calculated using a thermal homogeneousbody model (according to IEC 60255-8), which takes account both of the energy entering the equipment and the energy losses. The calculated temperature is constantly adjusted accordingly. Thus, account is taken of the previous load and the load fluctuations.

For thermal protection of motors (especially the stator), a further time constant can be set so that the thermal ratios can be detected correctly while the motor is rotating and when it is stopped. The ambient temperature or the temperature of the coolant can be detected serially via an external temperature monitoring box (resistance-temperature detector box, also called RTD- box). The thermal replica of the overload function is automatically adapted to the ambient conditions. If there is no RTD-box it is assumed that the ambient temperatures are constant.

High-impedance restricted earth-fault protection (ANSI 87N)

The high-impedance measurement principle is an uncomplicated and sensitive method for detecting earth faults, especially on transformers. It can also be applied to motors, generators and reactors when these are operated on an earthed network.

When the high-impedance measurement principle is applied, all current transformers in the protected area are connected in parallel and operated on one common resistor of relatively high *R* whose voltage is measured (see Fig. 5/154). In the case of 7SJ6 units, the voltage is measured by detecting the current through the (external) resistor *R* at the sensitive current measurement input I_{EE} .

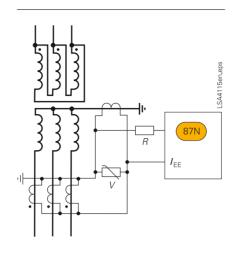


Fig. 5/154 High-impedance restricted earth- fault protection

The varistor *V* serves to limit the voltage in the event of an internal fault. It cuts off the high momentary voltage spikes occurring at transformer saturation. At the same time, this results in smoothing of the voltage without any noteworthy reduction of the average value. If no faults have occurred and in the event of external faults, the system is at equilibrium, and the voltage through the resistor is approximately zero. In the event of internal faults, an imbalance occurs which leads to a voltage and a current flow through the resistor *R*.

The current transformers must be of the same type and must at least offer a separate core for the high-impedance restricted earth-fault protection. They must in particular have the same transformation ratio and an approximately identical knee-point voltage. They should also demonstrate only minimal measuring errors.

Settable dropout delay times

If the devices are used in parallel with electromechanical relays in networks with intermittent faults, the long dropout times of the electromechanical devices (several hundred milliseconds) can lead to problems in terms of time grading. Clean time grading is only possible if the dropout time is approximately the same. This is why the parameter of dropout times can be defined for certain functions such as time-overcurrent protection, earth short-circuit and phasebalance current protection.

Motor protection

Restart inhibit (ANSI 66/86)

If a motor is started up too many times in succession, the rotor can be subject to thermal overload, especially the upper edges of the bars. The rotor temperature is calculated from the stator current. The reclosing lockout only permits start-up of the motor if the rotor has sufficient thermal reserves for a complete start-up (see Fig. 5/155).

Emergency start-up

This function disables the reclosing lockout via a binary input by storing the state of the thermal replica as long as the binary input is active. It is also possible to reset the thermal replica to zero.

Temperature monitoring (ANSI 38)

Up to two temperature monitoring boxes with a total of 12 measuring sensors can be used for temperature monitoring and detection by the protection relay. The thermal status of motors, generators and transformers can be monitored with this device. Additionally, the temperature of the bearings of rotating machines are monitored for limit value violation. The temperatures are being measured with the help of temperature detectors at various locations of the device to be protected. This data is transmitted to the protection relay via one or two temperature monitoring boxes (see "Accessories", page 5/175).

Starting time supervision (ANSI 48/14)

Starting time supervision protects the motor against long unwanted start-ups that might occur in the event of excessive load torque or excessive voltage drops within the motor, or if the rotor is locked. Rotor temperature is calculated from measured stator current. The tripping time is calculated according to the following equation:

for
$$I > I_{MOTOR STAR}$$

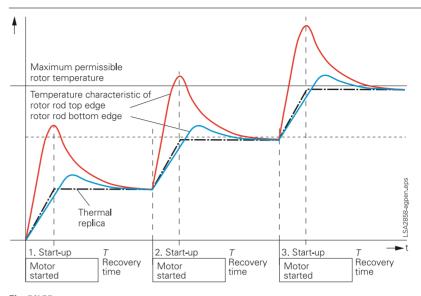
$$t = \left(\frac{I_{\rm A}}{I}\right)^2 \cdot T_{\rm A}$$

I = Actual current flowing I_{MOTOR START} = Pickup current to detect a motor start

t	= Tripping time
$I_{\rm A}$	= Rated motor starting current
T	- Tripping time at rated motor

 $T_{\rm A}$ = Tripping time at rated motor starting current (2 times, for warm and cold motor)

The characteristic (equation) can be adapted optimally to the state of the motor by applying different tripping times T_A in dependence of either cold or warm motor state. For differentiation of the motor state the thermal model of the rotor is applied.


If the trip time is rated according to the above formula, even a prolonged start-up and reduced voltage (and reduced start-up current) will be evaluated correctly. The tripping time is inverse (current dependent).

A binary signal is set by a speed sensor to detect a blocked rotor. An instantaneous tripping is effected.

Load jam protection (ANSI 51M)

Sudden high loads can cause slowing down and blocking of the motor and mechanical damages. The rise of current due to a load jam is being monitored by this function (alarm and tripping).

The overload protection function is too slow and therefore not suitable under these circumstances.

Phase-balance current protection (ANSI 46) (*Negative-sequence protection*)

The negative-sequence / phase-balance current protection detects a phase failure or load unbalance due to network asymmetry and protects the rotor from impermissible temperature rise.

Undercurrent monitoring (ANSI 37)

With this function, a sudden drop in current, which can occur due to a reduced motor load, is detected. This may be due to shaft breakage, no-load operation of pumps or fan failure.

Motor statistics

Essential information on start-up of the motor (duration, current, voltage) and general information on number of starts, total operating time, total down time, etc. are saved as statistics in the device.

Voltage protection

Overvoltage protection (ANSI 59)

The two-element overvoltage protection detects unwanted network and machine overvoltage conditions. The function can operate either with phase-to-phase, phaseto-earth, positive phase-sequence or negative phase-sequence voltage. Three-phase and single-phase connections are possible.

Undervoltage protection (ANSI 27)

The two-element undervoltage protection provides protection against dangerous voltage drops (especially for electric machines). Applications include the isolation of generators or motors from the network to avoid undesired operating states and a possible loss of stability. Proper operating conditions of electrical machines are best evaluated with the positive-sequence quantities. The protection function is active over a wide frequency range (45 to 55, 55 to 65 Hz)¹¹. Even when falling below this frequency range the function continues to work, however, with a greater tolerance band.

The function can operate either with phase-to-phase, phase-to-earth or positive phase-sequence voltage, and can be monitored with a current criterion. Three-phase and single-phase connections are possible.

Frequency protection (ANSI 810/U)

Frequency protection can be used for overfrequency and underfrequency protection. Electric machines and parts of the system are

1) The 45 to 55, 55 to 65 Hz range is available for $f_N = 50/60$ Hz.

Protection functions/Functions

protected from unwanted speed deviations. Unwanted frequency changes in the network can be detected and the load can be removed at a specified frequency setting. Frequency protection can be used over a wide frequency range (40 to 60, 50 to 70 Hz)¹⁾. There are four elements (selectable as overfrequency or underfrequency) and each element can be delayed separately. Blocking of the frequency protection can be performed if using a binary input or by using an undervoltage element.

Fault locator (ANSI 21FL)

The integrated fault locator calculates the fault impedance and the distance-to-fault. The results are displayed in Ω , kilometers (miles) and in percent of the line length.

Circuit-breaker wear monitoring

Methods for determining circuit-breaker contact wear or the remaining service life of a circuit-breaker (CB) allow CB maintenance intervals to be aligned to their actual degree of wear. The benefit lies in reduced maintenance costs.

There is no mathematically exact method of calculating the wear or the remaining service life of circuit-breakers that takes into account the arc-chamber's physical conditions when the CB opens. This is why various methods of determining CB wear have evolved which reflect the different operator philosophies. To do justice to these, the devices offer several methods:

- ΣI
- ΣI^x , with x = 1... 3
- $\sum i^2 t$

The devices additionally offer a new method for determining the remaining service life:

• Two-point method

The CB manufacturers double-logarithmic switching cycle diagram (see Fig. 5/181) and the breaking current at the time of contact opening serve as the basis for this method. After CB opening, the two-point method calculates the number of still possible switching cycles. To this end, the two points P1 and P2 only have to be set on the device. These are specified in the CB's technical data.

All of these methods are phase-selective and a limit value can be set in order to obtain an alarm if the actual value falls below or exceeds the limit value during determination of the remaining service life.

Commissioning

Commissioning could hardly be easier and is fully supported by DIGSI 4. The status of the binary inputs can be read individually and the state of the binary outputs can be set individually. The operation of switching elements (circuit-breakers, disconnect devices) can be checked using the switching functions of the bay controller. The analog measured values are represented as wide-ranging operational measured values. To prevent transmission of information to the control center during maintenance, the bay controller communications can be disabled to prevent unnecessary data from being transmitted. During commissioning, all indications with test marking for test purposes can be connected to a control and protection system.

Test operation

During commissioning, all indications can be passed to an automatic control system for test purposes.

Control and automatic functions

Control

In addition to the protection functions, the SIPROTEC 4 units also support all control and monitoring functions that are required for operating medium-voltage or high-voltage substations.

The main application is reliable control of switching and other processes.

The status of primary equipment or auxiliary devices can be obtained from auxiliary contacts and communicated to the 7SJ64 via binary inputs. Therefore it is possible to detect and indicate both the OPEN and CLOSED position or a fault or intermediate circuit-breaker or auxiliary contact position.

The switchgear or circuit-breaker can be controlled via:

- integrated operator panel
- binary inputs
- substation control and protection system
- DIGSI 4

Automation / user-defined logic

With integrated logic, the user can set, via a graphic interface (CFC), specific functions for the automation of switchgear or substation. Functions are activated via function keys, binary input or via communication interface.

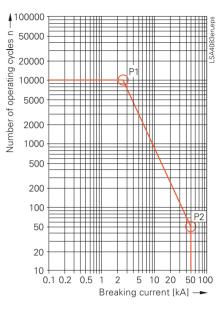


Fig. 5/156 CB switching cycle diagram

Switching authority

Switching authority is determined according to parameters, communication or by keyoperated switch (when available). If a source is set to "LOCAL", only local switching operations are possible. The following sequence of switching authority is laid down: "LOCAL"; DIGSI PC program, "REMOTE".

Key-operated switch

7SJ64 units are fitted with key-operated switch function for local/remote changeover and changeover between interlocked switching and test operation.

Command processing

All the functionality of command processing is offered. This includes the processing of single and double commands with or without feedback, sophisticated monitoring of the control hardware and software, checking of the external process, control actions using functions such as runtime monitoring and automatic command termination after output. Here are some typical applications:

- Single and double commands using 1, 1 plus 1 common or 2 trip contacts
- User-definable bay interlocks
- Operating sequences combining several switching operations such as control of circuit-breakers, disconnectors and earthing switches
- Triggering of switching operations, indications or alarm by combination with existing information

¹⁾ The 40 to 60, 50 to 70 Hz range is available for $f_{\rm N}$ = 50/60 Hz.

Function

Motor control

The SIPROTEC 4 7SJ64 with high performance relays is well-suited for direct activation of the circuit-breaker, disconnector and earthing switch operating mechanisms in automated substations.

Interlocking of the individual switching devices takes place with the aid of programmable logic. Additional auxiliary relays can be eliminated. This results in less wiring and engineering effort.

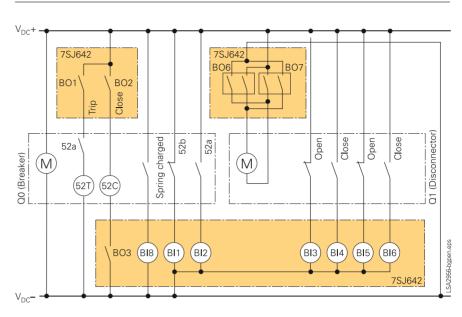
Assignment of feedback to command

The positions of the circuit-breaker or switching devices and transformer taps are acquired by feedback. These indication inputs are logically assigned to the corresponding command outputs. The unit can therefore distinguish whether the indication change is a consequence of switching operation or whether it is a spontaneous change of state.

Chatter disable

Chatter disable feature evaluates whether, in a configured period of time, the number of status changes of indication input exceeds a specified figure. If exceeded, the indication input is blocked for a certain period, so that the event list will not record excessive operations.

Indication filtering and delay


Binary indications can be filtered or delayed.

Filtering serves to suppress brief changes in potential at the indication input. The indication is passed on only if the indication voltage is still present after a set period of time.

In the event of indication delay, there is a wait for a preset time. The information is passed on only if the indication voltage is still present after this time.

Indication derivation

A further indication (or a command) can be derived from an existing indication. Group indications can also be formed. The volume of information to the system interface can thus be reduced and restricted to the most important signals.

Typical wiring for 7SJ642 motor direct control (simplified representation without fuses) Binary output BO6 and BO7 are interlocked so that only one set of contacts are closed at a time.

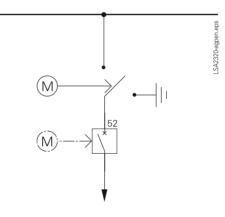
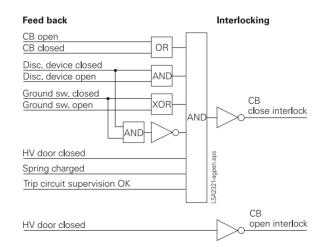



Fig. 5/158 Example: Single busbar with circuit-breaker and motor-controlled three-position switch

Function

Measured values

The r.m.s. values are calculated from the acquired current and voltage along with the power factor, frequency, active and reactive power. The following functions are available for measured value processing:

- Currents I_{L1} , I_{L2} , I_{L3} , I_E , I_{EE} (67Ns)
- Voltages V_{L1}, V_{L2}, V_{L3}, V_{L1L2}, V_{L2L3}, V_{L3L1}, V_{syn}
- Symmetrical components *I*₁, *I*₂, 3*I*₀; *V*₁, *V*₂, *V*₀
- Power Watts, Vars, VA/P, Q, S (P, Q: total and phase-selective)
- Power factor (cos φ) (total and phase-selective)
- Frequency
- Energy ± kWh, ± kVArh, forward and reverse power flow
- Mean as well as minimum and maximum current and voltage values
- Operating hours counter
- Mean operating temperature of overload function
- Limit value monitoring
- Limit values are monitored using programmable logic in the CFC. Commands can be derived from this limit value indication.
- Zero suppression In a certain range of very low measured values, the value is set to zero to suppress interference.

Metered values

For internal metering, the unit can calculate an energy metered value from the measured current and voltage values. If an external meter with a metering pulse output is available, the SIPROTEC 4 unit can obtain and process metering pulses via an indication input.

The metered values can be displayed and passed on to a control center as an accumulation with reset. A distinction is made between forward, reverse, active and reactive energy.

Switchgear cubicles for high/medium voltage

All units are designed specifically to meet the requirements of high/medium-voltage applications.

In general, no separate measuring instruments (e.g. for current, voltage, frequency measuring transducer ...) or additional control components are necessary.

Fig. 5/160 NX PLUS panel (gas-insulated)

Communication

In terms of communication, the units offer substantial flexibility in the context of connection to industrial and power automation standards. Communication can be extended or added on thanks to modules for retrofitting on which the common protocols run. Therefore, also in the future it will be possible to optimally integrate units into the changing communication infrastructure, for example in Ethernet networks (which will also be used increasingly in the power supply sector in the years to come).

Serial front interface

There is a serial RS232 interface on the front of all the units. All of the unit's functions can be set on a PC by means of the DIGSI 4 protection operation program. Commissioning tools and fault analysis are also built into the program and are available through this interface.

Rear-mounted interfaces¹⁾

A number of communication modules suitable for various applications can be fitted in the rear of the flush-mounting housing. In the flush-mounting housing, the modules can be easily replaced by the user. The interface modules support the following applications:

• Time synchronization interface All units feature a permanently integrated electrical time synchronization interface. It can be used to feed timing telegrams in IRIG-B or DCF77 format into the units via time synchronization receivers.

• System interface Communication with a central control system takes place through this interface. Radial or ring type station bus topologies can be configured depending on the chosen interface. Furthermore, the units can exchange data through this interface via Ethernet and IEC 61850 protocol and can also be operated by DIGSI.

• Service interface

The service interface was conceived for remote access to a number of protection units via DIGSI. It can be an electrical RS232/RS485 interface. For special applications, a maximum of two temperature monitoring boxes (RTD-box) can be connected to this interface as an alternative.

• Additional interface Up to 2 RTD-boxes can be connected via this interface.

1) For units in panel surface-mounting housings please refer to note on page 5/193.

System interface protocols (retrofittable)

IEC 61850 protocol

The Ethernet-based IEC 61850 protocol is the worldwide standard for protection and control systems used by power supply corporations. Siemens was the first manufacturer to support this standard. By means of this protocol, information can also be exchanged directly between bay units so as to set up simple masterless systems for bay and system interlocking. Access to the units via the Ethernet bus is also possible with DIGSI. It is also possible to retrieve operating and fault messages and fault recordings via a browser. This Web monitor also provides a few items of unit-specific information in browser windows.

IEC 60870-5-103 protocol

The IEC 60870-5-103 protocol is an international standard for the transmission of protective data and fault recordings. All messages from the unit and also control commands can be transferred by means of published, Siemens-specific extensions to the protocol.

Redundant solutions are also possible. Optionally it is possible to read out and alter individual parameters (only possible with the redundant module).

PROFIBUS-DP protocol

PROFIBUS-DP is the most widespread protocol in industrial automation. Via PROFIBUS-DP, SIPROTEC units make their information available to a SIMATIC controller or, in the control direction, receive commands from a central SIMATIC. Measured values can also be transferred.

MODBUS RTU protocol

This uncomplicated, serial protocol is mainly used in industry and by power supply corporations, and is supported by a number of unit manufacturers. SIPROTEC units function as MODBUS slaves, making their information available to a master or receiving information from it. A time-stamped event list is available.

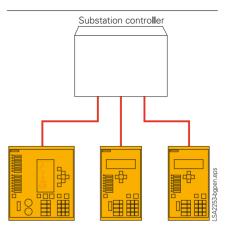


Fig. 5/161 IEC 60870-5-103: Radial fiber-optic connection

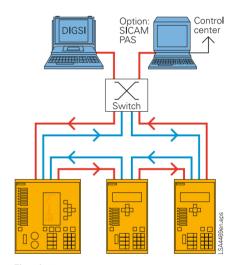


Fig. 5/162

Bus structure for station bus with Ethernet and IEC 61850, fiber-optic ring

Communication

DNP 3.0 protocol

Power supply corporations use the serial DNP 3.0 (Distributed Network Protocol) for the station and network control levels. SIPROTEC units function as DNP slaves, supplying their information to a master system or receiving information from it.

System solutions for protection and station control

Together with the SICAM power automation system, SIPROTEC 4 can be used with PROFIBUS-FMS. Over the low-cost electrical RS485 bus, or interference-free via the optical double ring, the units exchange information with the control system.

Units featuring IEC 60870-5-103 interfaces can be connected to SICAM in parallel via the RS485 bus or radially by fiber-optic link. Through this interface, the system is open for the connection of units of other manufacturers (see Fig. 5/161).

Because of the standardized interfaces, SIPROTEC units can also be integrated into systems of other manufacturers or in SIMATIC. Electrical RS485 or optical interfaces are available. The optimum physical data transfer medium can be chosen thanks to opto-electrical converters. Thus, the RS485 bus allows low-cost wiring in the cubicles and an interference-free optical connection to the master can be established.

For IEC 61850, an interoperable system solution is offered with SICAM PAS. Via the 100 Mbits/s Ethernet bus, the units are linked with PAS electrically or optically to the station PC. The interface is standardized, thus also enabling direct connection of units of other manufacturers to the Ethernet bus. With IEC 61850, however, the units can also be used in other manufacturers' systems (see Fig. 5/162).

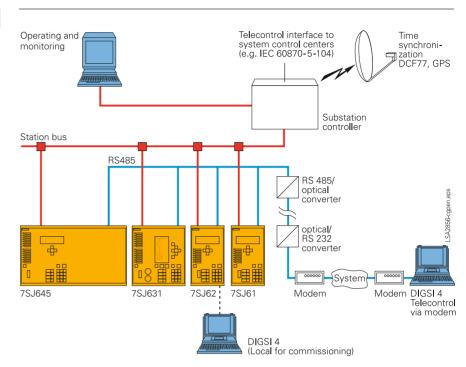


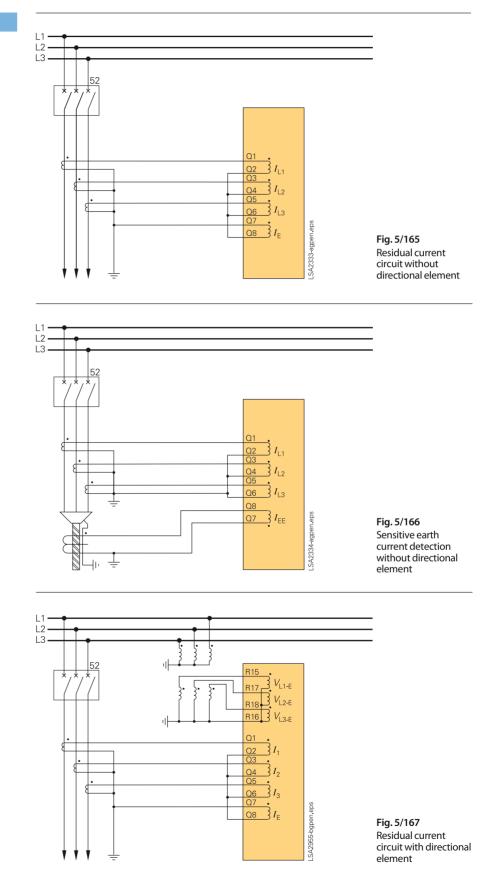
Fig. 5/163

System solution/communication

Fig. 5/164 Optical Ethernet communication module for IEC 61850 with integrated Ethernet-switch

5

SIEMENS

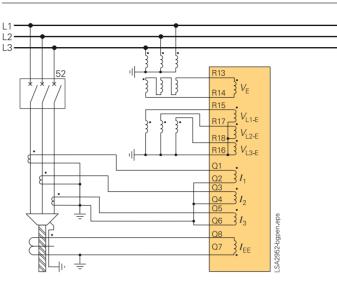

siemens-russia.com

Typical connections

Connection of current and voltage transformers

Standard connection

For earthed networks, the earth current is obtained from the phase currents by the residual current circuit.



Typical connections

Connection for compensated networks

The figure shows the connection of two phase-to-earth voltages and the *V*_E voltage of the open delta winding and a phase-earth neutral current transformer for the earth current. This connection maintains maximum precision for directional earth-fault detection and must be used in compensated networks.

Fig. 5/168 shows sensitive directional earth-fault detection.

Fig. 5/168 Sensitive directional earth-fault detection with directional element for phases

Connection for isolated-neutral or compensated networks only

If directional earth-fault protection is not used, the connection can be made with only two phase current transformers. Directional phase short-circuit protection can be achieved by using only two primary transformers.

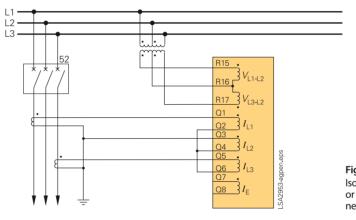
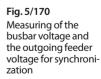



Fig. 5/169 Isolated-neutral or compensated networks

Connection for the synchronization function

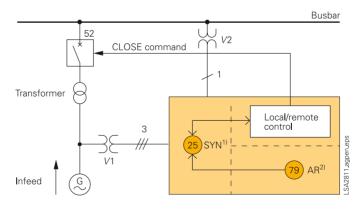
The 3-phase system is connected as reference voltage, i. e. the outgoing voltages as well as a single-phase voltage, in this case a busbar voltage, that has to be synchronized.

Typical applications

Overview of connection types

Type of network	Function	Current connection	Voltage connection
(Low-resistance) earthed network	Time-overcurrent protection phase/earth non-directional	Residual circuit, with 3 phase-current transformers required, phase-balance neutral current transformer possible	-
(Low-resistance) earthed networks	Sensitive earth-fault protection	Phase-balance neutral current transformers required	-
Isolated or compensated networks	Time-overcurrent protection phases non-directional	Residual circuit, with 3 or 2 phase- current transformers possible	-
(Low-resistance) earthed networks	Time-overcurrent protection phases directional	Residual circuit, with 3 phase-current transformers possible	Phase-to-earth connection or phase-to-phase connection
Isolated or compensated networks	Time-overcurrent protection phases directional	Residual circuit, with 3 or 2 phase- current transformers possible	Phase-to-earth connection or phase-to-phase connection
(Low-resistance) earthed networks	Time-overcurrent protection earth directional	Residual circuit, with 3 phase-current transformers required, phase-balance neutral current transformers possible	Phase-to-earth connection required
Isolated networks	Sensitive earth-fault protection	Residual circuit, if earth current > $0.05 I_N$ on secondary side, other- wise phase-balance neutral current transformers required	3 times phase-to-earth connection or phase-to-earth connection with open delta winding
Compensated networks	Sensitive earth-fault protection $\cos \varphi$ measurement	Phase-balance neutral current transformers required	Phase-to-earth connection with open delta winding required

Application examples


Synchronization function

When two subnetworks must be interconnected, the synchronization function monitors whether the subnetworks are synchronous and can be connected without risk of losing stability.

As shown in Fig. 5/171, load is being fed from a generator to a busbar via a transformer. It is assumed that the frequency difference of the 2 subnetworks is such that the device determines asynchronous system conditions.

The voltages of the busbar and the feeder should be the same when the contacts are made; to ensure this condition the synchronism function must run in the "synchronous/asynchronous switching" mode. In this mode, the operating time of the CB can be set within the relay. Differences between angle and frequency can then be calculated by the relay while taking into account the operating time of the CB. From these differences, the unit derives the exact time for issuing the CLOSE command under asynchronous conditions. When the contacts close, the voltages will be in phase. The vector group of the transformer can be considered by setting parameters. Thus no external circuits for vector group adaptation are required.

This synchronism function can be applied in conjunction with the auto-reclosure function as well as with the control function CLOSE commands (local/remote).

1) Synchronization function

2) Auto-reclosure function

Typical applications

Connection of circuit-breaker

Undervoltage releases

Undervoltage releases are used for automatic tripping of high-voltage motors.

Example:

DC supply voltage of control system fails and manual electric tripping is no longer possible.

Automatic tripping takes place when voltage across the coil drops below the trip limit. In Figure 5/172, tripping occurs due to failure of DC supply voltage, by automatic opening of the live status contact upon failure of the protection unit or by short-circuiting the trip coil in event of a network fault.

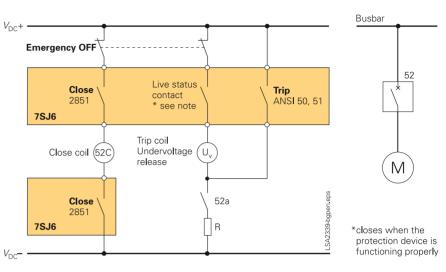


Fig. 5/172 Undervoltage release with make contact 50, 51

In Fig. 5/173 tripping is by failure of auxiliary voltage and by interruption of tripping circuit in the event of network failure. Upon failure of the protection unit, the tripping circuit is also interrupted, since contact held by internal logic drops back into open position.

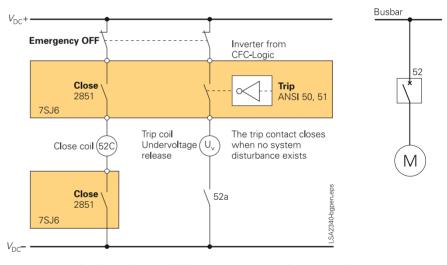
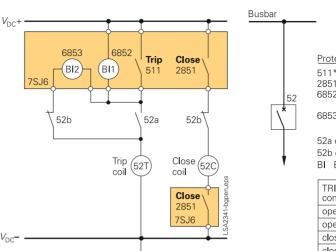


Fig. 5/173 Undervoltage release with locking contact (trip signal 50 is inverted)

Typical applications

Trip circuit supervision (ANSI 74TC)


One or two binary inputs can be used for monitoring the circuit-breaker trip coil including its incoming cables. An alarm signal occurs whenever the circuit is interrupted.

Lockout (ANSI 86)

All binary outputs can be stored like LEDs and reset using the LED reset key. The lockout state is also stored in the event of supply voltage failure. Reclosure can only occur after the lockout state is reset.

Reverse-power protection for dual supply (ANSI 32R)

If power is fed to a busbar through two parallel infeeds, then in the event of any fault on one of the infeeds it should be selectively interrupted. This ensures a continued supply to the busbar through the remaining infeed. For this purpose, directional devices are needed which detect a short-circuit current or a power flow from the busbar in the direction of the infeed. The directional timeovercurrent protection is usually set via the load current. It cannot be used to deactivate low-current faults. Reverse-power protection can be set far below the rated power. This ensures that it also detects power feedback into the line in the event of low-current faults with levels far below the load current. Reverse-power protection is performed via the "flexible protection functions" of the 7SJ64.

	Protection indications
	511* General trip
	2851* CB close command
2	6852* Trip circuit supervi-
7	sion: Trip relay
	6853* Trip circuit supervi-
	sion: CB aux
	52a open, when CB is open
	52b open, when CB is closed
	BI Binary input
	e. entary mpore

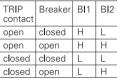


Fig. 5/174 Trip circuit supervision with 2 binary inputs



Fig. 5/175 Reverse-power protection for dual supply

Technical data

General unit data					
Measuring circuits					
System frequency		50 / 60 I	Hz (setta	ble)	
Current transformer					
Rated current Inom		1 or 5 A	(settable	e)	
Option: sensitive earth-fault	CT	$I_{\rm EE} < 1.6$	6 A		
Power consumption at $I_{\text{nom}} = 1 \text{ A}$ at $I_{\text{nom}} = 5 \text{ A}$ for sensitive earth-fault C	Γat 1 A	Approx. 0.05 VA per phase Approx. 0.3 VA per phase Approx. 0.05 VA			
Overload capability Thermal (effective)		$30 \ge I_{nor}$	om for 1 s n for 10 s continu	8	
Dynamic (impulse curren	t)	250 x I _n	om (half o	cycle)	
Overload capability if equipped with sensitive earth-fault CT Thermal (effective) Dynamic (impulse current)		300 A for 1 s 100 A for 10 s 15 A continuous 750 A (half cycle)			
Voltage transformer			,		
Rated voltage V _{nom}		100 V to 225 V			
Measuring range		0 V to 200 V			
Power consumption at V_{norr}	= 100 V	< 0.3 V	A per ph	ase	
Overload capability in voltage path (phase-neutral voltage) Thermal (effective)		230 V continuous			
Auxiliary voltage (via integ	rated con	verter)			
Rated auxiliary voltage Vaux		24/48 V	60/1	25 V 110	/250 V
Permissible tolerance	DC	19 - 58 '	V 48 -	150 V 88 -	- 300 V
Ripple voltage, peak-to-peak		\leq 12 % of rated auxiliary voltage			
Power consumption		7SJ640		7SJ645	7SJ647
Quiescent Energized	Approx. Approx.		5.5 W 12.5 W	6.5 W 15 W	7.5 W 21 W
Backup time during loss/short-circuit of auxiliary direct voltage		≥ 50 ms at V > 110 V DC ≥ 20 ms at V > 24 V DC			
Rated auxiliary voltage V _{aux} AC		115 / 23	0 V		
Permissible tolerance	AC	92 - 132 V / 184 - 265 V			
Power consumption		7SJ640	7SJ641 7SJ642	7SJ645	7SJ647
Quiescent Energized	Approx. Approx.	7 W 12 W	9 W 19 W	12 W 23 W	16 W 33 W
Backup time during loss/sho of auxiliary alternating volta		≥ 200 m	15		

Binary inputs/indication inputs							
Туре	7SJ640	7SJ641	7SJ642	7SJ645	7SJ647		
Number (marshallable)	7	15	20	33	48		
Voltage range	24 - 250	V DC					
Pickup threshold modifiable by plug-in jumpers							
Pickup threshold DC	19 V DC		88 V DC				
For rated control voltage DC	24/48/60/ 125 V DC		110/125/	220/250 V	/ DC		
Power consumption energized	for BI 8	.19/21	ent of ope .32; 7 / 20/33	U	tage)		
Binary outputs/command o	outputs						
Туре	7SJ640	7SJ641	7SJ642	7SJ645	7SJ647		
Command/indication relay	5	13	8	11	21		
Contacts per command/ indication relay	1 NO / form A						
Live status contact	1 NO / N	C (jumpe	r)/form A	/B			
Switching capacity Make	1000 W /	VA					
Break		A / 40 W $L/R \le 50 m$					
Switching voltage	$\leq 250 \text{ V}$	DC					
Permissible current	30 A for (continuous, A for 0.5 s making current, 0 switching cycles					
Power relay (for motor cont	rol)						
Туре	7SJ640 7SJ641	7SJ642	7SJ645	7SJ647			
Number	0	2 (4)	4 (8)	4 (8)			
Number of contacts/relay	2 NO / form A						
Switching capacity Make	1000 W / VA at 48 V 250 V / 500 W at 24 V						
Break	1000 W / VA at 48 V 250 V / 500 W at 24 V						
Switching voltage	≤ 250 V DC						
Permissible current	5 A continuous, 30 A for 0.5 s						

35 V/m; 25 to 1000 MHz;

Tecl	 CUI	UU	ли

Electrical tests

Specification

Standards

IEC 60255 ANSI C37.90, C37.90.1, C37.90.2, UL508

IEC 60255-5; ANSI/IEEE C37.90.0

2.5 kV (r.m.s. value), 50/60 Hz

5 kV (peak value); 1.2/50 µs; 0.5 J

3 positive and 3 negative impulses

3.5 kV DC

500 V AC

at intervals of 5 s

Insulation tests

Standards

Voltage test (100 % test) all circuits except for auxiliary voltage and RS485/RS232 and time synchronization

Auxiliary voltage

Communication ports and time synchronization

Impulse voltage test (type test) all circuits, except communication ports and time synchronization, class III

EMC tests for interference immunity; type tests

Standards

High-frequency test IEC 60255-22-1, class III and VDE 0435 Part 303, class III

Electrostatic discharge IEC 60255-22-2 class IV and EN 61000-4-2, class IV

Irradiation with radio-frequency field, non-modulated IEC 60255-22-3 (Report) class III

Irradiation with radio-frequency field, amplitude-modulated IEC 61000-4-3; class III

Irradiation with radio-frequency field, pulse-modulated IEC 61000-4-3/ENV 50204; class III

Fast transient interference/burst IEC 60255-22-4 and IEC 61000-4-4, class IV

High-energy surge voltages (Surge) IEC 61000-4-5; class III Auxiliary voltage

Binary inputs/outputs

Line-conducted HF, amplitude-modulated IEC 61000-4-6, class III

Power frequency magnetic field IEC 61000-4-8, class IV IEC 60255-6

Oscillatory surge withstand capability ANSI/IEEE C37.90.1

Fast transient surge withstand capability ANSI/IEEE C37.90.1 IEC 60255-6; IEC 60255-22 (product standard) EN 50082-2 (generic specification) DIN 57435 Part 303 2.5 kV (peak value); 1 MHz; τ =15 ms;

400 surges per s; test duration 2 s

8 kV contact discharge; 15 kV air gap discharge; both polarities; 150 pF; $R_i = 330 \Omega$ 10 V/m; 27 to 500 MHz

10 V/m, 80 to 1000 MHz; AM 80 %; 1 kHz

10 V/m, 900 MHz; repetition rate 200 Hz, on duration 50 %

4 kV; 5/50 ns; 5 kHz; burst length = 15 ms; repetition rate 300 ms; both polarities; $R_i = 50 \Omega$; test duration 1 min

From circuit to circuit: 2 kV; 12 Ω; 9 μF across contacts: 1 kV; 2 Ω;18 µF

From circuit to circuit: 2 kV; 42 Ω; 0.5 μF across contacts: 1 kV; 42 Ω; 0.5 µF 10 V; 150 kHz to 80 MHz;

AM 80 %; 1 kHz

30 A/m; 50 Hz, continuous 300 A/m; 50 Hz, 3 s 0.5 mT, 50 Hz 2.5 to 3 kV (peak value), 1 to 1.5 MHz

damped wave; 50 surges per s; duration 2 s, $R_i = 150$ to 200 Ω

4 to 5 kV; 10/150 ns; 50 surges per s both polarities; duration 2 s, $R_i = 80 \Omega$ Radiated electromagnetic interference ANSI/IEEE C37.90.2 Damped wave

IEC 60694 / IEC 61000-4-12

2.5 kV (peak value, polarity

alternating) 100 kHz, 1 MHz, 10 and 50 MHz, $R_{i} = 200 \Omega_{i}$

amplitude and pulse-modulated

EMC tests for interference emission; type tests

Standard Conducted interferences only auxiliary voltage IEC/CISPR 22 Radio interference field strength IEC/CISPR 11 Units with a detached operator panel must be installed in a metal cubicle to

EN 50081-* (generic specification) 150 kHz to 30 MHz Limit class B 30 to 1000 MHz

Limit class B

maintain limit class B

Mechanical stress tests

Vibration, shock stress and seismic vibration

During operation Standards Vibration IEC 60255-21-1, class 2 IEC 60068-2-6

Shock IEC 60255-21-2, class 1 IEC 60068-2-27

Seismic vibration IEC 60255-21-3, class 1 IEC 60068-3-3

During transportation

Standards

Vibration IEC 60255-21-1, class 2 IEC 60068-2-6

Shock IEC 60255-21-2, Class 1 IEC 60068-2-27

Continuous shock IEC 60255-21-2, class 1 IEC 60068-2-29

Sinusoidal 10 to 60 Hz; +/- 0.075 mm amplitude: 60 to 150 Hz; 1 g acceleration frequency sweep 1 octave/min 20 cycles in 3 perpendicular axes Semi-sinusoidal Acceleration 5 g, duration 11 ms; 3 shocks in both directions of 3 axes Sinusoidal 1 to 8 Hz: \pm 3.5 mm amplitude (horizontal axis) 1 to 8 Hz: ± 1.5 mm amplitude (vertical axis) 8 to 35 Hz: 1 g acceleration (horizontal axis) 8 to 35 Hz: 0.5 g acceleration (vertical axis)

IEC 60255-21 and IEC 60068-2

Frequency sweep 1 octave/min 1 cycle in 3 perpendicular axes

IEC 60255-21 and IEC 60068-2 Sinusoidal

5 to 8 Hz: \pm 7.5 mm amplitude; 8 to 150 Hz; 2 g acceleration, frequency sweep 1 octave/min 20 cycles in 3 perpendicular axes

Semi-sinusoidal Acceleration 15 g, duration 11 ms 3 shocks in both directions of 3 axes

Semi-sinusoidal Acceleration 10 g, duration 16 ms 1000 shocks in both directions of 3 axes

Climatic stress tests

Temperatures

Type-tested acc. to IEC 60068-2-1
and -2, test Bd, for 16 h

Temporarily permissible operating temperature, tested for 96 h

Recommended permanent operating temperature acc. to IEC 60255-6 (Legibility of display may be impaired above +55 °C /+131 °F)

- Limiting temperature during permanent storage
- Limiting temperature during transport

Humidity

Permissible humidity It is recommended to arrange the units in such a way that they are n

units in such a way that they are not exposed to direct sunlight or pronounced temperature changes that could cause condensation.

Unit design

7SJ640 7SJ642	7SJ641	7SJ645 7SJ647
7XP20		
	0	s,
Housing width 1/3	Housing width 1/2	Housing width 1/1
8	11	15
5	6	10
_	8	12
-	2.5	2.5
		;
	7SJ642 7XP20 See dimensi part 15 of th Housing width 1/3 8 5 - - - - IP 51 Front: IP 51	7SJ6427XP20See dimension drawing part 15 of this catalogHousing width 1/3Housing width 1/381156-8-2.5

-20 °C to +70 °C /-4 °F to -158 °F -5 °C to +55 °C /+25 °F to +131 °F -25 °C to +55 °C /-13 °F to +131 °F -25 °C to +70 °C /-13 °F to +158 °F

-25 °C to +85 °C /-13 °F to +185 °F

Annual average 75 % relative humidity; on 56 days a year up to 95 % relative humidity; condensation not permissible!

Serial interfaces **Operating interface** (front of unit) Connection Non-isolated, RS232; front panel, 9-pin subminiature connector Transmission rate Factory setting 115200 baud, min. 4800 baud, max. 115200 baud Service/modem interface (rear of unit) Isolated interface for data transfer Port C: DIGSI 4/modem/RTD-box Factory setting 38400 baud, Transmission rate min. 4800 baud, max. 115200 baud RS232/RS485 Connection For flush-mounting housing/ 9-pin subminiature connector, surface-mounting housing with mounting location "C" detached operator panel For surface-mounting housing At the bottom part of the housing: with two-tier terminal at the shielded data cable top/bottom part Distance RS232 15 m /49.2 ft Distance RS485 Max. 1 km/3300 ft Test voltage 500 V AC against earth Additional interface (rear of unit) Isolated interface for data transfer Port D: RTD-box Transmission rate Factory setting 38400 baud, min. 4800 baud, max. 115200 baud RS485 Connection For flush-mounting housing/ 9-pin subminiature connector, mounting location "D" surface-mounting housing with detached operator panel For surface-mounting housing At the bottom part of the housing: with two-tier terminal at the shielded data cable top/bottom part Distance Max. 1 km/3300 ft Test voltage 500 V AC against earth Fiber optic Integrated ST connector for fiber-Connection fiber-optic cable optic connection For flush-mounting housing/ Mounting location "D" surface-mounting housing with detached operator panel For surface-mounting housing At the bottom part of the housing with two-tier terminal at the top/bottom part Optical wavelength 820 nm Permissible path attenuation Max. 8 dB, for glass fiber 62.5/125 µm Distance Max. 1.5 km/0.9 miles

System interface (rear of unit)

IEC 60870-5-103 protocol Isolated interface for data transfer to a control center

Transmission rate

RS232/RS485

Connection For flush-mounting housing/ surface-mounting housing with detached operator panel For surface-mounting housing with two-tier terminal on the top/bottom part

Distance RS232

Distance RS485

Test voltage

Fiber optic

Connection fiber-optic cable

For flush-mounting housing/ surface-mounting housing with detached operator panel

For surface-mounting housing with two-tier terminal on the top/bottom part

Optical wavelength

Permissible path attenuation Distance

IEC 60870-5-103 protocol, redundant

RS485

Connection For flush-mounting housing/ surface-mounting housing with detached operator panel For surface-mounting housing with two-tier terminal on the top/bottom part

Distance RS485

Test voltage

IEC 61850 protocol

Isolated interface for data transfer: - to a control center

- with DIGSI

- between SIPROTEC 4 relays

Transmission rate

Ethernet, electrical

Connection For flush-mounting housing/ surface-mounting housing with detached operator panel

Distance

Test voltage

Ethernet, optical

Connection For flush-mounting housing/ surface-mounting housing with detached operator panel Optical wavelength Distance

Port B

Factory setting 9600 baud, min. 1200 baud, max. 115200 baud

Mounting location "B"

At the bottom part of the housing: shielded data cable

Max. 15 m/49 ft Max. 1 km/3300 ft 500 V AC against earth

Integrated ST connector for fiberoptic connection Mounting location "B"

At the bottom part of the housing

820 nm Max. 8 dB, for glass fiber 62.5/125 µm Max. 1.5 km/0.9 miles

Mounting location "B"

(not available)

Max. 1 km/3300 ft 500 V AC against earth

Port B, 100 Base T acc. to IEEE802.3

100 Mbit

Two RJ45 connectors Mounting location "B"

Max. 20 m / 65.6 ft 500 V AC against earth

Intergr. LC connector for FO connection Mounting location "B"

1300 nmm 1.5 km/0.9 miles

PROFIBUS-FMS/DP Isolated interface for data transfer Port B to a control center Up to 1.5 Mbaud Transmission rate RS485 Connection For flush-mounting housing/ surface-mounting housing with detached operator panel For surface-mounting housing with two-tier terminal on the shielded data cable top/bottom part Distance Test voltage Fiber optic Connection fiber-optic cable For flush-mounting housing/ surface-mounting housing with detached operator panel For surface-mounting housing with two-tier terminal on the top/bottom part Optical wavelength 820 nm Permissible path attenuation Distance 1500 kB/s 530 m/0.33 miles MODBUS RTU, ASCII, DNP 3.0 Isolated interface for data transfer Port B to a control center Transmission rate Up to 19200 baud RS485 Connection For flush-mounting housing/ surface-mounting housing with detached operator panel For surface-mounting housing with two-tier terminal at the shielded data cable top/bottom part Distance recommended Test voltage

Fiber-optic

Connection fiber-optic cable

For flush-mounting housing/ surface-mounting housing with detached operator panel For surface-mounting housing with two-tier terminal at the top/bottom part

Optical wavelength

Permissible path attenuation Distance

1) At $I_{\text{nom}} = 1$ A, all limits divided by 5.

9-pin subminiature connector, mounting location "B" At the bottom part of the housing: $1000 \text{ m}/3300 \text{ ft} \le 93.75 \text{ kbaud};$ $500 \text{ m}/1500 \text{ ft} \le 187.5 \text{ kbaud};$ $200 \text{ m}/600 \text{ ft} \le 1.5 \text{ Mbaud};$ 100 m/300 ft ≤ 12 Mbaud 500 V AC against earth Integr. ST connector for FO connection, mounting location "B" At the bottom part of the housing Important: Please refer to footnotes

and ²⁾ on page 5/215 Max. 8 dB, for glass fiber 62.5/125 µm 500 kB/s 1.6 km/0.99 miles

9-pin subminiature connector, mounting location "B"

At bottom part of the housing:

Max. 1 km/3300 ft max. 32 units

500 V AC against earth

Integrated ST connector for fiber-optic connection Mounting location "B"

At the bottom part of the housing Important: Please refer to footnotes $\frac{1}{1}$ and $\frac{2}{2}$ on page 5/215 820 nm Max 8 dB. for glass fiber 62.5/125 µm

Max. 1.5 km/0.9 miles

Time synchronization DCF77/IRIG-B	signal (Format IRIG-B000)
Connection	9-pin subminiature connector
	(SUB-D) (terminal with surface-mounting housing)
Voltage levels	5 V, 12 V or 24 V (optional)
Functions	
Definite-time overcurrent protection	n, directional/non-directional
(ANSI 50, 50N, 67, 67N)	
Operating mode non-directional phase protection (ANSI 50)	3-phase (standard) or 2-phase (L1 and L3)
Number of elements (stages)	I>, I>>, I>>> (phases) $I_E>, I_E>>, I_E>>>$ (earth)
Setting ranges	
Pickup phase elements Pickup earth elements	0.5 to 175 A or $\infty^{1)}$ (in steps of 0.01 A) 0.25 to 175 A or $\infty^{1)}$ (in steps of 0.01 A)
Delay times T Dropout delay time $T_{\rm DO}$	0 to 60 s or ∞ (in steps of 0.01 s) 0 to 60 s (in steps of 0.01 s)
Times Pickup times (without inrush restraint, with inrush restraint + 10 ms)	
With twice the setting value With five times the setting value	Non-directionalDirectionalApprox. 30 ms45 msApprox. 20 ms40 ms
Dropout times	Approx. 40 ms
Dropout ratio	Approx. 0.95 for $I/I_{\rm nom} \ge 0.3$
Tolerances Pickup Delay times <i>T</i> , <i>T</i> _{DO}	2 % of setting value or 50 mA ¹⁾ 1 % or 10 ms
Inverse-time overcurrent protection (ANSI 51, 51N, 67, 67N)	, directional/non-directional
Operating mode non-directional phase protection (ANSI 51)	3-phase (standard) or 2-phase (L1 and L3)
Setting ranges Pickup phase element <i>I</i> _P Pickup earth element <i>I</i> _{EP} Time multiplier <i>T</i> (IEC characteristics)	0.5 to 20 A or ∞^{11} (in steps of 0.01 A) 0.25 to 20 A or ∞^{11} (in steps of 0.01 A) 0.05 to 3.2 s or ∞ (in steps of 0.01 s)
Time multiplier <i>D</i> (ANSI characteristics)	0.05 to 15 s or ∞ (in steps of 0.01 s)
Undervoltage threshold $V <$ for release I_p	10.0 to 125.0 V (in steps of 0.1 V)
Trip characteristics IEC ANSI	Normal inverse, very inverse, extremely inverse, long inverse Inverse, short inverse, long inverse moderately inverse, very inverse,
User-defined characteristic	extremely inverse, definite inverse Defined by a maximum of 20 value pairs of current and time delay
Dropout setting Without disk emulation	Approx. 1.05 · setting value I_p for $I_p/I_{nom} \ge 0.3$, corresponds to approx. 0.95 · pickup threshold
With disk emulation	Approx. 0.90 \cdot setting value $I_{\rm p}$

Tolerances Pickup/dropout thresholds I_{p} , I_{Ep} Pickup time for $2 \le I/I_{p} \le 20$	2 % of setting value or 50 mA ¹⁾ 5 % of reference (calculated) value + 2 % current tolerance, respectively 30 ms
Dropout ratio for $0.05 \le I/I_{\rm p}$ ≤ 0.9	5 % of reference (calculated) value + 2 % current tolerance, respectively 30 ms
Direction detection	
For phase faults	
Polarization	With cross-polarized voltages; With voltage memory for measure- ment voltages that are too low
Forward range Rotation of reference voltage $V_{\text{ref,rot}}$	$V_{\text{ref,rot}} \pm 86^{\circ}$ - 180° to 180° (in steps of 1°)
Direction sensitivity	For one and two-phase faults unlimited; For three-phase faults dynamically unlimited; Steady-state approx. 7 V phase-to-phase
For earth faults	
Polarization	With zero-sequence quantities $3V_0$, $3I_0$ or with negative-sequence quantities $3V_2$, $3I_2$
Forward range Rotation of reference voltage $V_{\text{ref,rot}}$	$V_{\text{ref,rot}} \pm 86^{\circ}$ - 180° to 180° (in steps of 1°)
Direction sensitivity Zero-sequence quantities $3V_0$, $3I_0$	$V_{\rm E} \approx 2.5$ V displacement voltage, measured; $3V_0 \approx 5$ V displacement voltage,
Negative -sequence quantities $3V_2, 3I_2$	calculated $3V_2 \approx 5$ V negative-sequence voltage; $3I_2 \approx 225$ mA negative-sequence current ¹⁾
Tolerances (phase angle error under reference conditions) For phase and earth faults	± 3 ° electrical
Inrush blocking	
Influenced functions	Time-overcurrent elements, I >, I_E >, I_p , I_{Ep} (directional, non-directional)
Lower function limit phases	At least one phase current $(50 \text{ Hz and } 100 \text{ Hz}) \ge 125 \text{ mA}^{1)}$
Lower function limit earth	Earth current $(50 \text{ Hz and } 100 \text{ Hz}) \ge 125 \text{ mA}^{1)}$
Upper function limit (setting range)	1.5 to 125 A $^{1)}$ (in steps of 0.01 A)
Setting range I_{2f}/I	10 to 45 % (in steps of 1 %)
Crossblock (I _{L1} , I _{L2} , I _{L3})	ON/OFF
Dynamic setting change	
Controllable function	Directional and non-directional pickup, tripping time
Start criteria	Current criteria, CB position via aux. contacts, binary input, auto-reclosure ready
Time control	3 timers
Current criteria	Current threshold (reset on dropping below threshold; monitoring with timer)

Siemens SI

siemens-russia.com

5

(Sensitive) earth-fault detection (ANSI 64, 50 Ns, 51Ns, 67Ns) **Displacement voltage starting** for all types of earth fault (ANSI 64) Setting ranges Pickup threshold $V_{\rm F}$ (measured) 1.8 to 200 V (in steps of 0.1 V) Pickup threshold 3V₀> (calcu-10 to 225 V (in steps of 0.1 V) lated) Delay time T_{Delay pickup} 0.04 to 320 s or ∞ (in steps of 0.01 s) 0.1 to 40000 s or ∞ (in steps of 0.01 s) Additional trip delay TVDELAY

Times Pickup time

Dropout ratio

Measuring principle

Measuring tolerance

acc. to DIN 57435 part 303

Setting ranges

Tolerances Pickup threshold $V_{\rm E}$ (measured) Pickup threshold $3V_0$ (calculated)

V_{ph min} (earth-fault phase) V_{ph max} (unfaulted phases)

Delay times

Phase detection for earth fault in an unearthed system

Voltage measurement (phase-to-earth)

Approx. 50 ms

0.95 or (pickup value -0.6 V)

3 % of setting value or 0.3 V

1 % of setting value or 10 ms

3 % of setting value or 3 V

10 to 100 V (in steps of 1 V) 10 to 100 V (in steps of 1 V) 3 % of setting value, or 1 V

Earth-fault pickup for all types of earth faults

Definite-time characteristic (ANSI 50Ns)

Setting ranges Pickup threshold *I*_{EE}>, *I*_{EE}>> 0.001 to 1.5 A (in steps of 0.001 A) For sensitive input $0.25 \text{ to } 175 \text{ A}^{1)}$ (in steps of 0.01 A) For normal input 0 to 320 s or ∞ (in steps of 0.01 s) Delay times T for $I_{\rm EE}$, $I_{\rm EE}$ >> Dropout delay time $T_{\rm DO}$ 0 to 60 s (in steps of 0.01 s) Times Pickup times Approx. 50 ms Dropout ratio Approx. 0.95 Tolerances Pickup threshold 2 % of setting value or 1 mA For sensitive input 2 % of setting value or 50 mA¹⁾ For normal input Delay times 1 % of setting value or 20 ms Earth-fault pickup for all types of earth faults Inverse-time characteristic (ANSI 51Ns) User-defined characteristic Defined by a maximum of 20 pairs

of current and delay time values Setting ranges Pickup threshold IEEP For sensitive input 0.001 A to 1.4 A (in steps of 0.001 A) For normal input 0.25 to 20 A¹⁾ (in steps of 0.01 A) User defined Time multiplier T 0.1 to 4 s or ∞ (in steps of 0.01 s) Times Pickup times Approx. 50 ms Pickup threshold Approx. 1.1 · IEEp Dropout ratio Approx. 1.05 · I_{EEp} Tolerances Pickup threshold For sensitive input 2 % of setting value or 1 mA 2 % of setting value or 50 mA¹⁾ For normal input

Note: Due to the high sensitivity the linear range of the measuring input IN with integrated sensitive input transformer is from 0.001 A to 1.6 A. For currents greater than 1.6 A, correct directionality can no longer be guaranteed.

1) For $I_{nom} = 1$ A, all limits divided by 5.

Delay times in linear range	7 % of reference value for $2 \ge I/I_{\text{EEp}}$ $\ge 20 + 2$ % current tolerance, or 70 ms
Logarithmic inverse Logarithmic inverse with knee point	Refer to the manual Refer to the manual
Direction detection for all types of ea	rth-faults (ANSI 67Ns)
Measuring method " $\cos \varphi / \sin \varphi$ "	
Direction measurement	$I_{\rm E}$ and $V_{\rm E}$ measured or $3I_0$ and $3V_0$ calculated
Measuring principle	Active/reactive power measurement
Setting ranges Measuring enable $I_{\text{Release direct.}}$ For sensitive input For normal input Direction phasor $\varphi_{\text{Correction}}$ Reduction of dir. area $\alpha_{\text{Red.dir.area}}$ Dropout delay $T_{\text{Reset delay}}$	0.001 to 1.2 A (in steps of 0.001 A) 0.25 to 150 A ¹⁾ (in steps of 0.01 A) - 45 ° to + 45 ° (in steps of 0.1 °) 1 ° to 15 ° (in steps of 1 °) 1 to 60 s (in steps of 1 s)
Tolerances Pickup measuring enable For sensitive input For normal input Angle tolerance	2 % of setting value or 1 mA 2 % of setting value or 50 mA $^{1)}$ 3 $^{\circ}$
Measuring method " φ (V_0/I_0)"	r 1 yr 1
Direction measurement	$I_{\rm E}$ and $V_{\rm E}$ measured or 3 I_0 and 3 V_0 calculated
Minimum voltage V_{\min} measured Minimum voltage V_{\min} calculated Phase angle φ Delta phase angle $\Delta \varphi$	0.4 to 50 V (in steps of 0.1 V) 10 to 90 V (in steps of 1 V) -180° to 180° (in steps of 0.1°) 0° to 180° (in steps of 0.1°)
Tolerances Pickup threshold $V_{\rm E}$ (measured) Pickup threshold 3 V_0 (calculated) Angle tolerance	3 % of setting value or 0.3 V 3 % of setting value or 3 V 3 °
Angle correction for cable CT	
Angle correction F1, F2	0° to 5° (in steps of 0.1°)
Current value <i>I</i> 1, <i>I</i> 2 For sensitive input For normal input	0.001 to 1.5 A (in steps of 0.001 A) 0.25 to 175 A ¹⁾ (in steps of 0.01 A)
High-impedance restricted earth-faul overcurrent protection	t protection (ANSI 87N) / single-phase
Setting ranges Pickup thresholds <i>I</i> >, <i>I</i> >> For sensitive input For normal input Delay times <i>T</i> ₁ >, <i>T</i> ₁ >>	0.003 to 1.5 A or ∞ (in steps of 0.001 A) 0.25 to 175 A ¹⁾ or ∞ (in steps of 0.01 A) 0 to 60 s or ∞ (in steps of 0.01 s)
Times Pickup times Minimum Typical Dropout times	Approx. 20 ms Approx. 30 ms Approx. 30 ms
Dropout ratio	Approx. 0.95 for $I/I_{\text{nom}} \ge 0.5$
Tolerances Pickup thresholds	3 % of setting value or 1 % rated current at $I_{nom} = 1$ or 5 A; 5 % of setting value or 3 % rated current at $I_{nom} = 0.1$ A
Delay times	1 % of setting value or 10 ms

. .

Intermittent earth-fault	protectio	on
Setting ranges		
Pickup threshold		D.
For I _E For 3I ₀	$I_{IE}>$ $I_{IE}>$	0.25 to 175 A ¹⁾ (in steps of 0.01 A) 0.25 to 175 A ¹⁾ (in steps of 0.01 A)
For $I_{\rm EE}$	$I_{\rm IE}$ > $I_{\rm IE}$ >	0.005 to 1.5 A (in steps of 0.001 A)
Pickup prolon-	$T_{\rm V}$	0 to 10 s (in steps of 0.01 s)
gation time		
Earth-fault accu- mulation time	T_{sum}	0 to 100 s (in steps of 0.01 s)
Reset time for accumulation	T _{res}	1 to 600 s (in steps of 1 s)
Number of pickups for intermittent earth fault		2 to 10 (in steps of 1)
Times		
Pickup times Current = $1.25 \cdot \text{pickup}$	ın value	Approx 30 ms
Current $\geq 2 \cdot \text{pickup}$	value	Approx. 22 ms
Dropout time		Approx. 22 ms
Tolerances		
Pickup threshold <i>I</i> _{IE} >		3 % of setting value, or 50 mA ¹⁾
Times T_V , T_{sum} , T_{res}		1 % of setting value or 10 ms
Thermal overload prote	ction (AN	ISI 49)
Setting ranges		
Factor k		0.1 to 4 (in steps of 0.01)
Time constant		1 to 999.9 min (in steps of 0.1 min)
Warning overtemperat $\Theta_{alarm}/\Theta_{trip}$	ure	50 to 100 % with reference to the tripping overtemperature (in steps of 1 %)
Current warning stage Ialarm		0.5 to 20 A (in steps of 0.01 A)
Extension factor when stopped k_{τ} factor		1 to 10 with reference to the time con- stant with the machine running (in steps of 0.1)
Rated overtemperature (for <i>I</i> _{nom})		
Tripping characteristic		
For $(I/k \cdot I_{nom}) \le 8$		$t = \tau_{\text{th}} \cdot \ln \frac{\left(I / k \cdot I_{\text{nom}}\right)^2 - \left(I_{\text{pre}} / k \cdot I_{\text{nom}}\right)^2}{\left(I / k \cdot I_{\text{nom}}\right)^2 - 1}$
		$(I / K \cdot I_{nom}) = 1$
Dropout ratios Θ/Θ_{Trip} Θ/Θ_{Alarm} I/I_{Alarm}		Drops out with Θ_{Alarm} Approx. 0.99 Approx. 0.97
Tolerances With reference to $\mathbf{k} \cdot I_{nq}$ With reference to tripp		Class 5 acc. to IEC 60255-8 5 % +/- 2 s acc. to IEC 60255-8
Auto-reclosure (ANSI 79)		
Number of reclosures		0 to 9 Shot 1 to 4 individually adjustable
Program for phase fault Start-up by		Time-overcurrent elements (dir., non-dir.), negative sequence, binary input
		-

Program for earth fault		
Start-up by	Time-overcurrent elements (dir., non-dir.), sensitive earth-fault protection, binary input	
Blocking of ARC	Pickup of protection functions, three-phase fault detected by a protec- tive element, binary input, last TRIP command after the reclosing cycle is complete (unsuccessful reclosing), TRIP command by the breaker failure protection (50BF), opening the CB without ARC initiation, external CLOSE command	
Setting ranges		
Dead time (separate for phase and earth and individual for shots 1 to 4)	0.01 to 320 s (in steps of 0.01 s)	
	0.5 s to 320 s or 0 (in steps of 0.01 s)	
Blocking duration after reclosure	0.5 s to 320 s (in steps of 0.01 s)	
Blocking duration after dynamic blocking	0.01 to 320 s (in steps of 0.01 s)	
Start-signal monitoring time	0.01 to 320 s or ∞ (in steps of 0.01 s)	
Circuit-breaker supervision time	0.1 to 320 s (in steps of 0.01 s)	
Max. delay of dead-time start	0 to 1800 s or ∞ (in steps of 0.1 s)	
Maximum dead time extension	0.5 to 320 s or ∞(in steps of 0.01 s)	
Action time	0.01 to 320 s or ∞ (in steps of 0.01 s)	
The delay times of the following pr can be altered individually by the <i>A</i> (setting value $T = T$, non-delayed <i>T</i> $I >>>, I >>, I_>, I_p, I_{dir} >>, I_{dir}, I_{pdir}$ $I_E >>>, I_E >>, I_E >, I_E >, I_{Ep}, I_{Edir} >>, I_{Edir} >>$	ARC for shots 1 to 4 $T = 0$, blocking $T = \infty$):	
Additional functions		
Additional functions	Lockout (final trip), delay of dead-time start via binary input (monitored), dead-time extension via binary input (monitored), co-ordination with other protection relays, circuit-breaker monitoring, evaluation of the CB contacts	
Breaker failure protection (ANSI 5	50 BF)	
Setting ranges		
Pickup thresholds	$0.2 \text{ to } 5 \text{ A}^{1)}$ (in steps of 0.01 A)	
Delay time	0.06 to 60 s or ∞ (in steps of 0.01 s)	
Times Pickup times with internal start	is contained in the delay time	
with external start Dropout times	is contained in the delay time Approx. 25 ms	
Tolerances Pickup value Delay time	2 % of setting value (50 mA) ¹⁾ 1 % or 20 ms	
Synchro- and voltage check (ANSI 25)		
Operating modes	Synchro-checkAsynchronous/synchronous	
Additional release conditions	 Live-bus / dead line Dead-bus / live-line Dead-bus <u>and</u> dead-line Bypassing 	

Siemens SI

siemens-russia.com

1) At $I_{nom} = 1$ A, all limits divided by 5.

Voltages

Voltages	
Max. operating voltage $V_{\rm max}$	20 to 140 V (phase-to-phase) (in steps of 1 V)
Min. operating voltage V_{\min}	20 to 125 V (phase-to-phase) (in steps of 1 V)
V< for dead-line / dead-bus	1 to 60 V (phase-to-phase)
check V> for live-line / live-bus check	(in steps of 1 V) 20 to 140 V (phase-to-phase) (in steps of 1 V)
Primary rated voltage of transformer V2 _{nom}	0.1 to 800 kV (in steps of 0.01 kV)
Tolerances Drop-off to pickup ratios	2 % of pickup value or 2 V approx. 0.9 (<i>V</i> >) or 1.1 (<i>V</i> <)
ΔV -measurement	
Voltage difference	0.5 to 50 V (phase-to-phase) (in steps of 1 V)
Tolerance	1 V
Δf -measurement	
Δf -measurement ($f2>f1$; $f2)Tolerance$	0.01 to 2 Hz (in steps of 0.01 Hz) 15 mHz
$\Delta \alpha$ -measurement	
$\Delta \alpha$ -measurement ($\alpha 2 > \alpha 1; \alpha 2 > \alpha 1$)	2 ° to 80 ° (in steps of 1 °)
Tolerance May phase displacement	2°
Max. phase displacement	5° for $\Delta f \le 1$ Hz 10° for $\Delta f > 1$ Hz
Circuit-breaker operating time	-
CB operating time	0.01 to 0.6 s (in steps of 0.01 s)
Threshold ASYN ↔ SYN	
Threshold synchronous / asynchronous	0.01 to 0.04 Hz (in steps of 0.01 Hz)
Adaptation	
Vector group adaptation by angle Different voltage transformers V ₁ /V ₂	0 ° to 360 ° (in steps of 1 °) 0.5 to 2 (in steps of 0.01)
Times	
Minimum measuring time Max. duration <i>T</i> syn duration	Approx. 80 ms 0.01 to 1200 s; ∞ (in steps of 0.01 s)
Supervision time $T_{SUP VOLTAGE}$	0 to 60 s (in steps of 0.01 s)
Closing time of CB $T_{CB close}$	0 to 60 s (in steps of 0.01 s)
Tolerance of all timers	1 % of setting value or 10 ms
Measuring values of synchro-check	x function
Reference voltage V1 Range Tolerance*)	In kV primary, in V secondary or in % V_{nom} 10 to 120 % V_{nom} ≤ 1 % of measured value or 0.5 % of V_{nom}
Voltage to be synchronized V2 Range Tolerance*)	In kV primary, in V secondary or in % V_{nom} 10 to 120 % V_{nom} ≤ 1 % of measured value or 0.5 % of V_{nom}
Frequency of V1 and V2 Range Tolerance*)	f1, f2 in Hz f _N ± 5 Hz 20 mHz
Voltage difference (V2 – V1) Range Tolerance*)	In kV primary, in V secondary or in % V_{nom} 10 to 120 % $V_{\text{nom}} \le 1$ % of measured value or 0.5 % of V_{nom}
Frequency difference (f2 – f1) Range Tolerance*)	In mHz $f_N \pm 5$ Hz 20 mHz
Angle difference $(\alpha 2 - \alpha 1)$ Range Tolerance*)	In ° 0 to 180 ° 0.5 °

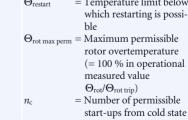
Negative-sequence current detection (ANSI 46)

Definite-time characteristic (ANSI 46-1 and 46-2)

Setting ranges	
Pickup current $I_2 >, I_2 >>$	0.5 to 15 A or ∞ (in steps of 0.01 A)
Delay times	0 to 60 s or ∞ (in steps of 0.01 s)
Dropout delay time $T_{\rm DO}$	0 to 60 s (in steps of 0.01 s)
Functional limit	All phase currents \leq 50 A ¹⁾
Times	
Pickup times	Approx. 35 ms
Dropout times	Approx. 35 ms
Dropout ratio	Approx. 0.95 for $I_2 / I_{nom} > 0.3$
Tolerances	
Pickup thresholds	3 % of the setting value or 50 mA ¹⁾
Delay times	1 % or 10 ms
Inverse-time characteristic (ANSI	46-TOC)
Setting ranges	
Pickup current	0.5 to 10 A ¹⁾ (in steps of 0.01 A)
Time multiplier T	0.05 to 3.2 s or ∞ (in steps of 0.01 s)
(IEC characteristics)	_
Time multiplier D	0.5 to 15 s or ∞ (in steps of 0.01 s)
(ANSI characteristics)	
Functional limit	All phase currents \leq 50 A ¹⁾
Trip characteristics	
IEC	Normal inverse, very inverse, extremely
	inverse
ANSI	Inverse, moderately inverse, very in-
	verse, extremely inverse
Pickup threshold	Approx. 1.1 $\cdot I_{2p}$ setting value
Dropout	
IEC and ANSI	Approx. 1.05 $\cdot I_{2p}$ setting value,
(without disk emulation)	which is approx. 0.95 · pickup threshold
ANSI with disk emulation	Approx. $0.90 \cdot I_{2p}$ setting value
Tolerances	
Pickup threshold	3 % of the setting value or 50 mA ¹⁾
Time for $2 \le M \le 20$	5 % of setpoint (calculated)
	+2 % current tolerance, at least 30 ms

Flexible protection functions (ANSI 27, 32, 47, 50, 55, 59, 81R)

1) At $I_{nom} = 1$ A, all limits divided by 5.


Operating modes / measuring quantities	
3-phase	<i>I</i> , <i>I</i> ₁ , <i>I</i> ₂ , <i>I</i> ₂ / <i>I</i> ₁ , 3 <i>I</i> ₀ , <i>V</i> , <i>V</i> ₁ , <i>V</i> ₂ , 3 <i>V</i> ₀ , d <i>V</i> /d <i>t</i> , <i>P</i> , <i>Q</i> ,
	$\cos \varphi$
1-phase	$I, I_{\rm E}, I_{\rm E sens.}, V, V_{\rm E}, {\rm P}, Q, \cos \varphi$
Without fixed phase relation	<i>f</i> , d <i>f</i> /d <i>t</i> , binary input
Pickup when	Exceeding or falling below threshold value
Setting ranges	
Current <i>I</i> , <i>I</i> ₁ , <i>I</i> ₂ , 3 <i>I</i> ₀ , <i>I</i> _E	0.15 to 200 A ¹⁾ (in steps of 0.01 A)
Current ratio I_2/I_1	15 to 100 % (in steps of 1 %)
Sens. earth curr. <i>I</i> _{E sens.}	0.001 to 1.5 A (in steps of 0.001 A)
Voltages $V, V_1, V_2, 3V_0$	2 to 260 V (in steps of 0.1 V)
Displacement voltage V _E	2 to 200 V (in steps of 0.1 V)
Power P, Q	0.5 to 10000 W (in steps of 0.1 W)
Power factor $(\cos \varphi)$	- 0.99 to + 0.99 (in steps of 0.01)
Frequency $f_{\rm N} = 50 {\rm Hz}$	40 to 60 Hz (in steps of 0.01 Hz)
$f_{\rm N} = 60 \; {\rm Hz}$	50 to 70 Hz (in steps of 0.01 Hz)
Rate-of-frequency change df/dt	0.1 to 20 Hz/s (in steps of 0.01 Hz/s)
Voltage change dV/dt	4 V/s to 100 V/s (in steps of 1 V/s)
Dropout ratio >- stage	1.01 to 3 (in steps of 0.01)
Dropout ratio <- stage	0.7 to 0.99 (in steps of 0.01)
Dropout differential f	0.02 to 1.00 Hz (in steps of 0.01 Hz)
Pickup delay time	0 to 60 s (in steps of 0.01 s)
Trip delay time	0 to 3600 s (in steps of 0.01 s)
Dropout delay time	0 to 60 s (in steps of 0.01 s)
*) With rated frequency.	

Flexible protection functions (AN	SI 27, 32, 47, 50, 55, 59, 81R) (cont'd)
Times	
Pickup times	
Current, voltage	
(phase quantities)	
With 2 times the setting value	
With 10 times the setting value	Approx. 20 ms
Current, voltages (symmetrical components)	
With 2 times the setting value	Approx, 40 ms
With 10 times the setting value	Approx. 30 ms
Power	
Typical	Approx. 120 ms
Maximum (low signals and	Approx. 350 ms
thresholds)	200
Power factor	300 to 600 ms
Frequency Rate-of-frequency change	Approx. 100 ms
with 1.25 times the setting value	Approx, 220 ms
Voltage change dV/dt	Approx. 220 ms
for 2 times pickup value	
Binary input	Approx. 20 ms
Dropout times	
Current, voltage (phase quantities)	< 20 ms
Current, voltages (symmetrical	
components)	< 30 ms
Power	. 50
Typical Maximum	< 50 ms
Power factor	< 350 ms < 300 ms
Frequency	< 100 ms
Rate-of-frequency change	< 200 ms
Voltage change	< 220 ms
Binary input	< 10 ms
Tolerances	
Pickup threshold	
Current	0.5 % of setting value or 50 mA_{1}^{1}
Current (symmetrical	1 % of setting value or 100 mA ¹⁾
components)	0.5.0/ of act ting walks on 0.1 M
Voltage Voltage (symmetrical	0.5 % of setting value or 0.1 V 1 % of setting value or 0.2 V
components)	1 70 of setting value of 0.2 V
Power	1 % of setting value or 0.3 W
Power factor	2 degrees
Frequency	5 mHz (at $V = V_N, f = f_N$)
Data of furgues as shares	10 mHz (at $V = V_N$)
Rate-of-frequency change	5 % of setting value or 0.05 Hz/s
Voltage change dV/dt Times	5 % of setting value or 2 V/s 1 % of setting value or 10 ms
	0
Starting time monitoring for mot	UIS (ANSI 46)
Setting ranges	$2.5 \pm 0.0 \mathrm{A}^{(1)}$ (in stars (0.01)
Motor starting current <i>I</i> _{STARTUP} Pickup threshold <i>I</i> _{MOTOR START}	2.5 to 80 A^{1} (in steps of 0.01) 2 to 50 A^{1} (in steps of 0.01)
Permissible starting	1 to 180 s (in steps of 0.1 s)
time T _{STARTUP} , COLD MOTOR	1 to 100 5 (11 steps 01 0.1 5)
Permissible starting	0.5 to 180 s (in steps of 0.1 s)
time T _{STARTUP} , WARM MOTOR	1
	a an ar (1) (1)

0 to 80 % (in steps of 1 %)

0.5 to 120 s or ∞ (in steps of 0.1 s)

Tripping time characteristic $t = \left(\frac{I_{\text{STARTUP}}}{I}\right)^2 \cdot T_{\text{STARTUP}}$ for $I > I_{MOTOR START}$ $I_{\text{STARTUP}} = \text{Rated motor starting}$ current T = Actual current flowing T_{STARTUP} = Tripping time for rated motor starting current t = Tripping time in seconds Dropout ratio IMOTOR START Approx. 0.95 Tolerances 2 % of setting value or 50 mA¹⁾ Pickup threshold Delay time 5 % or 30 ms Load jam protection for motors (ANSI 51M) Setting ranges Current threshold for alarm and trip 0.25 to 60 A¹⁾ (in steps of 0.01 A) Delay times 0 to 600 s (in steps of 0.01 s) Blocking duration after CLOSE signal detection 0 to 600 s (in steps of 0.01 s) Tolerances 2 % of setting value or 50 $mA^{1)}$ Pickup threshold 1 % of setting value or 10 ms Delay time Restart inhibit for motors (ANSI 66) Setting ranges Motor starting current relative 1.1 to 10 (in steps of 0.1) to rated motor current IMOTOR START/IMotor Nom 1 to 6 A¹⁾ (in steps of 0.01 A) Rated motor current I_{Motor Nom} Max. permissible starting time 1 to 320 s (in steps of 1 s) T Start Max Equilibrium time T_{Equal} 0 to 320 min (in steps of 0.1 min) Minimum inhibit time 0.2 to 120 min (in steps of 0.1 min) T_{MIN. INHIBIT TIME} Max. permissible number of 1 to 4 (in steps of 1) warm starts Difference between cold and 1 to 2 (in steps of 1) warm starts Extension k-factor for cooling 0.2 to 100 (in steps of 0.1) simulations of rotor at zero speed $k_{\tau at STOP}$ Extension factor for cooling 0.2 to 100 (in steps of 0.1) time constant with motor running $k_{\tau RUNNING}$ Restarting limit $\Theta_{\text{restart}} = \Theta_{\text{rot max perm}} \cdot \frac{n_c - 1}{n_c}$ Θ_{restart} = Temperature limit below which restarting is possible

Undercurrent monitoring (ANSI 37)

Signal from the operational measured values

Predefined with programmable logic

Temperature threshold

Permissible blocked rotor

time TBLOCKED-ROTOR

cold motor

Temperature monitoring box (ANSI 38)

Temperature detectors Connectable boxes Number of temperature detectors per box Type of measuring Mounting identification Thresholds for indications For each measuring detector Stage 1 Stage 2	1 or 2 Max. 6 Pt 100 Ω or Ni 100 Ω or Ni 120 Ω "Oil" or "Environment" or "Stator" or "Bearing" or "Other" -50 °C to 250 °C (in steps of 1 °C) -58 °F to 482 °F (in steps of 1 °F) or ∞ (no indication) -50 °C to 250 °C (in steps of 1 °C) -58 °F to 482 °F (in steps of 1 °C)
Undervoltage protection (ANSI 27	or ∞ (no indication)
Operating modes/measuring quant	tities
3-phase 1-phase	Positive phase-sequence voltage or phase-to-phase voltages or phase-to-earth voltages Single-phase phase-earth or phase-phase voltage
Setting ranges Pickup thresholds V<, V<< dependent on voltage connection and chosen measuring quantity	10 to 120 V (in steps of 1 V) 10 to 210 V (in steps of 1 V)

Dropout ratio *r* Delay times *T* Current Criteria "Bkr Closed *I*_{MIN}" Times Pickup times

Dropout times

Pickup thresholds

Tolerances

Times

1.01 to 3 (in steps of 0.01) 0 to 100 s or ∞ (in steps of 0.01 s) 0.2 to 5 A¹⁾ (in steps of 0.01 A)

Approx. 50 ms As pickup times

0.5~% of setting value or 1~V 1~% of setting value or 10~ms

Overvoltage protection (ANSI 59)

Operating modes/measuring quantities

3-phase

1-phase

Setting ranges Pickup thresholds V>, V>> dependent on voltage connection and chosen measuring quantity

Dropout ratio rDelay times T

Times Pickup times VPickup times V_1, V_2 Dropout times

Tolerances Pickup thresholds Times

3) At rated frequency.

Positive phase-sequence voltage or negative phase-sequence voltage or phase-to-phase voltages or phase-to-earth voltages Single-phase phase-earth or phase-phase voltage

40 to 260 V (in steps of 1 V) 40 to 150 V (in steps of 1 V) 2 to 150 V (in steps of 1 V) 0.9 to 0.99 (in steps of 0.01) 0 to 100 s or ∞ (in steps of 0.01 s)

 $V_{\rm E}$ or V_0

Range

Range Tolerance³⁾

Tolerance³⁾

S, apparent power

Positive-sequence component V_1

Negative-sequence component V2

Approx. 50 ms Approx. 60 ms As pickup times

0.5 % of setting value or 1 V 1 % of setting value or 10 ms

Frequency protection (ANSI 81)

Frequency protection (ANSI 81)	
Number of frequency elements	4
	40 to 60 Hz (in steps of 0.01 Hz) 50 to 70 Hz (in steps of 0.01 Hz) 0.02 Hz to 1.00 Hz (in steps of 0.01 Hz) rreshold 0 to 100 s or ∞ (in steps of 0.01 s) 10 to 150 V (in steps of 1 V)
Times	
Pickup times Dropout times	Approx. 80 ms Approx. 75 ms
Dropout Ratio undervoltage blocking	Approx. 1.05
Tolerances Pickup thresholds Frequency Undervoltage blocking	5 mHz (at $V = V_{N}, f = f_N$) 10 mHz (at $V = V_N$) 3 % of setting value or 1 V
Delay times	3 % of the setting value or 10 ms
Fault locator (ANSI 21FL)	
Output of the fault distance	In Ω primary or secondary, in km / miles of line length, in % of line length
Starting signal	Trip command, dropout of a pro- tection element, via binary input
Setting ranges Reactance (secondary)	0.001 to $1.9 \Omega/km^{2)}$ (in steps of 0.0001) 0.001 to $3 \Omega/mile^{2)}$ (in steps of 0.0001)
Tolerances Measurement tolerance acc. to VDE 0435, Part 303 for sinusoi- dal measurement quantities	2.5 % fault location, or 0.025 Ω (without intermediate infeed) for 30 ° ≤ φ K ≤ 90 ° and V _K /V _{nom} ≥ 0.1 and $I_{K}/I_{nom} \ge 1$
Additional functions	
Operational measured values	
Currents I_{L1}, I_{L2}, I_{L3} Positive-sequence component I_1 Negative-sequence component I_2 I_E or $3I_0$	In A (kA) primary, in A secondary or in % I _{nom}
Range Tolerance ³⁾	10 to 200 % <i>I</i> _{nom} 1 % of measured value or 0.5 % <i>I</i> _{nom}
Phase-to-earth voltages V_{L1-E} , V_{L2-E} , V_{L3-E} Phase-to-phase voltages V_{L1-L2} , V_{L2-L3} , V_{L3-L1} , V_{SYN} ,	In kV primary, in V secondary or in % $V_{\rm nom}$

10 to 120 % V_{nom} 1 % of measured value or 0.5 % of V_{nom} In kVAr (MVAr or GVAr) primary and in % of S_{nom} 0 to 120 % S_{nom} 1 % of S_{nom} for V/V_{nom} and $I/I_{\text{nom}} = 50$ to 120 %

SIEMENS

siemens-russia.com

At *I*_{nom} = 1 A, all limits divided by 5.
 At *I*_{nom} = 1 A, all limits multiplied with 5.

Operational measured values (cont'd)

P, active power

Range Tolerance¹⁾

Q, reactive power

Range Tolerance¹⁾

 $\cos \varphi$, power factor (p.f.) Range

Tolerance¹⁾ Frequency f

Range

Tolerance¹⁾ Temperature overload protection In % Θ/Θ_{Trip}

Range Tolerance¹⁾

Temperature restart inhibit $\Theta_L / \Theta_{L Trip}$

Range Tolerance¹⁾

Restart threshold $\Theta_{Restart}\!/\Theta_{L\,Trip}$

Reclose time T_{Reclose}

detection (total, real, and reactive current) IEE, IEE real, IEE reactive Range Tolerance¹⁾

RTD-box

Synchronism and voltage check

Long-term averages

Time window

Frequency of updates

Long-term averages of currents of real power of reactive power of apparent power

With sign, total and phase-segregated in kW (MW or GW) primary and in % Snom 0 to 120 % S_{nom} 1 % of Snom for V/V_{nom} and $I/I_{nom} = 50$ to 120 % and $|\cos \varphi| = 0.707$ to 1 with $S_{\rm nom} = \sqrt{3} \cdot V_{\rm nom} \cdot I_{\rm nom}$ With sign, total and phase-segregated in kVAr (MVAr or GVAr)primary and in % Snom 0 to 120 % S_{nom} 1 % of Snom for V/V_{nom} and $I/I_{\text{nom}} = 50$ to 120 % and $|\sin \varphi| = 0.707$ to 1 with $S_{\rm nom} = \sqrt{3} \cdot V_{\rm nom} \cdot I_{\rm nom}$ Total and phase segregated - 1 to + 1 2 % for $|\cos \varphi| \ge 0.707$ In Hz $f_{\rm nom} \pm 5 \, \text{Hz}$ 20 mHz 0 to 400 % 5 % class accuracy per IEC 60255-8 In % 0 to 400 % 5 % class accuracy per IEC 60255-8 In % In min Currents of sensitive ground fault In A (kA) primary and in mA secondary 0 mA to 1600 mA 2 % of measured value or 1 mA See section "Temperature monitoring box' See section "Synchronism and voltage check" 5, 15, 30 or 60 minutes Adjustable IL1dmd, IL2dmd, IL3dmd, I1dmd in A (kA) P_{dmd} in W (kW, MW) Qdmd in VAr (kVAr, MVAr) Sdmd in VAr (kVAr, MVAr)

Max. / Min. report Report of measured values With date and time Reset, automatic Time of day adjustable (in minutes, 0 to 1439 min) Time frame and starting time adjustable (in days, 1 to 365 days, and ∞) Reset, manual Using binary input, using keypad, via communication Min./Max. values for current $I_{L1}, I_{L2}, I_{L3},$ *I*¹ (positive-sequence component) Min./Max. values for voltages VL1-E, VL2-E, VL3-E V_1 (positive-sequence component) $V_{L1-L2}, V_{L2-L3}, V_{L3-L1}$ Min./Max. values for power S, P, Q, $\cos \varphi$, frequency Min./Max. values for overload Θ/Θ_{Trip} protection Min./Max. values for mean values IL1dmd, IL2dmd, IL3dmd *I*¹ (positive-sequence component); Sdmd, Pdmd, Qdmd Local measured values monitorina Current asymmetry $I_{\text{max}}/I_{\text{min}}$ > balance factor, for I>Ibalance limit $V_{\text{max}}/V_{\text{min}}$ > balance factor, Voltage asymmetry for V>Vlim Current phase sequence Clockwise (ABC) / counter-clockwise (ACB) Voltage phase sequence Clockwise (ABC) / counter-clockwise (ACB) Predefined limit values, user-defined Limit value monitoring expansions via CFC Fuse failure monitor For all types of networks With the option of blocking affected protection functions Fault recording Recording of indications of the last 8 power system faults Recording of indications of the last 3 power system ground faults Time stamping Resolution for event log 1 ms (operational annunciations) Resolution for trip log $1 \, \mathrm{ms}$ (fault annunciations) Maximum time deviation 0.01 % (internal clock) Lithium battery 3 V/1 Ah, type CR 1/2 AA, message "Battery Fault" Battery for insufficient battery charge Oscillographic fault recording Maximum 8 fault records saved, memory maintained by buffer battery in case of loss of power supply Recording time Total 20 s Pre-trigger and post-fault recording and memory time adjustable 1 sample/1.25 ms (16 samples/cycle) Sampling rate for 50 Hz

1 sample/1.04 ms (16 samples/cycle)

Siemens SI Edition No. 6

siemens-russia.com

Sampling rate for 60 Hz

Energy/power		Control	
Meter values for power Wp, Wq (real and reactive power	in kWh (MWh or GWh) and kVARh (MVARh or GVARh)	Number of switching units	Depends on the binary inputs and outputs
demand)		Interlocking	Programmable
Tolerance ¹⁾	$\leq 2 \% \text{ for } I > 0.1 I_{\text{nom}}, V > 0.1 V_{\text{nom}}$ and $ \cos \varphi (p.f.) \geq 0.707$	Circuit-breaker signals	Feedback, close, open, intermediate position
Statistics		Control commands	Single command / double command
Saved number of trips	Up to 9 digits		1, 1 plus 1 common or 2 trip contact
Number of automatic reclosing commands (segregated according to 1^{st} and $\ge 2^{nd}$ cycle)	Up to 9 digits	Programmable controller Local control	CFC logic, graphic input tool
Circuit-breaker wear		Units with small display	Control via menu,
Methods	• ΣI^x with $x = 1 \dots 3$	Units with large display	assignment of a function key Control via menu, control with control keys
Operation	 2-point method (remaining service life) Σi²t Phase-selective accumulation of mea- 	Remote control	Via communication interfaces, using a substation automation and control system (e.g. SICAM), DIGSI 4 (e.g. via modem)
	sured values on TRIP command, up to 8 digits, phase-selective limit values,	CE conformity	Disor i (e.g. via modem)
Motor statistics	monitoring indication	This product is in conformity v	with the Directives of the European Comr the laws of the Member States relating to
Total operating time Total down-time Ratio operating time/down-time Active energy and reactive energy Motor start-up data: – Start-up time – Start-up current (primary) – Start-up voltage (primary)	0 to 99999 h (resolution 1 h) 0 to 99999 h (resolution 1 h) 0 to 100 % (resolution 0.1 %) See operational measured values Of the last 5 start-ups 0.30 s to 9999.99 s (resolution 10 ms) 0 A to 1000 kA (resolution 1 A) 0 V to 100 kV (resolution 1 V)	Directive 73/23/EEC). This unit conforms to the inter man standard DIN 57435/Part Further applicable standards: A The unit conforms to the inter	for use within certain voltage limits (Cou mational standard IEC 60255, and the Ge 303 (corresponding to VDE 0435/Part 30 NNSI/IEEE C37.90.0 and C37.90.1. national standard IEC 60255, and the Ge 303 (corresponding to VDE 0435/Part 30
Operating hours counter	(a test that was performed by Siemens AC
Display range	Up to 7 digits		he Council Directive complying with the and EN 50082-2 for the EMC Directive as
Criterion	Overshoot of an adjustable current threshold (BkrClosed I_{MIN})	standard EN 60255-6 for the "l	
Trip circuit monitoring		c(UL)us	
With one or two binary inputs		LISTED	
Commissioning aids			
Phase rotation field check, operational measured values, circuit-breaker / switching device test, creation of a test measurement report			
Clock			
Time synchronization	DCF77/IRIG-B signal (telegram format IRIG-B000), binary input, communication		
Setting group switchover of the f	unction parameters		
Number of available setting groups Switch over a orformed	4 (parameter group A, B, C and D)		
Switchover performed	Via keypad, DIGSI, system (SCADA) interface or binary input		

1) At rated frequency.

Housing, binary inputs and outputs
Housing 1/3 19", 7 BI, 5 BO, 1 live status contact,
text display 4 x 20 character (only for 7SJ640)
9 th position only with: <i>B</i> , <i>D</i> , <i>E</i>
Housing 1/2 19", 15 BI, 13 BO (1 NO/NC or 1a/b contact), 1 live status
contact, graphic display
Housing 1/2 19", 20 BI, 8 BO, 4 (2) power relays, 1 live status
contact, graphic display
Housing 1/1 19", 33 BI, 11 BO, 8 (4) power relays, 1 live status
contact, graphic display
Housing 1/1 19", 48 BI, 21 BO, 8 (4) power relays, 1 live status
contact, graphic display
Measuring inputs $(4 \times V, 4 \times I)$
$I_{\rm ph} = 1 {\rm A}^{11}, I_{\rm e} = 1 {\rm A}^{11} ({\rm min.} = 0.05 {\rm A})$
Position 15 only with A, C, E, G
$I_{\rm ph} = 1 {\rm A}^{1)}, I_{\rm e} = {\rm sensitive} ({\rm min.} = 0.001 {\rm A})$
Position 15 only with <i>B</i> , <i>D</i> , <i>F</i> , <i>H</i>
$\overline{I_{\rm ph} = 5 \mathrm{A}^{1)}, I_{\rm e} = 5 \mathrm{A}^{1)} ({\rm min.} = 0.25 \mathrm{A})}$
Position 15 only with A, C, E, G
$I_{\rm ph} = 5 {\rm A}^{1}, I_{\rm e} = {\rm sensitive} ({\rm min.} = 0.001 {\rm A})$
Position 15 only with <i>B</i> , <i>D</i> , <i>F</i> , <i>H</i>
$I_{\rm ph} = 5 {\rm A}^{1)}, I_{\rm e} = 1 {\rm A}^{1)} ({\rm min.} = 0.05 {\rm A})$
Position 15 only with A, C, E, G
Rated auxiliary voltage (power supply, binary inputs)
24 to 48 V DC, threshold binary input 19 V DC^{3}
$\frac{24}{60}$ to 125 V DC ² , threshold binary input 19 V DC ³
$\frac{1000125 \text{ V DC}^2}{110 \text{ to } 250 \text{ V DC}^2}$, 115 to 230 V AC, threshold binary input 88 V DC ³⁾
110 to 250 V DC , 115 to 250 V AC, threshold binary input 88 V DC
I be the second end
Unit version
Surface-mounting housing, plug-in terminals, detached operator panel,
panel mounting in low-voltage housing
Surface-mounting housing, 2-tier terminals on top/bottom
Surface-mounting housing, screw-type terminals (direct connection/
ring-type cable lugs), detached operator panel, panel mounting in
low-voltage housing
Flush-mounting housing, plug-in terminals (2/3 pin connector)

Description

7SJ64 multifunction protection relay with synchronization

Unit version	
Surface-mounting housing, plug-in terminals, detached operator panel,	
panel mounting in low-voltage housing	Α
Surface-mounting housing, 2-tier terminals on top/bottom	В
Surface-mounting housing, screw-type terminals (direct connection/	
ring-type cable lugs), detached operator panel, panel mounting in	
low-voltage housing	С
Flush-mounting housing, plug-in terminals (2/3 pin connector)	D
Flush-mounting housing, screw-type terminals	
(direct connection/ring-type cable lugs)	E
Surface-mounting housing, screw-type terminals	
(direct connection/ring-type cable lugs), without operator panel,	
panel mounting in low-voltage housing	F
Surface-mounting housing, plug-in terminals,	
without operator panel, panel mounting in low-voltage housing	G
Region-specific default settings/function versions and language settings	
Region DE, 50 Hz, IEC, language: German (language selectable)	Α
Region World, 50/60 Hz, IEC/ANSI, language: English (GB) (language selectable)	В
Region US, 60 Hz, ANSI, language: English (US) (language selectable)	С
Region FR, 50/60 Hz, IEC/ANSI, language: French (language selectable)	D
Region World, 50/60 Hz, IEC/ANSI, language: Spanish (language selectable)	Ε
Region IT, 50/60 Hz, IEC/ANSI, language: Italian (language selectable)	F
Region RU, 50/60 Hz, IEC/ANSI, language: Russian(language can be changed)	G

Order No.

0

2

5

4

5

75J6400 - 00000 - 0000

see next page

- 1) Rated current can be selected by means of jumpers
- 2) Transition between the two auxiliary voltage ranges can be selected by means of jumpers.
- 3) The binary input thresholds can be selected per binary input by means of jumpers.

	No.	Orc
7SJ64 multifunction protection relay with synchronization 7SJ64E	<u> </u>	-000 00
System interface (on rear of unit, Port B) No system interface	0	
IEC 60870-5-103 protocol, RS232	1	see
IEC 60870-5-103 protocol, RS485	2	following pages
IEC 60870-5-103 protocol, 820 nm fiber, ST connector	3	pages
PROFIBUS-FMS Slave, RS485	4	
PROFIBUS-FMS Slave, 820 nm wavelength, single ring, ST connector ¹⁾	5	
PROFIBUS-FMS Slave, 820 nm wavelength, double ring, ST connector ¹⁾	6	
PROFIBUS-DP Slave, RS485	9	LO
PROFIBUS-DP Slave, 820 nm wavelength, double ring, ST connector ¹⁾	9	LO
MODBUS, RS485	9	LO
MODBUS, 820 nm wavelength, ST connector ²⁾	9	LO
DNP 3.0, RS485	9	LO
DNP 3.0, 820 nm wavelength, ST connector ²⁾	9	LO
IEC 60870-5-103 protocol, redundant, RS485, RJ45 connector ²⁾	9	LO
IEC 61850, 100 Mbit Ethernet, electrical, double, RJ45 connector (EN 100) 9	LO
IEC 61850, 100 Mbit Ethernet, optical, double, LC connector (EN 100) ²⁾	9	LO
Only Port C (service interface) DIGSI 4/modem, electrical RS232	1	
DIGSI 4/modem/RTD-box ³⁾ , electrical RS485	2	
Port C and D (service and additional interface)	9	М
Port C (service interface)		
DIGSI 4/modem, electrical RS232 DIGSI 4/modem/RTD-box ³⁾ , electrical RS485		1

 Not with position 9 = "B"; if 9 = "B", please order 7SJ6 unit with RS485 port and separate fiber-optic converters. For single ring, please order converter 6GK1502-2CB10, not available with position 9 = "B". For double ring, please order converter 6GK1502-3CB10, not available with position 9 = "B". The converter requires a 24 V AC power supply (e.g. power supply 7XV5810-0BA00).

2) Not available with position 9 = "B".

3) Temperature monitoring box 7XV5662-□AD10, refer to "Accessories".

4) When using the RTD-box at an optical interface, the additional RS485 fiber-optic converter 7XV5650-0 A00 is required.

Selection and ordering

SIEMENS siemens-russia.com

Description	if we at i		tostion	rolau uith an	Order No.		
	irunctio	on pro	tection		nchronization 7SJ6400 - 00000 - 0		
Designation				ANSI No.	Description	- '	ľ1
Basic version	1				Control		
				50/51	Time-overcurrent protection <i>I</i> >, <i>I</i> >>>, <i>I</i> >>>, <i>I</i> _p		
				50N/51N	Earth-fault protection $I_{\rm E}$, $I_{\rm E}$, $I_{\rm E}$, $I_{\rm E}$		
				50N/51N	Insensitive earth-fault protection through		
					IEE function: I_{EE} , I_{EE} , $I_{\text{EEp}}^{(1)}$		
				50/50N	Flexible protection functions (index quantities derived	l	
					from current): Additional time-overcurrent protection		
					stages <i>I</i> ₂ >, <i>I</i> >>>>, <i>I</i> _E >>>>		
				51 V	Voltage-dependent inverse-time overcurrent protection	m	
				49	Overload protection (with 2 time constants)	,,,,,	
				46	Phase balance current protection		
					(negative-sequence protection)		
				37	Undercurrent monitoring		
				47	Phase sequence		
				59N/64	Displacement voltage		
				50BF	Breaker failure protection		
				74TC	Trip circuit supervision; 4 setting groups,		
					cold-load pickup; inrush blocking		
				86	Lockout	F	A
-			V, P, f				Ľ.
-			v, P, f		Under-/overvoltage		
				81 O/U	Under-/overfrequency		
				27/47/59(N)	Flexible protection (index quantities derived from		
				32/55/81R	current and voltages): Voltage, power, p.f.,	_	_
					rate-of-frequency-change protection	F	Ε
		IEF	V, P, f	27/59	Under-/overvoltage		
				81 O/U	Under-/overfrequency		
				27/47/59(N)	Flexible protection (index quantities derived from		
				32/55/81R	current and voltages): Voltage, power, p.f.,		
					rate-of-frequency-change protection		
					Intermittent earth fault	Р	E
	Dir			67/67N	Direction determination for overcurrent,	<u> </u>	-
	DI			0//0/14	phases and earth	F	С
	Dir		V, P, f	67/67N	Direction determination for overcurrent,		
			,		phases and earth		
				27/59	Under-/overvoltage		
				810/U	Under-/overfrequency		
				27/47/59(N)	Flexible protection (index quantities derived from		
				32/55/81R	current and voltages): Voltage, power, p.f.,		
				<i>32/33/</i> 01K		F	G
					rate-of-frequency-change protection	'	
	Dir	IEF		67/67N	Direction determination for overcurrent,	~	
					phases and earth; intermittent earth fault	Р	C
Directional	Dir			67/67N	Direction determination for overcurrent,		
earth-fault					phases and earth		
detection				67Ns	Directional sensitive earth-fault detection		
				87N	High-impedance restricted earth fault	F	D
Directional			V, P, f	67Ns	Directional sensitive earth-fault detection		
earth-fault			, ,,	87N	High-impedance restricted earth fault		
detection				27/59	Under-/overvoltage		
				810/U	Under-/overfrequency		
-							
				27/47/59(N)	Flexible protection (index quantities derived from		
				32/55/81R	current and voltages): Voltage, power, p.f.,	F	F
					rate-of-frequency-change protection	r	ľ
Directional	Dir	IEF		67/67N	Direction determination for overcurrent,		
earth-fault					phases and earth		
				67Ns	Directional sensitive earth-fault detection		
detection							1
detection				87N	High-impedance restricted earth fault		

Basic version included

V, P, f = Voltage, power, frequency protection

Dir = Directional overcurrent protection

IEF = Intermittent earth fault

1) Only with insensitive earth-current transformer when position 7 = 1, 5, 7.

2) For isolated/compensated networks only with sensitive earth-current transformer when position 7 = 2, 6.

Continued on next page

Siemens SI Sedition of ENS

siemens-russia.com

lection and ordering data	Description	· C		Order No.		
	75J64 mult Designation	function pr	otection	n relay with sy ANSI No.	<u>Inchronization</u> 75J64 – – – – – – – – – – – – – – – – – – –	
	Basic versior	1		50/51	Control Time-overcurrent protection <i>I</i> >, <i>I</i> >>, <i>I</i> >>>, <i>I</i> _p	
				50N/51N 50N/51N 50/50N	Earth-fault protection $I_{\rm E}$, $I_{\rm E}$, $I_{\rm E}$, $I_{\rm E}$ Insensitive earth-fault protection via IEE function: $I_{\rm EE}$, $I_{\rm EE}$, $I_{\rm EEp}$ ¹⁾ Flexible protection functions (index quantities derived	
				51 V	from current): Additional time-overcurrent protection stages <i>I</i> ₂ >, <i>I</i> ₂ >>>>, <i>I</i> _E >>>> Voltage-dependent inverse-time overcurrent protection	1
				49 46 37	Overload protection (with 2 time constants) Phase balance current protection (negative-sequence protection) Undercurrent monitoring	
				47 59N/64 50BF 74TC	Phase sequence Displacement voltage Breaker failure protection Trip circuit supervision, 4 setting groups,	
				86	cold-load pickup, inrush blocking Lockout	_
	Directional earth-fault detection			67Ns 87N	Directional sensitive earth-fault detection, High-impedance restricted earth fault	FB
	Directional earth-fault detection	Motor	<i>V</i> , <i>P</i> , <i>f</i>	67Ns 87N 48/14 66/86 51M 27/59 81O/U 27/47/59(N) 32/55/81R	Directional sensitive earth-fault detection, High-impedance restricted earth fault Starting time supervision, locked rotor Restart inhibit Load jam protection, motor statistics Under-/overvoltage Under-/overfrequency Flexible protection (index quantities derived from current and voltages): Voltage, power, p.f., rate-of-frequency-change protection	H F
	Directional earth-fault detection	Motor Dir	V, P, f	67/67N 67Ns 87N 48/14 66/86 51M 27/59 81O/U 27/47/59(N) 32/55/81R	Direction determination for overcurrent, phases and earth Directional sensitive earth-fault detection High-impedance restricted earth fault Starting time supervision, locked rotor Restart inhibit Load jam protection, motor statistics Under-/overvoltage Under-/overfrequency Flexible protection (index quantities derived from current and voltages): Voltage, power, p.f.,	HH
c version included = Voltage, power, frequency	Directional earth-fault detection	Motor IEF Dir	V, P, f	67/67N 67Ns 87N 48/14 66/86 51M 27/59 81O/U 27/47/59(N) 32/55/81R	Direction determination for overcurrent, phases and earth Directional sensitive earth-fault detection High-impedance restricted earth fault Intermittent earth fault Starting time supervision, locked rotor Restart inhibit Load jam protection, motor statistics Undervoltage/overvoltage Underfrequency/overfrequency Flexible protection (index quantities derived from current and voltages): Voltage, power, p.f.,	
 f = Voltage, power, frequency protection = Directional overcurrent protection = Intermittent earth fault nly with insensitive earth-current ansformer when position 7 = 1, 5, 7. 				. ,	current and voltages): Voltage, power, p.f.,	R

Continued on next page

SIEMENS

siemens-russia.com

2) For isolated/compensated networks only with sensitive earth-current

transformer when position 7 = 2, 6.

Dir

Description 7SJ64 multifunction pro with synchronization	tection relay	
Designation	ANSI No.]
Basic version		

	1		ANSI No.	Description	ΓTΊ	1. T.	T
Basic versio	n			Control			
			50/51	Time-overcurrent protection <i>I</i> >, <i>I</i> >>>, <i>I</i> >>>, <i>I</i> _p			
			50N/51N	Earth-fault protection I_E >, I_E >>>, I_E >>>, I_E p			
			50N/51N	Insensitive earth-fault			
			5014,5114	protection via IEE function: I_{EE} , I_{EE} , $I_{\text{EEp}}^{(1)}$			
			50/50N	Flexible protection functions (index quantities			
			50,501	derived from current):			
				Additional time-overcurrent			
				protection stages I_2 , I >>>>, I_E >>>>			
			51 V	Voltage-dependent inverse-time			
			011	overcurrent protection			
			49	Overload protection (with 2 time constants)			
			46	Phase balance current protection			
			10	(negative-sequence protection)			
			37	Undercurrent monitoring			
			47	Phase sequence			
			59N/64	Displacement voltage			
			50BF	Breaker failure protection			
			74TC	Trip circuit supervision			
				4 setting groups, cold-load pickup			
				Inrush blocking			
			86	Lockout			
	Motor	V. P. f	67/67N	Direction determination for overcurrent,			
	Dir	,,1,,	0//0/11	phases and earth			
	21		48/14	Starting time supervision, locked rotor			
			66/86	Restart inhibit			
			51M	Load jam protection, motor statistics			
			27/59	Under-/overvoltage			
			81O/U	Under-/overfrequency			
) Flexible protection (index quantities derived from			
			32/55/81R	current and voltages): Voltage, power, p.f.,			
				rate-of-frequency-change protection H	G		
	Motor		48/14	Starting time supervision, locked rotor			
			66/86	Restart inhibit			
			51M	Load jam protection, motor statistics H	Α		
ARC, fault l	ocator, sync	hronizati	on				
, iuuit i	seator, sync		Without		0		
			79	With auto-reclosure	1		
			21FL	With fault locator			
			79, 21FL	With auto-reclosure, with fault locator	2 3		
			25	With synchronization	4		
			25, 79, 21FL	With synchronization, auto-reclosure,			
			. ,	fault locator	7		
						.	

Order No.

1) Only with insensitive earth-current transformer when position 7 = 1, 5, 7.

2) This variant might be supplied with a previous firmware version. Order code

essories	Description	Order No.
	DIGSI 4	
	Software for configuration and operation of Siemens protection units	
	running under MS Windows 2000/XP Professional Edition	
	Basis Full version with license for 10 computers, on CD-ROM	
	(authorization by serial number)	7XS5400-0AA00
	Professional DIGSI 4 Basis and additionally SIGRA (fault record analysis),	
	CFC Editor (logic editor), Display Editor (editor for default	
	and control displays) and DIGSI 4 Remote (remote operation)	7XS5402-0AA00
	Professional + IEC 61850	
	Complete version:	
	DIGSI 4 Basis and additionally SIGRA (fault record analysis),	
	CFC Editor (logic editor), Display Editor (editor for default	
	and control displays) and DIGSI 4 Remote (remote operation)	
	+ IEC 61850 system configurator	7XS5403-0AA00
	IEC 61850 System configurator	
	Software for configuration of stations with IEC 61850 communication under	
	DIGSI, running under MS Windows 2000 or XP Professional Edition	
	Optional package for DIGSI 4 Basis or Professional	
	License for 10 PCs. Authorization by serial number. On CD-ROM	7XS5460-0AA00
	SIGRA 4	
	Software for graphic visualization, analysis and evaluation of fault records.	
	Can also be used for fault records of devices of other manufacturers (Comtrade	
	format). Running under MS Windows 2000 or XP Professional Edition.	
	(generally contained in DIGSI Professional, but can be ordered additionally)	
	Authorization by serial number. On CD-ROM.	7XS5410-0AA00
	Temperature monitoring box	
	24 to 60 V AC/DC	7XV5662-2AD10
	90 to 240 V AC/DC	7XV5662-5AD10
	Varistor/Voltage Arrester	
	Voltage arrester for high-impedance REF protection	
	125 Vrms; 600 A; 1S/S 256	C53207-A401-D76-1
	240 Vrms; 600 A; 1S/S 1088	C53207-A401-D77-1
	Connecting cable	
	Connecting cable Cable between PC/notebook (9 pin con) and protection unit (9 pin connector)	
	Cable between PC/notebook (9-pin con.) and protection unit (9-pin connector) (contained in DIGSI 4, but can be ordered additionally)	7XV5100-4
	Cable between temperature monitoring box and SIPROTEC 4 unit	7700100 T
	- length 5 m /16.4 ft	7XV5103-7AA05
		7XV5103-7AA05 7XV5103-7AA25
	- length 25 m /82 ft	
	- length 50 m /164 ft	7XV5103-7AA50
	Manual for 7SJ64	
	English	C53000-G1140-C20 7-x ¹⁾
	<u> </u>	LICENTE LITTO SECT A

5

1) x = please inquire for latest edition (exact Order No.).

Accessories		Description	Order No.	Size of package	Supplier
Contraction and	SP2289-afp.eps	Terminal safety cover Voltage/current terminal 18-pole/12-pole	C73334-A1-C31-1	1	Siemens
	52288	Voltage/current terminal 12-pole/8-pole	C73334-A1-C32-1	1	Siemens
M ci 1		Connector 2-pin		1	Siemens
Mounting rail		Connector 3-pin	C73334-A1-C36-1	1	Siemens
σ		Crimp connector CI2 0.5 to 1 mm ²	0-827039-1	4000 taped on reel	AMP ¹⁾
SP2090-afp.eps	SP2090-afp. ep	Crimp connector CI2 0.5 to 1 mm ²	0-827396-1	1	AMP ¹⁾
SP209	SP209	Crimp connector: Type III+ 0.75 to 1.5 mm ²	0-163084-2	1	$AMP_{1}^{(1)}$
2-pin connector	3-pin connector	Crimp connector: Type III+ 0.75 to 1.5 mm ²	0-163083-7	4000 taped on reel	AMP ¹⁾
		Crimping tool for Type III+	0-539635-1	1	AMP ¹⁾
(0		and matching female	0-539668-2	1	AMP ¹⁾
b.eps	O the bred	Crimping tool for CI2	0-734372-1	1	AMP ¹⁾
B3-at	et all	and matching female	1-734387-1	1	AMP ¹⁾
SP2093-afp. eps	SP2092-	Short-circuit links			
ŭ V	- Trans	for current terminals	C73334-A1-C33-1	1	Siemens
Short-circuit links for current termi-	Short-circuit links for other terminals	for other terminals	C73334-A1-C34-1	1	Siemens
nals	ior other terminals	Mounting rail for 19" rack	C73165-A63-D200-1	1	Siemens

1) Your local Siemens representative can inform you on local suppliers.

5/198

5

Fig. 5/176 7SJ640 connection diagram

 *) For pinout of communication ports see part 15 of this catalog.
 For allocation of terminals of the panel surface mounting version refer to the manual (http://www.siemens.com/siprotec).

Connection diagram

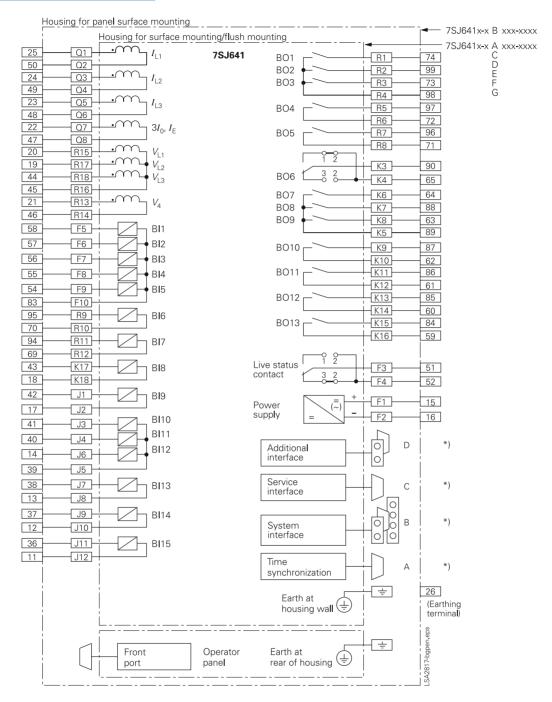


Fig. 5/177 7SJ641 connection diagram

 *) For pinout of communication ports see part 15 of this catalog.
 For allocation of terminals of the panel surface mounting version refer to the manual (http://www.siemens.com/siprotec).

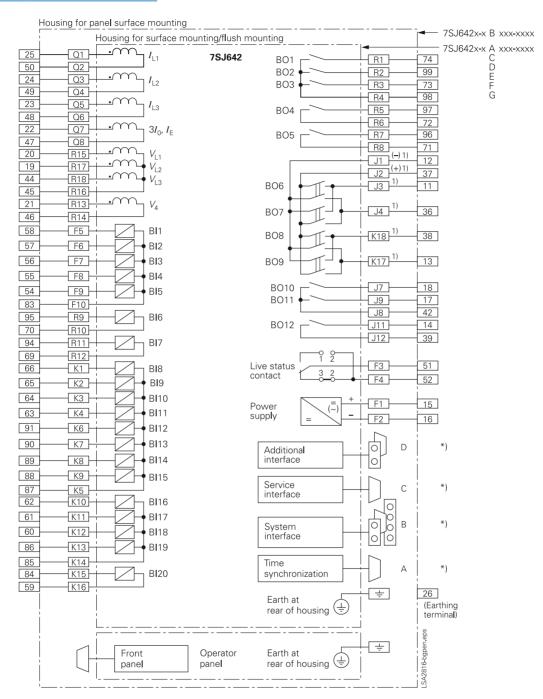


Fig. 5/178 7SJ642 connection diagram

- *) For pinout of communication ports see part 15 of this catalog. For allocation of terminals of the panel surface mounting version refer to the manual (http://www.siemens.com/siprotec).
- 1) Power relays are intended to directly control motorized switches. The power relays are interlocked so only one relay of each pair can close at a time, in order to avoid shorting out the power supply. The power relay pairs are BO6/BO7, BO8/BO9. If used for protection purposes only one binary output of a pair can be used.

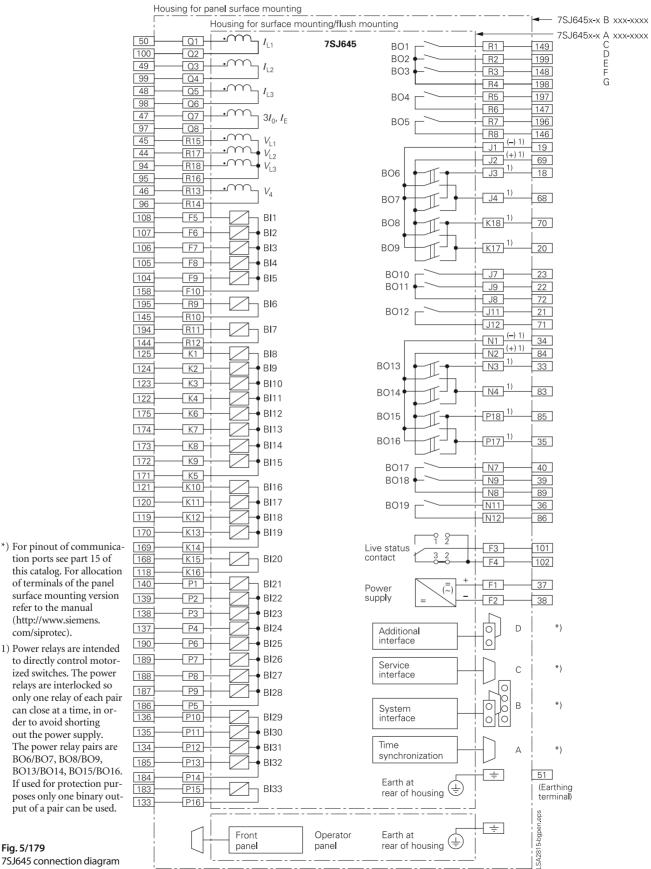
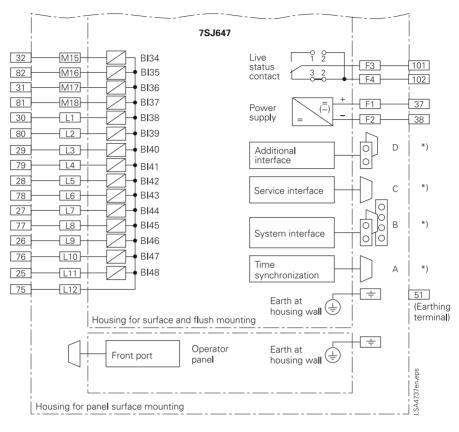


Fig. 5/179

7SJ645 connection diagram

Siemens SI siemens-russia.com


Connection diagram

	н	ousing for pa	anel surface mountin	a				
			Housing for surface a				7S.	J647x-х В xxx-xxxx
	50	Q1		7SJ647				J647x-x A xxx-xxxx
	100	02		/3304/	BO1 BO2		149	C D E F
	49	<u>Q3</u>	_•^^~_ I _{L2}		BO3		148	E
	99						- 198	G
	48 -	Q5			во4		197	
	47						- 147	
	97	08			BO5		- <u>196</u> - 146	
	45	R15	-•••••••••••••••••••••••••••••••••••••			J1 () 1)	140	
	44						- 69	
	94 95			D	06	• J3 ¹⁾	- 18	
	46		_•~~~_ V ₄	D				
	96		4	В	07		- 68	
	108	F5	——————————————————————————————————————			• <u>K18</u> 1)	70	
	107	F6	— BI2	В	08	<u>∔</u>		
	106	F7		D	09 4 1-	K17	20	
	105	F8		D	09		Ĺ	
	104	F9			B010	J7	- 23	
	158	F10			B011		22	
	195				B012	<u>J8</u>	- <u>72</u> - 21	
	145	R10				+	- 71	
	194		BI7			(_) 1)	34	
	125	K1					- 84	
	124	К2	— 🔁 віэ	B	013	• <u>N3</u> 1)	- 33	
	123	КЗ	— BI 10	B			Ĺ	
	122	K4	— BI 11	В	014	<u>N4</u>])	- 83	
	175	К6	— BI12	_		P18 ¹⁾	85	
	174	К7_	— B I13	В	015	∔		
	173	К8	— BI 14	В	016	P17_1)	35	
	172	К9		B				
	171	K5			BO17 BO18	N7	- <u>40</u> - <u>39</u>	
	121	K10	— BI16				- 89	
	120	K11	— BI17		BO19	N11	- 36	
	119	K12	——————————————————————————————————————			N12	86	
	170	K13			BO20		132	
	169	K14			B021	M2 M3	- <u>182</u> - <u>181</u>	
	168	K15			B024		130	
		— <u>K16</u> — ₽1 –	——————————————————————————————————————		B025	M4	180	
	139	P2					131	
	138	P3			BO22	M7	179	
1) Power relays are intended	137	P4			BO23 BO26	<u>M8</u>	- <u>178</u> - <u>129</u>	
to directly control motor-	190	P6			B027		- 129	
ized switches. The power	189	P7_+					- 127	
relays are interlocked so	188	P8	→ BI27		B028	M12	126	
only one relay of each pair can close at a time, in or-	187	P9			B029	M14	176	
der to avoid shorting	186	P5			L	M13	-177	
out the power supply.	136	P10	— BI29				i –	
The power relay pairs are	135	P11					ļ	
BO6/BO7, BO8/BO9, BO13/BO14, BO15/BO16.	134	P12						
If used for protection pur-	185	P13	— BI32				1	
poses only one binary out-	184	P14					- uneps	
put of a pair can be used.	183	P15	— ВІЗЗ				736ei	
	133	P16					LSA4736en.eps	
		<u> </u>				<i>_</i>		

Fig. 5/180 75J647 connection diagram part 1; continued on following page

part 2

*) For pinout of communication ports see part 15 of this catalog. For allocation of terminals of the panel surface mounting version refer to the manual (http://www.siemens.com/siprotec).

