Relays for Various Protection Applications

SIPROTEC 4 7VK61 Breaker Management Relay	10 /3
SIPROTEC 7SV600 Numerical Circuit-Breaker Failure Protection Relay	10 /21
SIPROTEC 7SN60 Transient Earth-Fault Protection Relay	10 /31

Page

SIPROTEC 4 7VK61 Breaker Management Relay

25 50BF 79 59 27 86 74TC

Fig. 10/1 SIPROTEC 4 7VK61 breaker management relay

Description

The SIPROTEC 4 breaker management relay 7VK61 is a highly flexible autoreclosure, synchro-check and circuitbreaker failure protection unit.

This unit is used for the single and threepole auto-reclosure of a circuit-breaker, after this circuit-breaker has tripped due to a fault. The synchro-check function ensures that the two circuits being reconnected by closing the circuit-breaker are within a defined safe operating state before the CLOSE command is issued. The 7VK61 is also applicable as circuitbreaker failure protection. A breaker failure occurs when the circuit-breaker fails to correctly open and clear the fault after single or three-pole trip commands have been issued by the protection. It is then necessary to trip the relevant busbar zone (section) to ensure fault clearance. Together with the above-mentioned protection functions, the following additional functions of the 7VK61 can be applied: end-fault protection, pole-discrepancy protection, overvoltage protection and undervoltage protection. As a member of the numerical SIPROTEC 4 relay family, it also provides control and monitoring functions and therefore supports the user with regard to a cost-effective power system management.

Function overview

Protection functions

- Single and/or three-pole auto-reclosure
- Synchro-check with live/dead line/bus measurement
- Closing under asynchronous conditions (consideration of CB operating time)
- Circuit-breaker failure protection with two stages (single and three-pole with/without current)
- End-fault protection
- Pole-discrepancy protection
- Overvoltage/undervoltage protection

Control function

• Commands f. ctrl. of CB and isolators

Monitoring functions

- Operational measured values
- Self-supervision of the relay
- Event buffer and fault protocols
- Oscillographic fault recording
- Monitoring of CB auxiliary contacts
- Switching statistics

Features

- All functions can be used separately
- Initiation/start by phase-segregated or 3-pole trip commands
- Auto-reclosure for max. 8 reclose cycles
- Evolving/sequential trip recognition
 - Auto-reclosure with ADT, DLC, RDT
 - Synchro-check with ΔV , $\Delta \varphi$, Δf measurement
 - Breaker failure protection with highly secure 2-out-of-4 current check detectors
 - Breaker failure protection with short reset time and negligible overshoot time

Communication interfaces

- Front interface for connecting a PC
- System interface for connecting to a control system via various protocols
 - IEC 61850 Ethernet
 - IEC 60870-5-103 protocol
 - PROFIBUS-FMS/-DP
- DNP 3.0
- Rear-side service/modem interface
- Time synchronization via
 - IRIG-B or DCF77 or system interface

Application

The 7VK61 provides highly flexible breaker management. It applies to single-breaker, ring-bus, and 1½ breaker installations. The auto-reclosure, synchronism-check, breaker failure protection and voltage protection functions can be used separately or combined. Therefore the current and voltage transformer connection can be selected according to the required application.

The auto-reclosure function closes the circuit-breaker after this circuit-breaker has tripped due to a fault. The check-synchronism function ensures that the two circuits being reconnected by closing the circuitbreaker are within a defined safe operating state before the CLOSE command is issued.

The numerical 7VK61 relay provides rapid backup fault clearance in case the circuitbreaker nearest to the fault fails to respond to a TRIP command. It is suitable for power systems of all voltage levels with single and/or three-pole circuit-breaker operation. The initiation signal can be issued from any protection or supervision equipment. Information from the circuitbreaker auxiliary contact is only required for the breaker failure protection during faults which produce little or no fault current flow, for instance due to a trip from the power transformer Buchholz protection.

Cost-effective power system management

The SIPROTEC 4 units are numerical relays which also provide control and monitoring functions and therefore support the user with regard to a cost-effective power system management. The security and reliability of the power supply is increased as a result of minimizing the use of hardware.

The local operation has been designed according to ergonomic criteria. Large, easy-to-read backlit displays are provided.

The SIPROTEC 4 units have a uniform design and a degree of functionality which represents a benchmark-level of performance in protection and control. If the requirements for protection, control and interlocking change, it is possible in the majority of cases to implement such changes by means of parameterization using DIGSI 4 without having to change the hardware.

The use of powerful microcontrollers and the application of digital measured-value conditioning and processing largely suppresses the influence of higher-frequency transients, harmonics and DC components.

ANSI	
(50BF)	Breaker-failure protection
59/27	Overvoltage/undervoltage protection
25	Synchro-check
(79)	Auto-reclosure
(74TC)	Trip circuit supervision
86)	Lockout (CLOSE command interlocking)

Fig. 10/2 Application and function diagram

Construction

Connection technique and housing with many advantages

1/3 and 1/2-rack sizes are available as housing widths of the SIPROTEC 4 7VK61 relays, referred to a 19" modular frame system. This means that previous models can always be replaced. The height is a uniform 255 mm for flush-mounting housings and 266 mm for surface-mounting housings for all housing widths. All cables can be connected with or without ring lugs.

In the case of surface mounting on a panel, the connection terminals are located above and below the housing in the form of screw-type terminals. The communication interfaces are located in a sloped case at the top and bottom of the housing.

Fig. 10/3 Flush-mounting housing with screw-type terminals

Fig. 10/4 Rear view of flush-mounting housing with covered connection terminals and wirings

Fig. 10/5 Surface-mounting housing with screw-type terminals, example 7SA63

Fig. 10/6 Communication interfaces in a sloped case in a surfacemounting housing

Protection functions

Auto-reclosure (ANSI 79)

The 7VK61 relay is equipped with an <u>a</u>uto-<u>reclose</u> function (AR). Usually the auto-reclosure interacts with the feeder protection via binary inputs and outputs.

The function includes several operating modes:

- 3-pole auto-reclosure for all types of faults; different dead times are available depending on the type of fault
- 1-pole auto-reclosure for 1-phase faults, no reclosing for multi-phase faults
- 1-pole auto-reclosure for 1-phase and 3-pole auto-reclosing for multi-phase faults
- Multiple-shot auto-reclosure
- Interaction with the internal or an external synchro-check
- Monitoring of the circuit-breaker auxiliary contacts.

In addition to the above-mentioned operating modes, several other operating principles can be employed by means of the integrated programmable logic (CFC).

The 7VK61 allows the line-side voltages to be evaluated. A number of voltagedependent supplementary functions are thus available:

• ADT

10

The <u>a</u>daptive <u>d</u>ead <u>time</u> is employed only if auto-reclosure at the remote station was successful (reduction of stress on equipment).

• DLC

By means of <u>d</u>ead-<u>l</u>ine <u>c</u>heck, reclosure is effected only when the line is deenergized (prevention of asynchronous breaker closure in case that the synchronism check can not be used).

• RDT

<u>Reduced dead time is employed in conjunction with auto-reclosure where no</u> teleprotection method is employed: when faults within the zone extension of a distance feeder protection but external to the protected line, are switched off for rapid auto-reclosure (RAR), the RDT function decides on the basis of measurement of the return voltage from the remote station which has not tripped, that the fault has been cleared by the protection on the faulted downstream feeder and that reclosure with reduced dead time may take place.

Fig. 10/7 Auto-reclosure and synchro-check with voltage measurement across a power transformer

Synchronism check (ANSI 25)

Where two network sections are switched in by control command or following a 3-pole auto-reclosure, it must be ensured that both network sections are mutually synchronous. For this purpose, a synchronism-check function is provided. After verification of the network synchronism, the function releases the CLOSE command. Consideration of the duration of the CB operating time before issuing the CLOSE command (especially important under asynchronous conditions and when several circuit-breakers with different operating times are to be operated by one single relay).

In addition, reclosing can be enabled for different criteria, e.g., when the busbar or line are not carrying a voltage (dead line or dead bus).

Breaker failure protection (ANSI 50BF)

The 7VK61 relay incorporates a two-stage circuit-breaker failure protection to detect failures of tripping command execution, for example due to a defective circuitbreaker. The current detection logic is phase-segregated and can therefore also be used in single-pole tripping schemes. If the fault current is not interrupted after a settable time delay has expired, a retrip command or the busbar trip command will be generated. The breaker failure protection will usually be initiated by external feeder protection relays via binary input signals. Trip signals from the internal autoreclosure logic or from the voltage protection can start the breaker failure protection as well.

Overvoltage protection, undervoltage protection (ANSI 59, 27)

The 7VK61 contains a number of overvoltage measuring elements. Each measuring element is of two-stage design. The following measuring elements are available:

- Phase-to-earth overvoltage
- Phase-to-phase overvoltage
- Zero-sequence overvoltage The zero-sequence voltage can be connected to the 4th voltage input (not in conjunction with syncho-check) or be derived from the phase voltages.
- Negative-sequence overvoltage

Tripping by the overvoltage measuring elements can be effected either at the local circuit-breaker or at the remote station by means of a transmitted signal.

The 7VK61 is fitted, in addition, with three two-stage undervoltage measuring elements:

- Phase-to-earth undervoltage
- Phase-to-phase undervoltage
- Positive-sequence undervoltage

The undervoltage measuring elements can be blocked by means of a minimum current criterion and by means of binary inputs.

Protection functions

End-fault protection

When the circuit-breaker is open, the area located between the current transformer and the circuit-breaker can be optimally protected by means of the end-fault protection. In the event of a fault, an independently settable time delay is started after a valid initiation has been received and the circuit-breaker auxiliary contacts indicate an open circuit-breaker position, with current still flowing (see Fig. 10/8). Depending on the mounting position of the current transformer, instantaneous tripping of the busbar section or intertripping of the circuit-breaker at the opposite end occurs.

Pole-discrepancy protection

This function ensures that any one or two poles of a circuit-breaker do not remain open for longer than an independently settable time (i.e. unsymmetrical conditions). This time stage is initiated when current (above the set value) is flowing in any 1 or 2 phases, but not in all 3 phases. Additionally, the circuit-breaker auxiliary contacts (if connected) are interrogated and must show the same condition as the current measurement. Should this time delay expire, then a three-pole trip command is issued. This function is normally used when single-pole auto-reclosing is applied.

Trip circuit supervision (ANSI 74TC)

One or two binary inputs for each circuitbreaker pole can be used for monitoring the circuit-breaker trip coils including the connecting cables. An alarm signal is issued whenever the circuit is interrupted. The trip circuit supervision function requires one or two independent potential-free binary inputs per trip circuit. To make existing (non potential-free) binary inputs potential-free, external optocoupler modules can be applied.

Lockout (ANSI 86)

Under certain operating conditions, it is advisable to block CLOSE commands after a final TRIP command of the relay has been issued. Only a manual 'Reset' command unblocks the CLOSE command. The 7VK61 is equipped with such an interlocking logic.

Monitoring functions

The 7VK61 relay provides comprehensive monitoring functions covering both hardware and software. Furthermore, the measured values are continuously checked for plausibility. Therefore the current and voltage transformers are also included in this monitoring system.

If all voltages are connected, the relay will detect secondary voltage interruptions by means of the integrated fuse failure monitor. Immediate alarm and blocking of the synchronism check and dead line check is provided for all types of secondary voltage failures. Additional measurement supervision functions are

- Symmetry of voltages and currents (in case of appropriate transformer connection)
- Broken-conductor supervision (if current transformers are connected)
- Summation of currents and voltages (in case of appropriate transformer connection)
- Phase-sequence supervision (if three voltage transformers are connected)

Fig. 10/8 End-fault between circuit-breaker and current transformer

Communication

With respect to communication, particular emphasis is placed on the customer requirements in energy automation:

- Every data item is time-stamped at the source, i.e. where it originates.
- Already during the process of communication, information is assigned to the cause thereof (e.g. assignment of the indication "circuit-breaker TRIP" to the corresponding command).
- The communication system automatically handles the transfer of large data blocks (e.g. fault recordings or parameter data files). The user has access to these features without any additional programming effort.
- For the safe execution of a control command the corresponding data telegram is initially acknowledged by the unit which will execute the command. After the release and execution of the command a feedback signal is generated. At every stage of the control command execution particular conditions are checked. If these are not satisfied, command execution may be terminated in a controlled manner.

The units offer a high degree of flexibility by supporting different standards for connection to industrial and power automation systems. By means of the communication modules, on which the protocols run, exchange and retrofit is possible. Therefore, the units will also in future allow for optimal adaptation to changing communication infrastructure such as the application of Ethernet networks (which will also be used increasingly in the power supply sector in the years to come).

Local PC interface

The serial RS232 PC interface accessible from the front of the unit permits quick access to all parameters and fault event data. The use of the DIGSI 4 operating program is particularly advantageous during commissioning.

Service/modem interface

7VK61 units are always fitted with a rear-side hardwired service interface, optionally as RS232 or RS485. In addition to the front-side operator interface, a PC can be connected here either directly or via a modem.

Time synchronization interface

The time synchronization interface is a standard feature in all units. The supported formats are IRIG-B and DCF77.

Reliable bus architecture

• RS485 bus

With this data transmission via copper conductors, electromagnetic fault influences are largely eliminated by the use of twisted-pair conductors. Upon failure of a unit, the remaining system continues to operate without any problem.

• Fiber-optic double ring circuit The fiber-optic double ring circuit is immune to electromagnetic interference. Upon failure of a section between two units, the communication system continues to operate without disturbance. It is usually impossible to communicate with a unit that has failed. Should a unit fail, there is no effect on the communication with the rest of the system.

Retrofitting: Modules for every type of communication

Communication modules for retrofitting are available for the entire SIPROTEC 4 unit range. These ensure that, where different communication protocols (IEC 61850, IEC 60870-5-103, PROFIBUS, DNP, etc.) are required, such demands can be met. For fiber-optic communication, no external converter is required for SIPROTEC 4.

IEC 61850 protocol

The Ethernet-based IEC 61850 protocol is the worldwide standard for protection and control systems used by power supply corporations. Siemens was the first manufacturer to support this Standard. By means of this protocol, information can also be exchanged directly between bay units so as to set up simple masterless systems for bay and system interlocking. Access to the units via the Ethernet bus is also be possible with DIGSI.

IEC 60870-5-103 protocol

IEC 60870-5-103 is an internationally standardized protocol for efficient communication with protection relays. IEC 60870-5-103 is supported by a number of protection device manufacturers and is used worldwide. Supplements for the control function are defined in the manufacturer-specific part of this standard.

Fig. 10/9

IEC 60870-5-103 star-type RS232 copper conductor connection or fiber-optic connection

Fig. 10/10 Bus structure for station bus with Ethernet and IEC 61850 with fiber-optic ring

Communication

PROFIBUS-DP

PROFIBUS-DP is an industrial communications standard and is supported by a number of PLC and protection device manufacturers.

DNP 3.0

DNP 3.0 (Distributed Network Protocol, Version 3) is an internationally recognized protection and bay unit communication protocol. SIPROTEC 4 units are Level 1 and Level 2 compatible.

System solutions for protection and station control

Together with the SICAM power automation system, SIPROTEC 4 can be used with PROFIBUS-FMS. Over the low-cost electrical RS485 bus, or interference-free via the optical double ring, the units exchange information with the control system. Units equipped with IEC 60870-5-103 interfaces can be connected to SICAM in parallel via the RS485 bus or connected in star by fiberoptic link. Through this interface, the system is open for the connection of units of other manufacturers (see Fig. 10/14).

Because of the standardized interfaces, SIPROTEC units can also be integrated into systems of other manufacturers or in SIMATIC. Electrical RS485 or optical interfaces are available. The optimum physical data transfer medium can be chosen thanks to opto-electrical converters. Thus, the RS485 bus allows low-cost wiring in the cubicles and an interference-free optical connection to the master can be established.

For IEC 61850, an interoperable system solution is offered with SICAM PAS. Via the 100 Mbits/s Ethernet bus, the units are linked with PAS electrically or optically to the station PC. The interface is standardized, thus also enabling direct connection of units of other manufacturers to the Ethernet bus.

With IEC 61850, however, the units can also be used in other manufacturers' systems. Units with an IEC 60870-5-103 interface are connected with PAS via the Ethernet station bus by means of serial/ Ethernet converters. DIGSI can also be used via the same station bus.

Fig. 10/11 820 nm fiber-optic communication module

Fig. 10/12 RS232/RS485 electrical communication module

Typical connection

Connection for current <u>and</u> voltage transformers

With the transformer connection as shown in Fig. 10/15, it is possible to use the complete scope of functions of 7VK61, i.e. breaker failure protection, synchronism check with 3-phase dead line check (with or without auto-reclosure), complete measured value monitoring, voltage protection, and the complete range of operational measured values.

Alternative: Connection for current transformers only

The connection for current transformers only provides breaker failure protection and current operational measured values.

Typical connection

Alternative: Connection for two voltage transformers

In case of a connection for two voltage transformers, synchro-check and two operational measured voltages, and additionally synchro-check measured values are applicable. Dead line check is performed for the connected line voltage only.

Note: Please connect the two voltages <u>always</u> to the terminals R15/R16 and R13/R14 with the appropriate polarity. The setting address 106 "Voltage transformer" must then be set to "single-phase". The terminals R17 and R18 must not be connected.

The connection of the voltage V_{L1-L2} as shown in Fig. 10/17 is just an example: any other of the shown combinations is possible for synchronization.

The two voltage transformer connection can also be combined with the current transformer connection according to Fig. 10/16.

General unit data	
Analog inputs	
Rated frequency	50 or 60 Hz (selectable)
Rated current Inom	1 or 5 A (selectable)
Rated voltage V _{nom}	80 to 125 V (selectable)
Power consumption With $I_{nom} = 1$ A With $I_{nom} = 5$ A Voltage inputs	Approx. 0.05 VA Approx. 0.30 VA ≤ 0.10 VA
Overload capacity of current circuit Thermal (r.m.s.)	500 A for 1 s 150 A for 10 s 20 A continuous 1550 A (half grela)
Thermal overload canacity of volt	230 V continuous
age circuit	250 v continuous
Auxiliary voltage	
Rated voltages	24, 48 V DC 60, 125 V DC 110, 250 V DC and 115, 230 V AC (50/60 Hz)
Permissible tolerance	-20 % to +20 %
Superimposed AC voltage (peak-to-peak)	$\leq 15 \%$
Power consumption Quiescent Energized	Approx. 5 W Approx. 8 W to 14 W, depending on design
Bridging time during failure of the	
auxiliary voltage For $V_{aux} = 48$ V and $V_{aux} \ge 110$ V For $V_{aux} = 24$ V and $V_{aux} = 60$ V	≥ 50 ms ≥ 20 ms
Binary inputs	
Quantity 7VK610 7VK611 Rated voltage range Pickup threshold	7 20 24 to 250 V, bipolar 19 or 88 V or 176 V DC, bipolar
Functions are freely assignable	
Minimum pickup voltage Ranges are settable by means of jumpers for each binary input	19 or 88 V or 176 V DC, bipolar (3 operating ranges)
Maximum permissible voltage	300 V DC
Current consumption, energized	Approx. 1.8 mA
Input impulse suppression	220 nF coupling capacitance at 220 V with a recovery time >60 ms

Output contacts	
"Unit ready" contact (live status contact)	1 NC/NO contact ¹⁾
Command/indication relay	
Quantity 7VK610 7VK611	5 NO contacts, 14 NO contacts, 4 NC/NO contacts ¹⁾
NO/NC contact	
Switching capacity Make Break, contacts Break, contacts (for resistive load) Break, contacts (for $\tau = L/R \le 50 \text{ ms}$)	1000 W / VA 30 VA 40 W 25 VA
Switching voltage	250 V
Permissible total current	30 A for 0.5 seconds 5 A continuous
Operating time, approx. NO contact NO/NC contact (selectable) Fast NO contact	8 ms 8 ms 5 ms
LEDs	
Quantity RUN (green) ERROR (red) LED (red), function can be assigned 7VK610 7VK611	1 1 7 14
Unit design	
Housing	7XP20
Dimensions	Refer to part 15 for dimension drawings
Degree of protection acc. to EN 60529 Surface-mounting housing Flush-mounting housing Front Rear For the terminals	IP 51 IP 51 IP 50 IP 20 with terminal cover put on
Weight	
Flush-mounting housing 1/3 x 19" 1/2 x 19" Surface-mounting housing	5 kg 6 kg
1/3 x 19" 1/2 x 19"	9.5 kg 11 kg

1) Can be set via jumpers.

00	hhi		00	
		cui		

Serial interfaces	
Operating interface, front of unit for L	DIGSI 4
Connection	Non-isolated, RS232, 9-pin subminiature connector (SUB-D)
Baud rate	4800 to 115200 baud setting as supplied: 38400 baud; parity 8E1
Time synchronization DCF77/ IRIG-B	signal (Format IRIG-B000)
Connection	9-pin subminiature connector (SUB-D) (terminal with surface-mounting housing)
Voltage levels	5 V, 12 V or 24 V (optional)
Service/modem interface for DIGSI 4	/ modem / service
Isolated RS232/RS485 Dielectric test Distance for RS232 Distance for RS485	9-pin subminiature connector (SUB-D) 500 V / 50 Hz Max. 15 m Max. 1000 m
System interface	
Isolated RS232/RS485 Baud rate Dielectric test Distance for RS232 Distance for RS485	IEC 60870-5-103 protocol PROFIBUS-FMS PROFIBUS-DP DNP 3.0 9-pin subminiature connector (SUB-D) 4800 to 38400 baud 500 V / 50 Hz Max. 15 m Max. 1000 m
PROFIBUS RS485 Dielectric test Baud rate Distance	500 V / 50 Hz Max. 12 Mbaud 1000 m at 93.75 kbaud; 100 m at 12 Mbaud
Only for flush-mounting housing For surface-mounting housing Baud rate Optical wavelength Permissible attenuation Distance	ST connector Optical interface with OLM ¹⁾ Max. 1.5 Mbaud $\lambda = 820$ nm Max. 8 dB for glass-fiber 62.5/125 μ m 500 kB/s 1.6 km 1500 kB/s 530 m

Electrical tests	
Specifications	
Standards	IEC 60255 (product standards) IEEE C37.90.0/.1/.2 VDE 0435 For further standards see "Individual tests"
Insulation tests	
Standards	IEC 60255-5 and 60870-2-1
Voltage test (100 % test)	
All circuits except for auxiliary supply, binary inputs, communication and time synchronization interfaces	2.5 kV (r.m.s.), 50 Hz
Auxiliary voltage and binary inputs (100 % test)	3.5 kV DC
RS485/RS232 rear side communication interfaces and time synchronization interface (100 % test)	500 V (r.m.s.), 50 Hz
Impulse voltage test (type test) All circuits except for communi- cation interfaces and time synchronization interface, class III	5 kV (peak); 1.2/50 μs; 0.5 J, 3 positive and 3 negative impulses in intervals of 5 s
EMC tests for noise immunity; type to	ests
Standards	IEC 60255-6; IEC 60255-22 (product standard) EN 61000-6-2 (generic standard), VDE 0435 Part 301, DIN VDE 0435-110
High-frequency test IEC 60255-22-1 class III and VDE 0435 Part 303, class III	2.5 kV (peak); 1 MHz; $\tau = 15 \mu s$; 400 surges per s; test duration 2 s; $R_i = 200 \Omega$
Electrostatic discharge IEC 60255-22-2 class IV and EN 61000-4-2, class IV	8 kV contact discharge; 15 kV air discharge; both polarities; 150 pF; $R_i = 330 \Omega$
Irradiation with HF field, IEC 60255-22-3 class III IEC 61000-4-3, class III	10 V/m; 80 to 1000 MHz; 80 % AM; 1 kHz 10 V/m; 1.4 to 2 GHz; 80 % AM; 1 kHz
Irradiation with HF field,	Class III, 10 V/m
IEC 60255-22-31, IEC 61000-4-3 Amplitude-modulated Pulse-modulated	80; 160; 450; 900 MHz; 80 % AM 1kHz; duration >10 s 900 MHz, 50 % PM.
	repetition frequency 200 Hz
Fast transient disturbance/bursts IEC 60255-22-4 and IEC 61000-4-4, class IV	4 kV; 5/50 ns; 5 kHz; burst length = 15 ms; repetition rate 300 ms; both polari- ties; $R_i = 50 \Omega$; test duration 1 min

1) Conversion with external OLM

Fiber-optic interface please complete order number at 11th position with 4 (FMS RS485) or 9 and Order Code LOA (DP RS485) or 9 and Order Code LOG (DNP 3.0) and additionally a suitable external repeater.

EMC tests for noise immunity; type tests (cont'd)

High-energy surge voltages (SURGE),	Impulse: 1.2/50 μs
IEC 61000-4-5 installation class III Auxiliary supply	Common (longitudinal) mode: 2 kV; 12 Ω ; 9 μ F Differential (transversal) mode:1 kV; 2 Ω : 18 μ F
Measurement inputs, binary inputs, binary output relays	Common (longitudinal) mode: 2 kV; 42 Ω; 0.5 μF Differential (transversal) mode: 1 kV: 42 Ω: 0.5 μF
Line-conducted HF, amplitude- modulated, IEC 61000-4-6, class III	10 V; 150 kHz to 80 MHz; 80 % AM; 1 kHz
Magnetic field with power fre- quency IEC 61000-4-8, class IV; IEC 60255-6	30 A/m continuous; 300 A/m for 3 s; 50 Hz 0.5 mT; 50 Hz
Oscillatory surge withstand capabil- ity, IEEE C37.90.1	2.5 kV (peak); 1 MHz; τ = 50 µs; 400 surges per second, duration 2 s, R_i = 200 Ω
Fast transient surge withstand capability, IEEE C37.90.1	4 kV; 5/50 ns; 5 kHz burst length = 15 ms; repetition rate 300 ms; both polarities; R_i = 50 Ω ; duration 1 min
Radiated electromagnetic interfer- ence IEEE C37.90.2	35 V/m; 25 to 1000 MHz,
Damped oscillation IEC 60694, IEC 61000-4-12	2.5 kV (peak value); polarity alternating 100 kHz; 1 MHz; 10 and 50 MHz; $R_i = 200 \Omega$
EMC tests for interference emission; ty	ype tests
Standard	EN 61000-6-3 (generic standard)
Conducted interference voltage on lines, only auxiliary voltage IEC-CISPR 22	150 kHz to 30 MHz Limit class B
Radio interference field strength IEC-CISPR 22	30 to 1000 MHz Limit class B
Harmonic currents on the network lead at 230 V AC, IEC 61000-3-2	Class A limits are observed
Voltage fluctuations and flicker	Limits are observed

Voltage fluctuations and flicker on the network incoming feeder at 230 V AC, IEC 61000-3-3

Mechanical stress test

Vibration, shock stress and seismic vibration

During operation Standards Vibration IEC 60255-21-1, class 2 IEC 60068-2-6

Shock IEC 60255-21-2, class 1 IEC 60068-2-27

IEC 60255-21 and IEC 60068-2 Sinusoidal 10 to 60 Hz: \pm 0.075 mm amplitude; 60 to 150 Hz: 1 g acceleration, frequency sweep 1 octave/min 20 cycles in 3 orthogonal axes Half-sinusoidal Acceleration 5 g, duration 11 ms, 3 shocks on each of the 3 axes in both directions

Seismic vibration IEC 60255-21-3, class 1 IEC 60068-3-3

During transport

IEC 60255-21-1, class 2

IEC 60255-21-2, class 1

Standards

Vibration

Shock

IEC 60068-2-6

IEC 60068-2-27

Continuous shock IEC 60255-21-2, class 1

IEC 60068-2-29

(horizontal axis) 8 to 35 Hz: 0.5 g acceleration (vertical axis) Frequency sweep 1 octave/min 1 cycle in 3 orthogonal axes IEC 60255-21 and IEC 60068-2

Sinusoidal

(horizontal axis)

(vertical axis)

1 to 8 Hz: \pm 3.5 mm amplitude

1 to 8 Hz: \pm 1.5 mm amplitude

8 to 35 Hz: 1 g acceleration

Sinusoidal 5 to 8 Hz: ± 7.5 mm amplitude; 8 to 150 Hz: 2 g acceleration, frequency sweep 1 octave/min 20 cycles in 3 orthogonal axes

IEC 60255-6

Semi-sinusoidal Acceleration 15 g, duration 11 ms, 3 shocks on each of the 3 axes in both directions

Semi-sinusoidal Acceleration 10 g, duration 16 ms, 1000 shocks on each of the 3 axes in both directions

Climatic stress tests

Standard Temperatures

Type-tested acc. to IEC 60068-2-1 and -2, test Bd, for 16 h Temporarily permissible operating temperature, tested for 96 h (Legibility of display may be impaired above +55 °C / +131 °F) Recommended permanent operating temperature acc. to IEC 60255-6

- Limiting temperature during permanent storage
- Limiting temperature during transport

Humidity

Permissible humidity stress: It is recommended to arrange the units in such a way that they are not exposed to direct sunlight or pronounced temperature changes that could cause condensation.

-25 °C to +85 °C / -13 °F to +185 °F -20 °C to +70 °C / -4 °F to +158 °F

-5 °C to +55 °C / +23 °F to +131 °F

-25 °C to +55 °C / -13 °F to 131 °F

-25 °C to +70 °C / -13 °F to +158 °F

Annual average on \leq 75 % relative humidity; on 56 days per year up to 93 % relative humidity; condensation is not permitted.

Functions

FUNCTIONS	
Auto-reclosure (ANSI 79)	
Number of auto-reclosures	Up to 8
Operating mode	Only 1-pole; o 3-pole
Operating modes with line volt- age check	DLC – dead-li ADT – adaptiv RDT – reduce
Dead times T _{1-ph} , T _{3-ph} , T _{Seq}	0 to 1800 s (sto vated
Action times	0.01 to 300 s (s vated
Reclaim times	0.5 to 300 s (st
Start-signal monitoring time	0.01 to 300 s (
Additional functions	Synchro-checl 3-phase intert InterCLOSE c mote end Check of CB r Blocking with
Voltage limit values for DLC, ADT,	
Healthy line voltage _{PH-E} Dead line voltage _{PH-E}	30 to 90 V (ste 2 to 70 V (step
Tolerances Time stages Voltage limit values	1% of setting $\leq 3 \%$ of setting
Synchro-check (ANSI 25)	
Initiate options	Auto-reclosur Manual CLOS Control comn
Operating modes With auto-reclosure	Synchro-checl Line dead/bus Line live/busb Line and busb Bypassing
For manual closure and control commands	As for auto-re
Permissible voltage difference	1 to 60 V (step
Permissible frequency difference	0.03 to 2 Hz (s
Permissible angle difference	2 to 80 ° (step
Max. duration of synchronization	0.01 to 600 s (st vated
Release delay with synchronous networks	0 to 30 s (steps
Minimum measuring time	Approx. 80 m
Tolerances Time stages Voltage limit values	1% of setting $\leq 2 \%$ of setting

Jp to 8
Only 1-pole; only 3-pole, 1- or 6-pole
DLC – dead-line check ADT – adaptive dead time RDT – reduced dead time
to 1800 s (step 0.01 s) or deacti- rated
0.01 to 300 s (step 0.01 s) or deacti- rated
0.5 to 300 s (step 0.01 s)
0.01 to 300 s (steps 0.01 s)
ynchro-check request phase intertripping nterCLOSE command to the re- note end Check of CB ready state Blocking with manual CLOSE
0 to 90 V (steps 1 V) to 70 V (steps 1 V)
% of setting value or 10 ms 5 3 % of setting value or 1 V
Auto-reclosure; Manual CLOSE control Control commands
ynchro-check Line dead/busbar live Line live/busbar dead Line and busbar dead Bypassing As for auto-reclosure
to 60 V (step 0.1 V)
0.03 to 2 Hz (step 0.01 Hz)
t to 80 ° (step 1°)
0.01 to 600 s (steps 0.01 s) or deacti- rated
to 30 s (steps 0.01 s)
Approx. 80 ms
% of setting value or 10 ms

Breaker failure protection (ANSI 50BF)

Number of stages	2
Pickup of current element	0.05 to 20 A $_{\rm (1A)}$ / 0.25 to 100 A $_{\rm (5A)}$ (step 0.01 A)
Fime delays $T1_{1 \text{phase}}$, $T1_{3 \text{phase}}$, $T2$	0 to 30 s (steps 0.01 s) or deactivated
Dropout (overshoot) time, internal	\leq 15 ms, typical; 25 ms, max.
End-fault protection	For fault between open CB and CT, with intertrip to the remote line end
Pole discrepancy supervision	Initiation if not all CB poles are closed or open
Monitoring time	0 to 30 s (steps 0.01 s) or deactivated
Folerances Current limit value Time stages	\leq 5 % of setting value or 1 % I_{nom} 1 % of setting value or 10 ms
/oltage protection (ANSI 59, 27)	
Operating modes	Local tripping and/or carrier trip for remote end
Overvoltage protection	
Pickup values V _{PH-E} >>, V _{PH-E} > (phase-earth overvoltage)	1 to 170 V (step 0.1 V)
Pickup values V _{PH-PH} >>, V _{PH-PH} > phase-phase overvoltage)	2 to 220 V (step 0.1 V)
Pickup values $3V_0 >>, 3V_0 >$ $3V_0$ can be measured via V4 trans- ormers or calculated by the relay) zero-sequence overvoltage)	1 to 220 V (step 0.1 V)
Pickup values $V_1 >>$, $V_1 >$ (positive-sequence overvoltage)	2 to 220 V (step 0.1 V)
Pickup values V ₂ >>, V ₂ > (negative-sequence overvoltage)	2 to 220 V (step 0.1 V)
Reset ratio (settable)	0.5 to 0.98 (step 0.01)
Undervoltage protection	
Pickup values <i>V</i> _{PH-E} <<, <i>V</i> _{PH-E} < phase-earth undervoltage)	1 to 100 V (step 0.1 V)
Pickup values V _{PH-PH} <<, V _{PH-PH} < (phase-phase undervoltage)	1 to 170 V (step 0.1 V)
Pickup values V1<<, V1< positive-sequence undervoltage)	1 to 100 V (step 0.1 V)
Blocking of undervoltage protection stages	Minimum current; binary input
Reset ratio (settable)	1.01 to 1.20 (step 0.01)
Time delays	
Fime delay for all stages	0 to 100 s (step 0.01 s) or deactivated
Command / pickup time	Approx. 34 ms at $f_{\text{nom}} = 50$ Hz Approx. 30 ms at $f_{\text{nom}} = 60$ Hz
Folerances Voltage limit values Time stages	≤ 3 % of setting value or 1 V 1 % of setting value or 10 ms
Trip circuit supervision (ANSI 74TC)	
Number of supervisable trip circuits	Up to 3
Number of required binary inputs per trip circuit	1 or 2
ndication relay	1 to 30 s (steps 1 s)

SIEMENS

siemens-russia.com

Additional functions		Further additional functions	
Operational measured values		Measured value supervision	Current sum
Representation	Primary, secondary and percentage referred to rated value		Current symmetry Voltage sum
Currents	3 x I _{Phase} ; 3I ₀ ; I ₁ ; I ₂		Phase sequence
Tolerances	Typ. 0.3 % of indicated measured value or 0.5 % $I_{\rm nom}$	Indications	Fuse failure monitor Power direction
Voltages	3 x V _{Phase-Earth} ; 3 x V _{Phase-Phase} ; 3V ₀ , V ₁ , V ₂ , V _{SYNC} , V _{en}	Operational indications System disturbance indication	Buffer size 200 Storage of indications of the last 8
Tolerances	Typ. 0.25 % of indicated measured value or 0.01 % $V_{\rm nom}$	Switching statistics	faults, buffer size 600 Number of breaking operations per
Power with direction indication	P, Q, S		CB pole Sum of breaking current per phase
P: for $ \cos \varphi = 0.7$ to 1 and V/V _{nom} $I/I_{nom} = 50$ to 120 %	Typical $\leq 1\%$		Breaking current of last trip opera- tion Max. breaking current per phase
Q: for $ \sin \varphi = 0.7$ to 1 and V/V _{nom} , I/I _{nom} = 50 to 120 % S: for V/V _{nom} , I/I _{nom} = 50 to	Typical $\leq 1\%$ Typical $\leq 1\%$	Circuit-breaker test	TRIP/CLOSE cycle, 3 phases TRIP/CLOSE per phase
120 % Frequency	f	Dead time for CB TRIP / CLOSE cycle	0 to 30 s (steps 0.01 s)
Tolerance	$\leq 10 \text{ mHz}$	Commissioning support	Operational measured values, CB
Power factor	PF		test, status display of binary inputs,
Tolerance for $ \cos \varphi = 0.7$ to 1	Typical ≤ 0.02		of indications for testing serial inter-
Energy meters			faces
Four-quadrant meters	$W_{P+}; W_{P-}; W_{Q+}; W_{Q-}$	Phase rotation adjustment	Clockwise or anti-clockwise
Tolerance	5.0/		
for $ \cos \varphi > 0.7$ and $v > 50 \%$ V_{nom} and $I > 50 \% I_{\text{nom}}$	5 %	CE conformity	
Oscillographic fault recording		This product complies with the direct	tive of the Council of the European
Analog channels	3 x I _{Phase} , 3I ₀ 3 x V _{Phase} , 3V ₀ , V _{SYNC} , V _{en}	ing to electromagnetic compatibility (EMC Council Directive 89/336/EE and concerning electrical equipment for use within specified voltage lim	
Max. number of available record- ings	8, backed-up by battery if auxiliary voltage supply fails	(Low-voltage directive 73/23/EEC). This conformity is proved by tests conducted by Siemens AG in accord with Article 10 of the Council Directive in agreement with the generic	
Sampling intervals	20 samplings per cycle		

> 15 s
 Pickup and trip infor

Max. number of displayed binary channels **Control**

Number of switching units

Control commands

Total storage time

Binary channels

Feed back

Interlocking Local control

Remote control

Pickup and trip information; number and contents can be freely configured by the user 40

Depends on the number of binary / indication inputs and indication / command outputs Single command / double command 1, 1 plus 1 common or 2 pole

CLOSE, TRIP, intermediate position

Freely configurable Control via menu, function keys, control keys (if available) Control protection, DIGSI, pilot wires with Article 10 of the Council Directive in agreement with the generic standards EN 61000-6-2 and EN 61000-6-4 for the EMC directive and with the standard EN 60255-6 for the low-voltage directive.

This device is designed and produced for industrial use.

The product conforms with the international standard of the series IEC 60255 and the German standard VDE 0435.

Selection and ordering data	Description		Order No.		Orc	der
	7VK61 breaker managem	ent relay	7VK61□□ – □□[<u> </u>		
	Housing, binary inputs (Bl) an Housing 1/3 19", 7 BI, 6 BO i Housing 1/2 19", 20 BI, 19 BO	<i>d outputs (BO)</i> ncl. 1 live-status contact, D incl. 1 live-status contact				
	Measuring inputs (4 × V, 4 × I) $I_{\rm ph} = 1$ A, $I_{\rm e} = 1$ A (min. = 0.0 $I_{\rm ph} = 5$ A, $I_{\rm e} = 5$ A (min. = 0.2	$(5 A)^{1)}$ $(5 A)^{1)}$	<u>1</u> 5			
	Rated auxiliary voltage (power 24 to 48 V DC, binary input the $60 \text{ to } 125 \text{ V DC}^2$, binary input the 32 voltage (binary input)	er supply, threshold of binary inp hreshold 19 V ³⁾ it threshold 19 V ³⁾	uts) 2 4			
	$\frac{110 \text{ to } 250 \text{ V DC}^{2}, 115 \text{ to } 230}{220 \text{ to } 250 \text{ V DC}^{2}, 115 \text{ to } 230}$) V AC, binary input threshold 8) V AC, binary input threshold 1	$\frac{8 V^{3}}{76 V^{3}} \qquad \frac{5}{6}$			
	<i>Unit version</i> For panel flush mounting For panel surface mounting		<u>A</u> E			
	Region-specific default setting Region DE, language: Germa	gs/language settings and function n, selectable	ons versions A			
	Region US, language:US-Eng	lish, selectable	C			
	Region FR, language: French Region World, language: Spa Region World, language: Ital	, selectable nish, selectable ian, selectable	D E F	-		
	Port B system interface Empty			0		
	IEC 60870-5-103 protocol, e	lectrical RS232		1		
	IEC 60870-5-103 protocol, e	lectrical RS485		2		
	IEC 60870-5-103 protocol, o	optical 820 nm, ST connector		3		
	PROFIBUS-FMS Slave, elect	rical RS485	.)	4		
	PROFIBUS DD Slave, Opti-	cal, double ring, 51 connector	, 	0		
	PROFIBUS DP Slave, R548:) 1920 am double ring CT con	4)	0		P
	DNP 3.0 RS/85	a 620 mm, abubic mig, 51 com		9	10	G
	DNP 3.0 ontical \$20 nm ST	connector ⁴⁾		9	10	Г Н
	IEC 61850, 100 Mbit Etherne	t electrical double RI45 conne	ctor	9	10	R
	IEC 61850, 100 Mbit Etherne	t, optical, double, LC connector	5)	9	L O	S
 Rated current can be selected by means of jumpers. 	Port C service interface DIGSI 4/modem, electrical R	\$232		1		
2) Transition between the 3 auxiliary ranges can be selected by means of jumpers.	Functions	Auto recleauro	r/Undomoltago	2		
 The binary input thresholds are selectable in 3 steps by means of jumpers. 	1-/3-pole or 3-pole only	1-/3-pole or 3-pole only prot and synchro-check	ection			
4) Optical interfaces are not available	-			D	1	
with surface mounting housings $(position Q = 5)$ Places order the				N	4	
(position $9 = E$). Please order the version with RS485 interface and a	-			P	-	
separate electrical/optical converter.	-	.		Q 	-	
5) For surface-mounting housing appli- cations please order the relay with					1	

- 3) The bin selectal jumper
- 4) Optical with su (positio version separat
- 5) For sur cations electrical Ethernet interface and use a separate fiber-optic switch.

SIEMENS

siemens-russia.com

- 4	cc	000		100
		-	9 U I	163

DIGSI 4	
Software for configuration and operation of Siemens protection units	
running under MS Windows 2000/XP Professional Edition	
device templates, Comtrade Viewer, electronic manual included	
as well as "Getting started" manual on paper, connecting cables (copper)	
Basis	
Full version with license for 10 computers, on CD-ROM	
(authorization by serial number)	7XS5400-0AA00
Professional	
DIGSI 4 Basis and additionally SIGRA 4 (fault record analysis),	
CFC Editor (logic editor), Display Editor (editor for default	
and control displays) and DIGSI 4 Remote (remote operation)	7XS5402-0AA00
SIGRA 4	
(generally contained in DIGSI Professional, but can be ordered additionally)	
Software for graphic visualization, analysis and evaluation of fault records.	
(Comtrade format). Running under MS Windows 2000/XP Professional Edition	
Incl. templates, electronic manual with license for 10 PCs.	
Authorization by serial number. On CD-ROM.	7XS5410-0AA00
Connecting cable (copper)	
Cable between PC/notebook (9-pin connector) and protection unit (9-pin connector)	
(contained in DIGSI 4, but can be ordered additionally)	7XV5100-4
Voltage transformer miniature circuit-breaker	
Rated current 1.6 A; thermal overload release 1.6 A;	
overcurrent trip 6 A	3KV1611-1AG14
Manual for 7VK61	
For the latest version please visit	www.siemens.com/siprotec

Fig. 10/19 2-pin connector

Fig. 10/21 Short-circuit link for current contacts

Fig. 10/20 3-pin connector

Fig. 10/22 Short-circuit link for voltage contacts/ indications contacts

package C73334-A1-C35-1 1 10/19 Connector 2-pin Siemens 1 3-pin C73334-A1-C36-1 Siemens 10/20 $AMP^{\ 1)}$ Crimp CI2 0.5 to 1 mm² 4000 0-827039-1 AMP¹⁾ connector 1 0-827396-1 $AMP^{(1)}$ CI2 1 to 2.5 mm² 0-827040-1 4000 $AMP^{\ 1)}$ 0-827397-1 1 AMP¹⁾ Type III+ 0.75 to 1.5 mm² 4000 0-163083-7 $AMP^{(1)}$ 1 0-163084-2 $AMP^{(1)}$ Crimping For type III+ 0-539635-1 1 $AMP^{(1)}$ tool and matching female 0-539668-2 $AMP^{(1)}$ for CI2 1 0-734372-1 AMP¹⁾ and matching female 1-734387-1 19" mounting rail 10/18 C73165-A63-D200-1 1 Siemens Short-circuit links For current terminals C73334-A1-C33-1 1 Siemens 10/21 For other terminals 10/22 Siemens C73334-A1-C34-1 1 10/4Safety cover for terminals large C73334-A1-C31-1 1 Siemens 10/4small C73334-A1-C32-1 1 Siemens

Order No.

Size of

Supplier

Fig.

1) Your local Siemens representative

can inform you on local suppliers.

Description

Serial interfaces

Connection diagram

Fig. 10/25 Connection diagram 7VK611, 1/2 x 19" housing

1) Fast relay

SIPROTEC 7SV600 Numerical Circuit-Breaker Failure Protection Relay

Fig. 10/26 SIPROTEC 7SV600 numerical circuit- breaker failure protection relay

Description

The SIPROTEC 7SV600 is a numerical relay used for circuit-breaker failure protection. A failure occurs when the circuit-breaker fails to correctly open and clear the fault after single or three-pole trip commands have been issued by the protection unit. It is then necessary to trip the relevant busbar zone (section) to ensure fault clearance.

Generally, the monitoring of the current is sufficient as the criterion for the indication that the circuit-breaker has successfully cleared the fault ("current condition"). However, under certain fault conditions (e.g. overvoltage), little or no current may flow, making the measurement of current unreliable for indication of the circuitbreaker status ("no current condition"). The 7SV600 operates correctly for both these conditions. The relay is suitable for use at all voltage levels and in all applications. The current transformers can either be of the closed iron core or linear type. The relay can be incorporated in conventional switchgear systems and modem substation control systems e.g. SICAM.

Function overview

Protection functions

- Circuit-breaker failure protection (single or three-pole with/without current)
- Independently settable delay times for operation with and without current
- Single or two-stage time delay of the busbar trip command
- Re-trip (cross trip) stage (1st stage of the 2-stage operation)
- Intertrip facility (via teleprotection interface)
- End-fault protection with intertrip
- "No current" control using the circuit-breaker auxiliary contacts

Features

- Highly sensitive current detection
- 2-out-of-4 check of the current detectors
- Short reset time, negligible overshoot time
- Can be initiated by phase-segregated or common-phase trip commands
- End-fault protection
- Assignable output relays, LEDs and binary inputs

Monitoring functions

- Monitoring of circuit-breaker auxiliary contacts
- Operational current measured values
- Self-supervision of the relay
- Event buffer
- Fault protocols
- Oscillographic fault recording

Communication interfaces

- 1 x RS485 interface
- IEC 60870-5-103 protocol – DIGSI

Hardware

- Digital inputs:
- 3 binary inputs
- Digital outputs:
- 4 output relays

Front design

• Display for operation and measured values

SIEMEN

siemens-russia.com

• 6 LEDs for local alarm

Application

The numerical circuit-breaker failure protection relay 7SV600 provides rapid backup fault clearance instruction to the associated circuit-breakers in case the circuit-breaker nearest to the fault fails to respond.

It is suitable for power systems of all voltage levels. The initiation signal can be derived from any protection or supervision equipment or, in case of manual opening, from the control discrepancy switch of the breaker. Information from the circuitbreaker auxiliary contact is required for the breaker failure protection to function during faults which produce little or no current flow (possible only with commonphase initiation).

Simplified application diagram of circuit-breaker failure protection.

Fig. 10/27 Typical applications

Simplified application diagram of circuit-breaker failure protection by means of a circuit-breaker auxiliary contact.

Construction

The relay contains all the components needed for

- Acquisition and evaluation of measured values
- Operation and display
- Output of signals and trip commands
- Input and evaluation of binary signals
- SCADA interface (RS485)
- Power supply

The rated CT currents applied to the SIPROTEC 7SV600 can be 1 or 5 A. This is selectable via a jumper inside the relay.

Three different housings are available. The flush-mounting versions have terminals accessible from the rear. The surfacemounting version has terminals accessible from the front.

Fig. 10/28 Rear view of surface-mounting housing

Protection function

The breaker failure protection can operate single-stage or two-stage. When used as single-stage protection, the bus trip command is given to the adjacent circuitbreakers if the protected feeder breaker fails. When used as two-stage protection, the first stage can be used to repeat the trip command to the relevant feeder breaker, normally on a different trip coil, if the initial trip command from the feeder protection is not successful. The second stage will result in a bus trip to the adjacent breakers, if the command of the first stage is not successful.

The bus trip command from the breaker failure protection can be routed to all circuit-breakers linked to the same busbar (section) as the breaker that failed. It can also be transmitted to the remote end by means of a suitable communication link (e.g. PLC, radio wave, or optical fiber).

The isolator replica which is necessary in case of multiple busbar sections is not part of the 7SV600 relay.

The current level is monitored in each of the three phases against a set threshold. In addition, the zero-sequence component or the negative-sequence component of the phase currents derived by symmetrical component analysis is monitored. This ensures high security against malfunction by use of a 2-out-of-4 check of the current detectors.

The version with phase-segregated initiation enables reliable breaker failure detection even during single-pole auto-reclose cycles, provided the phase-segregated trip signals of the feeder protection are connected to the 7SV600.

If the protected circuit-breaker is not operational (e.g. air pressure failure or spring not charged), instantaneous bus trip of the adjacent circuit-breakers can be achieved following a feeder protection trip, provided the relay is informed via binary input of the breaker status (possible only for common-phase initiation).

An end-fault protection function is integrated in the 7SV600 relay. An end fault is a short-circuit located between the circuitbreaker and the current transformer set of the feeder. For this fault, current flow is detected, although the auxiliary contacts of the breaker indicate open breaker poles. A command signal is generated which can be transmitted to the remote-end breaker (possible only for common-phase initiation). Special measures are taken to prevent malfunction of the relay. Besides the mentioned 2-out-of-4 check of the current detection elements, the trip signals of the feeder protection can be connected in a redundant manner, so that they can be checked for plausibility (possible only for common-phase initiation).

Continuous monitoring of the measured values permits rapid annunciation of any fault in the instrument transformer circuits. Continuous plausibility monitoring of the internal measured value processing circuits and monitoring of the auxiliary voltages to ensure that they remain within tolerance are obviously inherent features.

Serial data transmission

A PC can be connected to ease setup of the relay using the Windows-based program DIGSI which runs under MS-Windows.

It can also be used to evaluate up to 8 oscillographic fault records, 8 fault logs and the operational event buffer. As an option, a system interface is available.

The SIPROTEC 7SV600 transmits a subset of data via IEC 60870-5-103 protocol:

- General fault detection of the device
- General trip of the device
- Current in phase L2 [%] =
- Breaker failure trip T1 (local trip)
- Breaker failure trip T2 (busbar trip)
- Circuit-breaker defective: Trip
- Trip by end-fault protection

Connection diagrams

- Trip by monitoring current symmetry
- Breaker failure protection is active

Fig. 10/29

Wiring communication RS485

For convenient wiring of the RS485 bus,

use bus cable system 7XV5103 (see part 13 of this catalog)

Fig. 10/30 Connection example for single-stage breaker failure protection with phase-segregated initiation

10

SIEMENS

siemens-russia.com

Fig. 10/32

Connection example for single-stage breaker failure protection with common phase initation and Buchholz protection, CB interrogation is imperative; additional intertrip signal to the opposite line end in case of breaker failure or end fault

Siemens SIP · Edition No. 6

1 to 5 A
50 or 60 Hz (selectable)
 < 0.1 VA < 0.2 VA
ent path, $100 \ge I_N \text{ for } \le 1 \le 30 \ge I_N \text{ for } \le 10 \le 4 \ge I_N \text{ continuous}$
(nt) $250 \ge I_N$ one half cycle
ited DC/DC converter
Z _{Aux} DC 24 / 48 V DC 60 / 110 / 125 V DC 220 / 250 V DC
19 to 58 V DC 48 to 150 V DC 176 to 300 V DC
\leq 12 % at rated voltage \leq 6 % at limits of admissible voltage
Approx. 2 W Approx. 4 W
l- $\geq 50 \text{ ms at } V_{\text{rated}} \geq 110 \text{ V DC}$ liary voltage $\geq 20 \text{ ms at } V_{\text{rated}} \geq 24 \text{ V DC}$
VAux 115 V AC, 50/60 Hz 230 V AC, 50/60 Hz
92 to 133 V AC 184 to 265 V AC
contacts
number 2 (can be marshalled) 2 NO 1000 W / VA 30 W / VA 250 V 5 A continuous
30 A for 0.5 s
2 (can be marshalled) 1 CO 1000 W/VA 30 W/VA 250 V 5 A
92 to 133 V AC 184 to 265 V AC contacts number 2 (can be marshalled) 2 NO 1000 W / VA 30 W / VA 250 V 1000 W / VA 30 W / VA 30 A for 0.5 s 2 2 (can be marshalled) 1 CO 1000 W/VA 30 W/VA 30 W/VA 250 V 5 A 2 (can be marshalled) 1 CO 1000 W/VA 30 W/VA 250 V 5 A

Binary inputs Number 3 (can be marshalled) Rated operating voltage 24 to 250 V DC Current consumption Approx. 2.5 mA, independent of operating voltage selectable by plug-in jumpers $V_{\text{pickup}} \ge 17 \text{ V DC}$ Pick-up threshold Rated aux. voltage 24/48/60 V DC $V_{\rm drop-off} < 8 \text{ V DC}$ $V_{\rm pickup} \ge 74 \text{ V DC}$ Rated aux. voltage 110/125/220/250 V DC $V_{\rm drop-off} < 45 \text{ V DC}$ Unit design Housing 7XP20 Dimensions Refer to part 15 for dimension drawings Weight In housing for surface mounting Approx. 4.5 kg In housing for flush mounting Approx. 4.0 kg Degree of protection acc. to EN 60529 IP 51 Housing IP 21 Terminals Serial interface Isolated RS485 Standard Test voltage 2.8 kV DC Data cable on terminals, two data Connection wires, one frame reference, for connection of a personal computer or similar; core pairs with shield, shield must be earthed; communication possible via modem As delivered 9600 baud Baud rate min. 1200 baud; max. 19200 baud Electrical tests Specifications Standards IEC 60255-5; ANSI/IEEE C37.90.0 Insulation tests High voltage test (routine test) 2 kV (r.m.s.); 50 Hz except DC voltage supply input and RS485 High voltage test (routine test) 2.8 kV DC only DC voltage supply input and RS485 High voltage test (type test) Between open contacts of 1.5 kV (r.m.s.), 50 Hz trip relays Between open contacts 1 kV (r.m.s.), 50 Hz of alarm relays Impulse voltage test (type test) 5 kV (peak); 1.2/50 μs; 0.5 J; all circuits, class III 3 positive and 3 negative impulses at intervals of 5 s

EMC tests for noise immunity; type tests

Standards: IEC 60255-6, IEC 60255-22 (product standards); EN 50082-2 (generic standard) VDE 0435, part 303

High frequency IEC 60255-22-1, class III

Electrostatic discharge IEC 60255-22-2, class III and IEC 61000-4-2, class III

Irradiation with radio-frequency field, non-modulated; IEC 60255-22-3 (report), class III

Irradiation with radio-frequency field, amplitude-modulated; IEC 61000-4-3, class III

Irradiation with radio-frequency field, pulse-modulated; IEC 61000-4-3/ENV 50204, class III

Fast transients/bursts IEC 60255-22-4 and IEC 61000-4-4, 15 ms; repetition rate 300 ms; both class III

Line-conducted HF, amplitudemodulated IEC 61000-4-6, class III

Magnetic field with power frequency IEC 61000-4-8, class IV

IEC 60255-6

Oscillatory surge withstand capability ANSI/IEEE C37.90.1 (common mode)

Fast transient surge withstand capability ANSI/IEEE C37.90.1 (common mode)

Radiated electromagnetic interference ANSI/IEEE C37.90.2 High frequency test

document 17C (SEC) 102

EMC tests for interference emission; type tests

Standard
Conducted interference voltage,
aux. voltage
CISPR 22, EN 55022
Radio interference field strength
CISPR 11, EN 55011

2.5 kV (peak); 1 MHz; *τ* =15 μs; 400 shots/s; duration 2 s 4 kV/6 kV contact discharge; 8 kV air discharge; both polarities; 150 pF; $R_i = 330 \Omega$

10 V/m; 27 to 500 MHz

10 V/m; 80 to 1000 MHz; 80 % AM; 1 kHz

10 V/m; 900 MHz; repetition frequency 200 Hz; duty cycle 50 %

2 kV; 5/50 ns; 5 kHz; burst length polarities; $R_i = 50 \Omega$; duration 1 min

10 V; 150 kHz to 80 MHz; 80 % AM; 1 kHz

30 A/m continuous: 300 A/m for 3 s; 50 Hz 0.5 mT; 50 Hz 2.5 to 3 kV (peak); 1 to 1.5 MHz, decaying oscillation; 50 surges per s; duration 2 s; $R_{\rm i} = 150 \ \Omega$ to 200 Ω

4 to 5 kV; 10/150 ns; 50 surges per s; both polarities; duration 2 s; $R_i = 80 \Omega$

10 to 20 V/m; 25 to 1000 MHz; amplitude and pulse modulated

2.5 kV (peak, alternating polarity); 100 kHz, 1 MHz, 10 and 50 MHz, decaying oscillation; $R_i = 50 \Omega$

EN 50081-* (generic standard) 150 to 30 MHz

Limit class B 30 to 1000 MHz Limit class A

Mechanical stress tests

Vibration, shock stress and seismic vibration

During operation

Standards Vibration IEC 60255-21-1, class I IEC 60068-2-6

Shock IEC 60255-21-2, class I

Seismic vibration IEC 60255-21-3, class I IEC 60068-3-3

During transportation

Standard Vibration IEC 60255-21-1, class II IEC 60068-2-6

Shock IEC 60255-21-2, class I IEC 60068-2-27

Continuous shock IEC 60255-21-2, class I IEC 60068-2-29

IEC 60255-21 and IEC 60068-2 Sinusoidal 10 to 60 Hz: ± 0.035 mm amplitude; 60 to 150 Hz: 0.5 g acceleration Sweep rate 1 octave/min 20 cycles in 3 orthogonal axes Half-sine Acceleration 5 g, duration 11 ms, 3 shocks in each direction of 3 orthogonal axes Sinusoidal 1 to 8 Hz: ± 3.5 mm amplitude (horizontal axis) 1 to 8 Hz: \pm 1.5 mm amplitude (vertical axis) 8 to 35 Hz: 1 g acceleration (horizontal axis) 8 to 35 Hz: 0.5 g acceleration

1 cycle in 3 orthogonal axes

Sweep rate 1 octave/min

(vertical axis)

IEC 60255-21 and IEC 60068-2 Sinusoidal

5 to 8 Hz: \pm 7.5 mm amplitude; 8 to 150 Hz: 2 g acceleration Sweep rate 1 octave/min 20 cycles in 3 orthogonal axes

Half-sine Acceleration 15 g, duration 11 ms, 3 shocks in each direction of 3 orthogonal axes

Half-sine Acceleration 10 g, duration 16 ms, 1000 shocks in each direction of 3 orthogonal axes

Climatic stress tests	
Temperatures	
Permissible temperature during service	-20 °C to +70 °C (> 55 °C decreased display contrast)
Recommended temperature during service	−5 °C to +55 °C
Permissible temperature during storage	–25 °C to +55 °C
Permissible temperature during transport Storage and transport with standard works packaging!	−25 °C to +70 °C
Humidity	
Permissible humidity We recommend that all units are	Mean value per year $\leq 75\%$ relative humidity; on 30 days per year 95\%

permissible!

installed such that they are not subjected to direct sunlight, nor to large temperature fluctuations which may give rise to condensation.

Service conditions

The relay is designed for use in industrial environment, for installation in standard relay rooms and compartments so that with proper installation electromagnetic compatibility (EMC) is ensured. The following should also be heeded:

- All contactors and relays which operate in the same cubicle or on the same relay panel as the digital protection equipment should, as a rule, be fitted with suitable spike quenching elements.
- All external connection leads in substations from 100 kV upwards should be shielded with a shield capable of carrying power currents and earthed at both sides. No special measures are normally necessary for substations of lower voltages.

- The shield of the RS485 cable must be earthed.
- It is not permissible to withdraw or insert individual modules under voltage. In the withdrawn condition, some components are electrostatically endangered; during handling the standards for electrostatically endangered components must be observed. The modules are not endangered when plugged in.

WARNING! The relay is not designed for use in residential, commercial or light-industrial environment as defined in EN 50081.

Functions Breaker supervision Current detection $0.05 \ge I_N$ to $4.00 \ge I_N$ (steps $0.01 \ge I_N$) Setting range Drop-off ratio Approx. 0.9 Tolerance 0.01 x $I_{\rm N}$ or 5 % of set value Initiation conditions Depending on ordered version Phase-segregated initiation (singlepole trip from feeder protection) or common-phase initiation (three-pole trip from feeder protection) and common-phase initiation (three-pole trip from non-short-circuit protection) Times relative humidity; condensation not Approx. 15 ms with measured Pickup time quantities present Approx. 25 ms after switch-on of measured quantities Drop-off time with sinusoidal $\leq 10 \text{ ms}$ measured quantities Drop-off time maximum $\leq 25 \text{ ms}$ 0.00 s to 32.00 s (steps 0.01 ms) Delay times for all time stages or deactivated Delay time tolerance 1 % of set value or 10 ms The set times are pure delay times. Additional functions **Operational value measurements** Operational current values In: In: In: Measurement range 0 % to 240 % $I_{\rm N}$

Tolerance 3 % of rated value or of measured value Steady-state measured value supervision $I_{\text{max}} / I_{\text{min}} >$ symmetry factor Current unbalance as long as $I > I_{\text{limit}}$ Fault event data storage Storage of annunciations of the last eight faults with max. 30 messages each Time assignment Resolution for operational 1 s annunciations Resolution for fault event 1 ms annunciations Max. time deviation 0.01 % Data storage for fault recording (max. 8 fault events) Total storage time (fault detection Max. 5 s, selectable pre-trigger and or trip command = 0 ms) post-fault time Max. storage period 0.30 to 5.00 s (steps 0.01 s) per fault event T_{max} Pre-trigger time T_{pre} 0.05 to 0.50 s (steps 0.01 s) Post-fault time Tpost 0.05 to 0.50 s (steps 0.01 s) Sampling rate 1 instantaneous value per ms at 50 Hz 1 instantaneous value per 0.83 ms at 60 Hz

Selection and ordering data

Description	Order No.
7SV600 numerical circuit-breaker failure protection relay	7SV600□-□□A00-□DA0
Rated current; rated frequency	
1 A; 50/60 Hz	1
5 A; 50/60 Hz	5
Rated auxiliary voltage	
24, 48 V DC	2
60, 110, 125 V DC	4
220, 250 V DC / 115 V AC, 50/60 Hz	5
230 V AC, 50/60 Hz	6
Unit design	
For panel surface mounting with terminals on both sides	В
For panel surface mounting with terminals at top and bottom	D
For panel flush mounting/cubicle mounting	E
Options	
For common phase initiation	0
For common phase initiation or phase-segregated initiation	1

Accessories

DIGSI 4

Software for configuration and operation of Siemens protection units	
running under MS Windows (version Windows 2000/XP Professional Edition)	
device templates, Comtrade Viewer, electronic manual included	
as well as "Getting started" manual on paper, connecting cables (copper)	
Basis	
Full version with license for 10 computers, on CD-ROM	
(authorization by serial number)	7XS5400-0AA00
Professional	
DIGSI 4 Basis and additionally SIGRA (fault record analysis),	
CFC Editor (logic editor), Display Editor (editor for default	
and control displays) and DIGSI 4 Remote (remote operation)	7XS5402-0AA00

RS232 (V.24)↔RS485 converter*

Plug-in auxiliary power supply unit 220 V/50 Hz AC	0
Plug-in auxiliary power supply unit 110 V/60 Hz AC	1
With RS485 connecting cable for 7SJ6, 7RW6, 7SD6, 7SV6	A
With RS485 connecting cable with 9-pin connector for SIMEAS Q	В
With RS485 connecting cable with plug connector for SIMEAS T	С
Without RS232 connecting cable With RS232 connecting cable 7XV5100-2 for PC/notebook, 9-pin connect	A or (female)
With RS232 adapter, 25-pin connector (male) to 9-pin connector (female) for connection to notebook/PC	C
Converter full-duplex fiber-optic cable - RS485	
With power supply 24 - 250 V DC and 110/230 V AC	/XV5650-0BA00

For the latest version please visit

www.siemens.com/siprotec

SIEMENS

siemens-russia.com

7XV5700-□□00

10

*) RS485 bus system up to 115 kbaud RS485 bus cable and adaptor 7XV5103-□AA□□; see part 13.

Connection diagram

Fig. 10/33

General connection diagram of 7SV600 with presettings for common phase initiation

Fig. 10/34

General connection diagram of 7SV600 with presettings for phase-segregated initiation

SIPROTEC 7SN60 Transient Earth-Fault Protection Relay

Fig. 10/35 SIPROTEC 7SN60 transient earth-fault relay

Description

The highly sensitive 7SN60 transient earthfault relay determines the direction of transient and continuous earth faults in systems with isolated neutral, in systems with high-impedance resistive earthing and in compensated systems. Continuous earth faults are indicated with a delay, either in conjunction with a transient earth fault and subsequently persisting displacement voltage, or with just the displacement voltage present.

Function overview

Protection functions

- Units for panel surface mounting or flush mounting in 7XP20 housing, with terminals on the side or terminals on the top/bottom
- Both fault directions indicated by LEDs and signaled by relays
- High pickup sensitivity due to separate detection and evaluation of total current and displacement voltage
- 1 A and 5 A rated current selectable for current transformer matching
- 16 selectable pickup thresholds for detection of transients in the current path, even with higher steady-state total currents of 10 to 300 mA
- Fixed pickup threshold of 5 V for detection of transients in the voltage path, even in the case of higher steady-state displacement voltages
- 4 selectable pickup thresholds for evaluation of the displacement voltage of 10 to 50 V
- Optional suppression of switching operations by evaluation of the displacement voltage after a switching-induced transient has occured
- Wide-range power supply for connection to 110/230 V AC systems,
 60 to 250 V DC station batteries or
 100 V DC voltage transformers without switchover or 24 to 60 V DC
- Binary inputs for remote reset and blocking with extremely wide input voltage range of 24 to 250 V DC
- Automatic reset of direction indications and signals after 3 or 10 s (selectable)
- Automatic reset in case of intermittent earth faults only after the last earthfault, i.e. the correct indication and signal of the first earth fault is preserved
- Detection of the displacement voltage and earth-fault indication/signal, independent of a transient fault detection
- Signaling and indication of a continuous earth fault possible only in the forward direction

SIEMEN

siemens-russia.com

• Fault indication if sensitivity is set too high

Construction

The relay contains all the components needed for

- Acquisition and evaluation of measured values
- Operation and display
- Output of signals and trip commands
- Power supply

The rated CT currents applied to the SIPROTEC 7SN60 can be 1 or 5 A. This is selectable via a jumper inside the relay.

Three different housings are available. The flush-mounting/cubicle-mounting housings have terminals accessible from the rear. The surface-mounting housing has terminals either on the side or on the top and bottom.

Fig. 10/36 Rear view

Protection functions

Earth-fault directional determination

The highly sensitive 7SN60 transient earth-fault relay determines the direction of transient and continuous earth faults in systems with isolated neutral, in systems with high-impedance resistive earthing and in compensated systems.

Continuous earth faults are indicated with a delay, either in conjunction with a transient earth fault and subsequently persisting displacement voltage, or with just the displacement voltage present.

In the event of an earth fault, the neutralpoint voltage to earth can be as high as the full-phase voltage.

The phase-to-earth capacitances of the non-earth-faulted phases are charged via the transformer inductance.

This charging process is bound up with a strong current surge (starting oscillation).

The amplitude of this current surge depends on the expands of the system and on the contact resistance values at the earth-fault location.

This current flows via the phase-to-earth capacitances of the unaffected lines to earth, enters the earth-faulted phase via the earth-fault location and flows back from there to the feeding transformer. Thus the direction of the earth-fault induced current surge is identical to that of the short-circuit current at the same location.

At measuring point A, as a result of the transformer summation circuit, the earth current of the faulted line is not included in the measurement, as this current portion flows through the summation transformer of the relevant Holmgreen circuit and back, thereby canceling itself out.

It is the total of the capacitive earth currents from the non-faulted system which has an effect. In the diagram they are summated on the upper line. The capacitive currents of the non-faulted lines 1, 3 and 2, 4 accumulate vectorially, which explains why only three arrows instead of four are shown at the measuring point A.

With a transient earth fault, the equalizing current forming a damped oscillation of 100 to more than 1000 Hz decays after only a few periods.

The displacement voltage $V_{\rm EM}$ thereupon also returns to zero. In earthed systems this takes place after a number of periods (decay of the Petersen coil - earth capacitance oscillation circuit); in non-earthed systems this occurs after a very short time.

Fig. 10/37 Fault currents in the system

Protection functions

In the case of a continuous earth fault, the equalizing current in the non-earthed system changes into the mostly capacitive continuous earth current or, in compensated systems, into the relatively low residual active current.

For the directional determination, the direction of the first transient of neutral current and displacement voltage is considered.

The relay indicates the direction of the transient earth fault by LEDs (red = for-ward direction, yellow = reverse direction) and the relevant signaling relay pickups.

Continuous earth faults are indicated after a settable time by an LED on the relay and signaled by a signaling relay.

Detection of the fault location

If the system is of radial configuration, the red lamp immediately indicates the faulted line.

If one of the lines consists of several sections, the fault is upstream of the last red lamp.

The transient earth-fault relay can also be used without restrictions in any type of meshed systems. Transient earth-fault relays distributed at suitable points throughout the system allow detection of the earth-fault location from the directional indications.

Fig. 10/38 Neutral current and displacement voltage

Fig. 10/40 Cascaded radial system

Fig. 10/41 Meshed system

Fig. 10/42 Ring system

siemens-russia.com

Typical connection

Connection of the current and voltage transformers

Figures 10/43 and 10/44 show the connection of the current and voltage transformer set in Holmgreen circuit.

In Fig. 10/43, the star point at the line-side of the CT must be connected to terminal 1 while the star point at the busbar side of the CTs must be connected to terminal 2.

The three phase voltages V_{L1} , V_{L2} and V_{L3} are connected to terminals 7, 8, 9 respectively. The earthed star point of the voltage transformer is connected to terminal 10.

Fig. 10/43 Connection of transformers and auxiliary power supply for panel flush-mounting housing and panel surface-mounting housing (terminals on the side)

Fig. 10/44 Connection of transformers and auxiliary power supply for panel surface-mounting housing (terminals on the top/bottom)

Siemens SIP · Edition No. 6

Technical data

General unit data

Measuring circuit		
Rated current I ₀	1 or 5 A	
Input impedance Z at 50 Hz and $I_{ m N}$	$< 0.05 \ \Omega$	
Rated voltage $V_{\rm N}$	100/110 V AC	
Rated frequency <i>f</i> _N	50 Hz (16.7 Hz)	
Thermal rating		
- In voltage path, continuous	140 V AC	
- In current path, continuous	$4 \ge I_N$	
10 s	$30 \ge I_N$	
1 s (at 1 A)	$100 \ge I_N$	
1 s (at 5)	300 A	
Auxiliary voltage		
Rated auxiliary	60 – 250 V DC and	d 100 – 230 V AC
voltage V _{aux}	without switchove	r F · I
Power consumption at	Quiescent	Energized
	5.1 W	4.5 W
110 V DC	5.0 W	4.5 W
220 V DC	3.0 W	4.0 W
250 V DC	5.7 W	4.8 W
	2.9 VA	4.2 VA
110 V AC	5.0 VA	4.2 VA
250 V AC	4.0 VA	5.8 VA
Input voltage for blocking and	24 250 V DC	
remote reset input	24 - 250 V DC	
Pickup thresholds for		
– Blocking X30 pin 1-2, remote reset X31 pin 1-2	Approx. 19 V	
– Blocking X30 pin 2-3, remote reset X31 pin 2-3	Approx. 75 V	
Signaling relays		
Number of relays, forward or reverse direction	2 NO contacts	
Number of relays, continuous earth-fault signal	1 NO contact	
Number of relays, alarm	1 NC contact	
Switching capacity Make (all relays)	1000 W/VA	
Switching capacity Break (all relays)	30 W/VA	
Switching voltage	250 V AC/DC	
Permissible switching current		
Continuous	5 A	
0.5 s	30 A	
Unit design		
Housing, dimensions	SIPROTEC housing of 1/6 width Refer to part 15 for dimension drawings	
For flush mounting, terminals at the top/bottom	6 current / 25 voltage terminals	
For panel surface mounting, terminals on the side	6 current / 25 voltage terminals	
Weight	Approx. 4 kg	
Chan danda		

Standards DIN VDE 0435, Part 303 and IEC 60255-5

SIEMENS siemens-russia.com

Selection and ordering data

Description	Order No.
7SN60 transient earth-fault protection relay	7SN6000-□□A00
In SIPROTEC housing 1/6 width Rated frequency 50 Hz	
Rated auxiliary voltage 60 - 250 V DC and 100 - 230 V AC without switchover	0
<u>24 - 48 V DC</u>	1
For panel surface mounting with terminals on the side	В
For panel surface mounting with terminals at top/bottom part	D
For panel flush mounting or cubicle mounting	E

Connection diagram

Fig. 10/45 Connection diagram

