

SIPROTEC Compact 7SK80 Motor Protection

V4.6

Technical Data

Extract from manual E50417-G1140-C344-A4, chapter 4

Energy Automation

SIEMENS siemens-russia.com

Note For safety purposes, please note instructions and warnings in the Preface.

Disclaimer of Liability

We have checked the contents of this manual against the hardware and software described. However, deviations from the description cannot be completely ruled out, so that no liability can be accepted for any errors or omissions contained in the information given.

The information given in this document is reviewed regularly and any necessary corrections will be included in subsequent editions. We appreciate any suggested improvements.

We reserve the right to make technical improvements without notice.

Document version V04.03.01.

Release date 08.2010

Copyright

Copyright © Siemens AG 2010. All rights reserved.

Dissemination or reproduction of this document, or evaluation and communication of its contents, is not authorized except where expressly permitted. Violations are liable for damages. All rights reserved, particularly for the purposes of patent application or trademark registration.

Registered Trademarks

SIPROTEC, SINAUT, SICAM and DIGSI are registered trademarks of Siemens AG. Other designations in this manual might be trademarks whose use by third parties for their own purposes would infringe the rights of the owner.

Preface

Purpose of this Manual

This manual describes the functions, operation, installation, and commissioning of 7SK80 devices. In particular, one will find:

- Information regarding the configuration of the scope of the device and a description of the device functions and settings → Chapter 2;
- Instructions for Installation and Commissioning → Chapter 3;
- Compilation of the Technical Data → Chapter 4;
- As well as a compilation of the most significant data for advanced users \rightarrow Appendix A.

General information with regard to design, configuration, and operation of SIPROTEC 4 devices are set out in the SIPROTEC 4 System Description /1/.

Target Audience

Protection engineers, commissioning engineers, personnel concerned with adjustment, checking, and service of selective protective equipment, automatic and control facilities, and personnel of electrical facilities and power plants.

Applicability of this Manual

This manual applies to: SIPROTEC 4 Multifunctional Protection Device with Motor Protection 7SK80; Firmware Version V4.6

Indication of Conformity

((This product complies with the directive of the Council of the European Communities on the approximation of the laws of the Member States relating to electromagnetic compatibility (EMC Council Directive 2004/108/EC) and concerning electrical equipment for use within specified voltage limits (Low-voltage Directive 2006/95 EC). This conformity is proved by tests conducted by Siemens AG in accordance with the Council Directive in agreement with the generic standards EN 61000-6-2 and EN 61000-6-4 for EMC directive, and with the standard EN 60255-27 for the low-voltage directive. The device has been designed and produced for industrial use. The product conforms with the international standards of the series IEC 60255 and the German standard VDE 0435.
----	--

Additional Standards

IEEE C37.90 (see Chapter 4 "Technical Data") This product is UL-certfied with the values as stated in the Technical Data. file E194016

IND. CONT. EQ. 69CA

Additional Support

Should further information on the System SIPROTEC 4 be desired or should particular problems arise which are not covered sufficiently for the purchaser's purpose, the matter should be referred to the local Siemens representative.

Our Customer Support Center provides a 24-hour service.

Telephone: +49 (180) 524-7000

Fax: +49 (180) 524-2471

e-mail: support.energy@siemens.com

Training Courses

Enquiries regarding individual training courses should be addressed to our Training Center:

Siemens AG

Siemens Power Academy TD

Humboldt Street 59

90459 Nuremberg

Telephone: +49 (911) 433-7005

Fax: +49 (911) 433-7929

Internet: www.siemens.com/power-academy-td

Technical Data

This chapter provides the technical data of the device SIPROTEC 7SK80 and its individual functions, including the limit values that may not be exceeded under any circumstances. The electrical and functional data for the maximum functional scope are followed by the mechanical specifications with dimensioned drawings.

4.1	General Device Data	334
4.2	Definite-Time Overcurrent Protection 50(N)	345
4.3	Inverse-Time Overcurrent Protection 51(N)	347
4.4	Directional Ground Overcurrent Protection 67N	358
4.5	Inrush Restraint	359
4.6	Dynamic Cold Load Pickup	360
4.7	Voltage Protection 27, 59	361
4.8	Negative Sequence Protection 46-1, 46-2	363
4.9	Negative Sequence Protection 46-TOC	364
4.10	Motor Starting Protection 48	370
4.11	Motor Restart Inhibit 66	371
4.12	Load Jam Protection	372
4.13	Frequency Protection 81 O/U	373
4.14	Thermal Overload Protection 49	374
4.15	Ground Fault Protection 64, 67N(s), 50N(s), 51N(s)	376
4.16	Breaker Failure Protection 50BF	379
4.17	Flexible Protection Functions	380
4.18	Temperature Detection	383
4.19	User-defined Functions (CFC)	385
4.20	Additional Functions	390
4.21	Breaker Control	395
4.22	Dimensions	396

4.1 General Device Data

4.1.1 Analog Inputs

Current Inputs

Nominal Frequency	f _N	50 Hz or 60 Hz	(adjustable)
Frequency working range (independent of the nominal frequency)		25 Hz to 79 Hz	
Nominal current	I _{Nom}	1 A or 5 A	
Ground current, sensitive	I _{Ns}	≤ 1,6· I _{Nom} linear range ¹)
- at I _{Nom} = 5 A		≤ 0.05 VA ≤ 0.3 VA ≤ 0.05 VA	
Load capacity current path - thermal (rms) - dynamic (peak value)		500 A for 1 s 150 A for 10 s 20 A continuous 1250 A (half-cycle)	
Load capacity input for sensitive ground fault d	etection I _{Ns} ¹⁾		
- thermal (rms)		300 A for 1 s 100 A for 10 s 15 A continuous	
- dynamic (peak value)		750 A (half-cycle)	

¹⁾ only in models with input for sensitive ground fault detection (see ordering data in Appendix A.1)

Temperature Detectors at the I/O 2 Extension Module (only 7SK805/7SK806)

See chapter Temperature Detection

Voltage inputs

		 34 V – 225 V (adjustable) for connection of phase-to-ground voltages 34 V – 200 V (adjustable) for connection of phase-to-phase voltages
Measuring Range		0 V to 200 V
Burden	at 100 V	approx. 0.005 VA
Overload capacity in the voltage path		
– thermal (rms)		230 V continuous

4.1.2 Auxiliary Voltage

DC Voltage

Voltage supply via an integrated converter		
Nominal auxiliary DC voltage V _{Aux} -	24 V to 48 V	60 V to 250 V
Permissible voltage ranges	19 V to 60 V	48 V to 300 V
Overvoltage category, IEC 60255-27	111	
AC ripple voltage peak to peak, IEC 60255-11	15 % of auxiliary voltage	

Power input	Quiescent	Energized
7SK80	approx. 5 W	approx. 12 W
Bridging time for failure/short-circuit, IEC 60255-	≥ 50 ms at V ≥ 110 V	
11	≥ 10 ms at V < 110 V	

AC Voltage

Voltage supply via an integrated converter		
Nominal auxiliary AC voltage V _H	115 V	230 V
Permissible voltage ranges	92 V to 132 V	184 V to 265 V
Overvoltage category, IEC 60255-27 III		

Power input (at 115 V / 230 V)	Quiescent	Energized
7SK80	approx. 5 VA	approx. 12 VA
Bridging time for failure/short-circuit	≥ 10 ms at V = 115 V / 23	60 V

4.1.3 Binary Inputs and Outputs

Binary Inputs

Variant	Quantity	
7SK801/803/805/806	3 (configurable)	
7SK802/804	7 (configurable)	
Nominal Direct Voltage Range	24 V to 250 V	
Current input, energized (independent of the control voltage)	Approx. 0.4 mA	
Pickup time Response time of BO, triggered from BI	Approx. 3 ms Approx. 9 ms	
Dropout time Response time of BO, triggered from BI	Approx. 4 ms Approx. 5 ms	
Secured switching thresholds	(adjustable)	
for nominal voltages	24 V to 125 V	V high > 19 V V low < 10 V
for nominal voltages	110 V to 250 V	V high > 88 V V low < 44 V
for nominal voltages	220 V and 250 V	V high > 176 V V low < 88 V
Maximum Permissible Voltage	300 V	
Input interference suppression	220 Vdc across 220nF at a recovery time between two switching operations ≥ 60 ms	

Output Relay

Signal/command Relay, Alarm Relay		
Quantity and data	depending on the order variant (allocatable)	
Order variant	NO contact	NO/NC selectable
7SK801/803/805/806	3	2 (+ 1 life contact not allocatable)
7SK802/804	6	2 (+ 1 life contact not allocatable)
Switching capability MAKE	1000 W / 1000 VA	
Switching capability BREAK	40 W or 30 VA at L/R ≤ 40 ms	
Switching voltage AC and DC	250 V	
Permissible current per contact (continuous)	5 A	
Permissible current per contact (close and hold)	30 A for 1 s (NO contact)	
Interference suppression capacitor at the	Frequency	Impedance
relay	50 Hz	$1,4.10^{6} \Omega \pm 20 \%$
outputs 2.2 nF, 250 V, ceramic	60 Hz	1,2· 10 ⁶ Ω ± 20 %

4.1.4 Communication Interfaces

Operator Interface

Terminal	Front side, non-isolated, USB type B socket for connecting a personal computer Operation from DIGSI V4.82 via USB 2.0 full speed
Operation	With DIGSI
Transmission speed	up to 12 Mbit/s max.
Bridgeable distance	5 m

Port A

Ethernet electrical for DISGI or	Operation	With DIGSI
RTD box	Connection	Front case bottom, mounting location "A", RJ45 socket 100BaseT in acc. with IEEE802.3 LED yellow: 10/100 Mbit/s (on/off) LED green: connection/no connection (on/off)
	Test voltage	500 V; 50 Hz
	Transmission speed	10/100 Mbit/s
	Bridgeable distance	20 m (66 ft)

Port B

IEC 60870-5-103		
single	RS232/RS485/FO depending on the order variant	Isolated interface for data transfer to a control center
RS232		
	Terminal	Back case bottom, mounting location "B", 9- pin DSUB socket
	Test voltage	500 V; 50 Hz
	Transmission speed	min. 1 200 Bd, max. 115 000 Bd; factory setting 9 600 Bd
	Bridgeable distance	15 m
RS485		
	Terminal	Back case bottom, mounting location "B", 9- pin DSUB socket
	Test voltage	500 V; 50 Hz
	Transmission speed	min. 1 200 Bd, max. 115 000 Bd; factory setting 9 600 Bd
	Bridgeable distance	max. 1 km

Fiber optic cable (FO)		
	FO connector type	ST connector
	Terminal	Back case bottom, mounting location "B"
	Optical wavelength	λ = 820 nm
	Laser Class 1 according to EN 60825-1/-2	When using glass fiber 50/125 μm or glass fiber 62.5/125 μm
	Permissible optical signal at- tenuation	max. 8 dB, with glass fiber 62.5/125 μm
	Bridgeable distance	max. 1.5 km
	Character idle state	Configurable; factory setting "Light off"
IEC 60870-5-103		
redundant	Isolated interface for data trans	fer to a control center
RS485	Terminal	Back case bottom, mounting location "B", RJ45 socket
	Test voltage	500 V; 50 Hz
	Transmission speed	min. 2,400 Bd, max. 57,600 Bd; factory setting 19,200 Bd
	Bridgeable distance	max. 1 km
Profibus RS485 (DP)		
	Terminal	Back case bottom, mounting location "B", 9- pin DSUB socket
	Test voltage	500 V; 50 Hz
	Transmission speed	Up to 1.5 MBd
	Bridgeable distance	1 000 m (3 300 ft) at ≤ 93.75 kBd 500 m (1 600 ft) at ≤ 187.5 kBd 200 m (660 ft) at ≤ 1.5 MBd
Profibus FO (DP)		
	FO connector type	ST connector Double ring
	Terminal	Back case bottom, mounting location "B"
	Transmission speed	Up to 1.5 MBd
	Recommended:	> 500 kBd with normal casing
	Optical wavelength	λ = 820 nm
	Laser Class 1 according to EN 60825-1/-2	When using glass fiber 50/125 μm or glass fiber 62.5/125 μm
	Permissible optical signal at- tenuation	max. 8 dB, with glass fiber 62.5/125 µm
	Bridgeable distance	max. 2 km
DNP3.0 /MODBUS RS485		-
	Terminal	Back case bottom, mounting location "B", 9- pin DSUB socket
	Test voltage	500 V; 50 Hz
	Transmission speed	Up to 19.200 Baud
	Bridgeable distance	max. 1 km
		•

DNP3.0 /MODBUS FO		
	FO connector type	ST connector transmitter/receiver
	Terminal	Back case bottom, mounting location "B"
	Transmission speed	Up to 19 200 Baud
	Optical wavelength	λ = 820 nm
	Laser Class 1 according to EN 60825-1/-2	When using glass fiber 50/125 μm or glass fiber 62.5/125 μm
	Permissible optical signal at- tenuation	max. 8 dB, with glass fiber 62.5/125 μm
	Bridgeable distance	max. 1.5 km
Ethernet electrical (EN 100) for		
IEC61850 and DIGSI	Terminal	Back case bottom, mounting location "B", 2 x RJ45 socket 100BaseT in acc. with IEEE802.3
	Test voltage (with regard to the socket)	500 V; 50 Hz
	Transmission speed	100 MBit/s
	Bridgeable distance	20 m
Ethernet optical (EN 100) for		
IEC61850 and DIGSI	Terminal	Back case bottom, mounting location "B", LC connector 100BaseF in acc. with IEEE802.3
	Transmission speed	100 MBit/s
	Optical wavelength	1300 nm
	Bridgeable distance	max. 2 km (1.24 mi)

4.1.5 Electrical Tests

Standards

Standards:	IEC 60255
	ANSI/IEEE Std C37.90 see individual functions
	VDE 0435
	for more standards see also individual functions

Insulation test

Standards:	IEC 60255-27 and IEC 60870-2-1
Voltage test (routine test) of all circuits except auxil- iary voltage, binary inputs and communication ports	2.5 kV, 50 Hz
Voltage test (routine test) of auxiliary voltage and binary inputs	DC: 3.5 kV
Voltage test (routine test) of isolated communica- tion ports only (A and B)	500 V, 50 Hz
Impulse voltage test (type test) of all process circuits (except for communication ports) against the inter- nal electronics	u v
Impulse voltage test (type test) of all process circuits against each other (except for communication ports) and against the PE terminal of class III	5 kV (peak value); 1.2/50 μs; 0.5 J; 3 positive and 3 negative impulses at intervals of 1 s

Insulation test RTD inputs

RTD (Pt 100 inputs)	500 V, 50 Hz	

EMC Tests for Immunity (Type Tests)

Standards:		IEC 60255-6 and -22, (product standards) IEC/EN 61000-6-2 VDE 0435 For more standards see also individual functions
1 MHz test, Class III II C37.90.1	EC 60255-22-1, IEC 61000-4-18, IEEE	2.5 kV (Peak); 1 MHz; τ = 15 µs; 400 Surges per s; Test duration 2 s; R _i = 200 Ω
Electrostatic discharge IEC 60255-22-2, IEC 6		8 kV contact discharge; 15 kV air discharge, both polarities; 150 pF; R_i = 330 Ω
Radio frequency electromagnetic field, amplitude-modulated, Class III IEC 60255-22-3, IEC 61000-4-3		10 V/m; 80 MHz to 2.7 GHz; 80 % AM; 1 kHz
Fast transient bursts, Class IV IEC 60255-22-4, IEC 61000-4-4, IEEE C37.90.1		4 kV; 5/50 ns; 5 kHz; burst length = 15 ms; repetition rate 300 ms; both polarities: $R_i =$ 50 Ω ; test duration 1 min
High energy surge voltages (SURGE), Installation Class III IEC 60255-22-5, IEC 61000-4-5		Impulse: 1.2/50 µs
	Auxiliary voltage	common mode: 4 kV; 12 Ω; 9 μF Diff. mode:1 kV; 2 Ω; 18 μF
Measuring inputs, binary inputs and relay outputs		common mode: 4 kV; 42 Ω; 0,5 μF Diff. mode: 1 kV; 42 Ω; 0,5 μF
HF on lines, amplitude-modulated, Class III IEC 60255-22-6, IEC 61000-4-6		10 V; 150 kHz to 80 MHz; 80 % AM; 1 kHz
Power system frequency magnetic field IEC 61000-4-8, Class IV;		30 A/m continuous; 300 A/m for 3 s;
Radiated Electromagnetic Interference IEEE Std C37.90.2		20 V/m; 80 MHz to 1 GHz; 80 % AM; 1 kHz
Damped oscillations IEC 61000-4-18		2.5 kV (peak value); 100 kHz; 40 pulses per s; Test Duration 2 s; Ri = 200 Ω

EMC Test for Noise Emission (Type Test)

Standard:	IEC/EN 61000-6-4
Radio noise voltage to lines, only auxiliary voltage IEC-CISPR 11	150 kHz to 30 MHz Limit Class A
Interference field strength IEC-CISPR 11	30 MHz to 1000 MHz Limit Class A
Harmonic currents on the network lead at AC 230 V IEC 61000-3-2	Device is to be assigned Class D (applies only to devices with > 50 VA power consumption)
Voltage fluctuations and flicker on the network lead at AC 230 V IEC 61000-3-3	Limit values are kept

4.1.6 Mechanical Stress Tests

Vibration and Shock Stress during Stationary Operation

Standards:	IEC 60255-21 and IEC 60068
Oscillation IEC 60255-21-1, Class II; IEC 60068-2-6	Sinusoidal 10 Hz to 60 Hz: ± 0,075 mm amplitude; 60 Hz to 150 Hz: 1g acceleration frequency sweep rate 1 octave/min 20 cycles in 3 orthog- onal axes.
Shock IEC 60255-21-2, Class I; IEC 60068-2-27	Semi-sinusoidal 5 g acceleration, duration 11 ms, each 3 shocks in both directions of the 3 axes
Seismic Vibration IEC 60255-21-3, Class II; IEC 60068-3-3	Sinusoidal 1 Hz to 8 Hz: ±7.5 mm amplitude (horizontal axis) 1 Hz to 8 Hz: ±3.5 mm amplitude (vertical axis) 8 Hz to 35 Hz: 2 g acceleration (horizontal axis) 8 Hz to 35 Hz: 1 g acceleration (vertical axis) Frequency sweep 1 octave/min 1 cycle in 3 orthogonal axes

Vibration and Shock Stress during Transport

Standards:	IEC 60255-21 and IEC 60068
Oscillation IEC 60255-21-1, Class 2; IEC 60068-2-6	Sinusoidal 5 Hz to 8 Hz: ± 7.5 mm amplitude; 8 Hz to 150 Hz: 2 g acceleration Frequency sweep 1 octave/min 20 cycles in 3 orthogonal axes
Shock	Semi-sinusoidal
IEC 60255-21-2, Class 1;	15 g acceleration, duration 11 ms,
IEC 60068-2-27	each 3 shocks (in both directions of the 3 axes)
Continuous Shock	Semi-sinusoidal
IEC 60255-21-2, Class 1;	10 g acceleration, duration 16 ms,
IEC 60068-2-29	each 1000 shocks (in both directions of the 3 axes)

4.1.7 Climatic Stress Tests

Temperatures

Standards:	IEC 60255-6	
Type test (in acc. with IEC 60068-2-1 and -2, Test Bd for 16 h)	–25 °C to +85 °C or –13 °F to +185 °F	
Permissible temporary operating temperature (tested for 96 h)	-20 °C to +70 °C or -4 °F to +158 °F (clearness of the display may be impaired from +55 °C or +131 °F)	
Recommended for permanent operation (in acc. with IEC 60255-6)	–5 °C to +55 °C or +23 °F to +131 °F	
Limit temperatures for storage	–25 °C to +55 °C or –13 °F to +131 °F	
Limit temperatures for transport	–25 °C to +70 °C or –13 °F to +158 °F	
Storage and transport with factory packaging		

Humidity

	Mean value per year ≤ 75 % relative humidity; on 56 days of the year up to 93 % relative humidity; con- densation must be avoided!
Siemens recommends that all devices be installed such that they are not exposed to direct sunlight, nor subject to large fluctuations in temperature that may cause condensation to occur.	

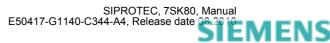
4.1.8 Service conditions

The protection device is designed for installation in normal relay rooms and plants so that electromagnetic compatibility (EMC) is ensured if installation is done properly.

We also recommend:

- All contacts and relays that operate in the same cubicle, cabinet, or relay panel as the numerical protective device should always be equipped with proper surge suppression components.
- For substations with operating voltages of 100 kV and higher, all external cables should be shielded with a conductive shield grounded at both ends. No special measures are normally required in a medium-voltage substation.
- Do not withdraw or insert individual modules or boards while the protective device is energized. When handling modules outside the case, the standards for components sensitive to electrostatic discharge (Electrostatically Sensitive Devices) must be observed. They are not endangered inside the case.
- Only temperature sensors with 3-wire connection and shielded connection cables may be connected. Connect the cable shield as short as possible at the terminal D-14 designed for this purpose.

4.1.9 Design


Case	7XP20
Dimensions	see dimensional drawings, Section 4.22

Device	Case	Size	Weight
7SK80**-*B	for panel surface mounting	1/ ₆	4.5 kg (9.9 lb)
7SK80**-*E	for panel flush mounting	1/ ₆	4 kg (8.8 lb)

Protection type acc. to IEC 60529	
For equipment in the surface-mounting case	IP 50
For equipment in flush mounting case	Front IP 51 Rear IP 50
for operator protection	IP 2x for current terminal IP 1x for voltage terminal
Degree of pollution, IEC 60255-27	2

4.1.10 UL-certification conditions

Qutput Relais	DC 24 V	5 A General Purpose
	DC 48 V	0,8 A General Purpose
	DC 240 V	0,1 A General Purpose
	AC 240 V	5 A General Purpose
	AC 120 V	1/3 hp
	AC 250 V	1/2 hp
	B300, R300	
Voltage Inputs	Input voltage range	300 V
	Use of another Battery may prese instructions. Caution: The battery used in this	Panasonic Cat. Nos. CR 1/2 AA or BR 1/2 AA only. ent a risk of fire or explosion. See manual for safety device may present a fire or chemical burn hazard isassemble, heat above 100°C (212°F) or inciner-
Climatic Stress	Surrounding air temperature	tsurr: max. 70 °C (158 °F), normal opera- tion
Design	Field Wires of Control Circuits sh the end use requirements!	all be separated from other circuits with respect to
	Type 1 if mounted into a door or front cover of an enclosure.	

4.2 Definite-Time Overcurrent Protection 50(N)

Operating Modes

Three-phase	Standard
Two-phase	Phases A and C

Measuring Method

All elements	First harmonic, r.m.s. value (true RMS)
51Ns-3	Additional instantaneous values

Setting Ranges / Increments

Pickup current 50–1, 50–2 (phases)	forI _{Nom} = 1 A	0.10 A to 35.00 A or ∞ (disabled)	Increments 0.01 A
	for I _{Nom} = 5 A	0.50 A to 175.00 A or ∞ (disabled)	
Pickup current 50–3 (phases)	for I _{Nom} = 1 A	1.0 A to 35.00 A or ∞ (disabled)	
	for I _{Nom} = 5 A	5.0 A to 175.00 A or ∞ (disabled)	
Pickup Current 50N–1, 50N–2	for I _{Nom} = 1 A	0.05 A to 35.00 A or ∞ (disabled)	Increments 0.01 A
(ground)	for I_{Nom} = 5 A	0.25 A to 175.00 A or ∞ (disabled)	
Pickup Current 50N–3 (ground)	for $I_{Nom} = 1 A$	0.25 A to 35.00 A or ∞ (disabled)	
	for I _{Nom} = 5 A	1.25 A to 175.00 A or ∞ (disabled)	
Time delays T	•	0.00 s to 60.00 s or ∞ (disabled)	Increments 0.01 s
Dropout time delays 50 T DROP-OUT, 50N T DROP-OUT		0.00 s to 60.00 s	Increments 0.01 s

Times

First harmonic, rms value		
- for 2 x setting value	approx. 30 ms	
- for 10 x setting value	Approx. 20 ms	
Instantaneous value		
 for 2 x setting value 	approx. 16 ms	
- for 10 x setting value	approx. 16 ms	
Dropout Times		
First harmonic, rms value	approx. 30 ms	
Instantaneous value	approx. 40 ms	

Dropout Ratio

Dropout ratio for	
- first harmonic, rms value	approx. 0,95 for I/I _{Nom} ≥ 0.3
- instantaneous value	approx. 0,90 for $I/I_{Nom} \ge 0.3$

Tolerances

	3 % of setting value or 15 mA at I_{Nom} = 1 A or 75 mA at I_{Nom} = 5 A
Time delays T	1 % or 10 ms

4.2 Definite-Time Overcurrent Protection 50(N)

Influencing Variables for Pickup and Dropout

Auxiliary DC voltage in range $0.8 \le V_{Aux}/V_{AuxNom} \le 1.15$	1 %
Temperature in range –5 °C (41 °F) $\leq \Theta_{amb} \leq 55$ °C (131 °F)	0.5 %/10 K
Frequency in range of 50 Hz to 70 Hz	
Frequency in range $0.95 \le f/f_{Nom} \le 1.05$	1 %
Frequency outside range $0.95 \le f/f_{Nom} \le 1.05$	Increased tolerances
Harmonics - up to 10 % 3rd harmonic - up to 10 % 5th harmonic at instantaneous value of 50-3/50N-3 elements	1 % 1 % Increased tolerances
Transient overreaction for $\tau > 100$ ms (with full displacement)	<5 %

Operating Modes

Three-phase	Standard
Two-phase	Phases A and C

Measuring Technique

All elements	First harmonic, rms value (true rms)

Setting Ranges / Increments

Pickup currents 51 (phases)	for I _{Nom} = 1 A	0.10 A to 4.00 A	Increments 0.01 A
	for I _{Nom} = 5 A	0.50 A to 20.00 A	
Pickup currents 51N	for I _{Nom} = 1 A	0.05 A to 4.00 A	Increments 0.01 A
(ground)	for I _{Nom} = 5 A	0.25 A to 20.00 A	
Time multiplier T for 51, 51N for IEC characteristics		0.05 s to 3.20 s or ∞ (disabled)	Increments 0.01 s
Time multiplier T for 51, 51N for ANSI characteristics		0.50 s to 15.00 s or ∞ (disabled)	Increments 0.01 s

Trip Time Curves acc. to IEC

Acc. to IEC 60255-3 or BS 142, Section 3.5.2 (see also Figures 4-1 and 4-2)		
INVERSE (Type A)	$t = \frac{0.14}{(1/l_p)^{0.02} - 1} \cdot T_p $ [s]	
VERY INVERSE (Type B)	$t = \frac{13.5}{(1/l_p)^1 - 1} \cdot T_p$ [s]	
EXTREMELY INV. (Type C)	$t = \frac{80}{(1/I_p)^2 - 1} \cdot T_p$ [s]	
LONG INVERSE (Type B)	r -	
	Where:	
	t Trip time in seconds T _p Setting Value of the Time Multiplier	
	Fault Current	
	I _p Setting Value of the Pickup Current	
The tripping times for $I/I_p \ge 20$ are identical with those for $I/I_p = 20$		
For zero sequence current, read 3I0p instead of I_p and T_{3I0p} instead of T_p ; for ground fault, read I_{Ep} instead of I_p and T_{IEp} instead of T_p		
Pickup threshold	approx. 1.10 · I _p	

Dropout Time Characteristics with Disk Emulation acc. to IEC

Acc. to IEC 60255-3 or B	S 142, Section 3.5.2 (see also	Figures 4-1 and 4-2)
INVERSE (Type A)	$t_{\text{Reset}} = \frac{9.7}{1 - (1/I_p)^2} \cdot T_p$	[s]
VERY INV. (Type B)	$t_{\text{Reset}} = \frac{43.2}{1 - (1/I_p)^2} \cdot T_p$	[\$]
EXTREMELY INV. (Type C)	$t_{\text{Reset}} = \frac{58.2}{1 - (1/I_p)^2} \cdot T_p$	[\$]
LONG INVERSE (Type B)	$t_{\text{Reset}} = \frac{80}{1 - (1/I_p)^2} \cdot T_p$	[S]
	Where:	
	t _{Reset} Reset Time	- NALIVATA
	T _p Setting Value of the Time I Fault Current	e multiplier
	I _p Setting Value of the Pick	up Current
The dropout time curves a	apply to (I/Ip) ≤ 0.90	
For zero sequence currer	it, read 3I0p instead of I_p and	T_{310p} instead of T_p ;
	instead of I_p and T_{IEp} instead	

Dropout Setting

	approx. 1.05 \cdot setting value I_p for $I_p/I_N \ge 0.3,$ this corresponds to approx. 0.95 \cdot pickup value
IEC with Disk Emulation	approx. 0.90 · I _p setting value

Tolerances

Pickup/dropout thresholds I_p , I_{Ep}	3 % of setting value or 15 mA for $\rm I_{Nom}$ = 1 A, or 75 mA for $\rm I_{Nom}$ = 5 A
Trip time for $2 \le I/I_p \le 20$	5 % of reference (calculated) value +2 % current tolerance, or 30 ms
Dropout time for I/Ip ≤ 0.90	5 % of reference (calculated) value +2 % current tolerance, or 30 ms

Influencing Variables for Pickup and Dropout

Power supply direct voltage in range $0.8 \le V_{PS}/V_{PSNom} \le 1.15$	1 %
Temperature in range 23.00 °F (-5 °C) $\leq \Theta_{amb} \leq$ 131.00 °F (55 °C)	0.5 %/10 K
Frequency in range of 50 Hz to 70 Hz	
Frequency in range $0.95 \le f/f_{Nom} \le 1.05$	1 %
Frequency outside range $0.95 \le f/f_{Nom} \le 1.05$	Increased tolerances
Harmonics - up to 10 % 3rd harmonic - up to 10 % 5th harmonic	1 % 1 %
Transient overreaction during fundamental harmonic measuring procedure for τ > 100 ms (with full displacement)	<5 %

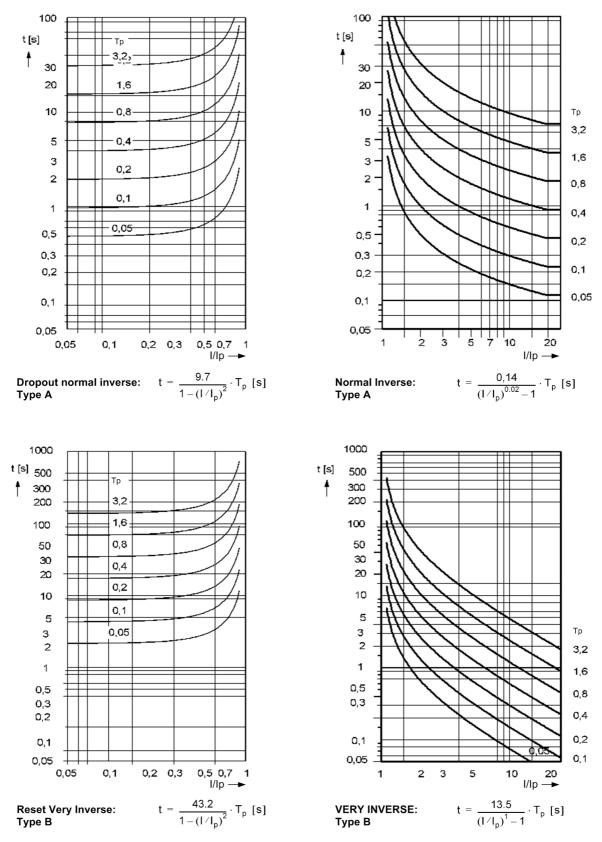
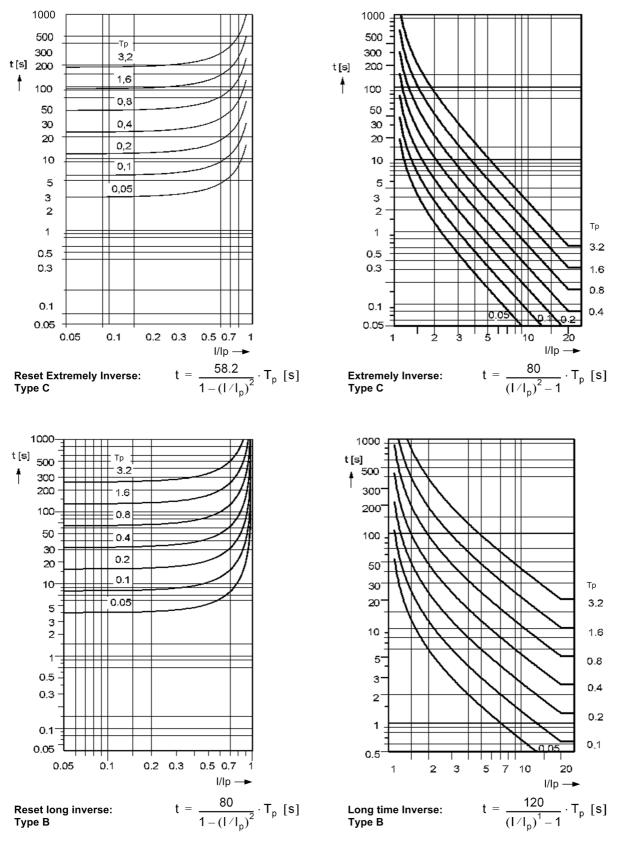
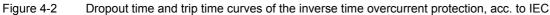
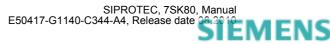




Figure 4-1 Dropout time and trip time curves of the inverse time overcurrent protection, acc. to IEC

Trip Time Curves acc. to ANSI

Acc. to ANSI/IEEE (see also Figures 4-3 to 4-6)		
INVERSE	$t = \left(\frac{8.9341}{(I/I_p)^{2.0938} - 1} + 0.17966\right) \cdot D \qquad [s]$	
SHORT INVERSE	$t = \left(\frac{0.2663}{(I/I_p)^{1.2969} - 1} + 0.03393\right) \cdot D \qquad [s]$	
LONG INVERSE	$t = \left(\frac{5.6143}{(I/I_p) - 1} + 2.18592\right) \cdot D \qquad [s]$	
MODERATELY INV.	$t = \left(\frac{0.0103}{(I/I_p)^{0.02} - 1} + 0.0228\right) \cdot D \qquad [s]$	
VERY INVERSE	$t = \left(\frac{3.922}{(I/I_p)^2 - 1} + 0.0982\right) \cdot D $ [s]	
EXTREMELY INV.	$t = \left(\frac{5.64}{(1/l_p)^2 - 1} + 0.02434\right) \cdot D $ [s]	
DEFINITE INV.	$t = \left(\frac{0.4797}{(I/I_p)^{1.5625} - 1} + 0.21359\right) \cdot D \qquad [s]$	
	Where: t _. Trip Time D Setting Value of the Time Multiplier I Fault Current I _p Setting Value of the Pickup Current	
The tripping times for $I/I_p \ge 20$ are identical with those for $I/I_p = 20$.		
For zero sequence current read 3I0p instead of I_p and T_{3I0p} instead of T_p ; for ground fault read I_{Ep} instead of I_p and T_{IEp} instead of T_p		
Pickup Threshold	approx. 1.10 · I _p	

Dropout Time Characteristics with Disk Emulation acc. to ANSI/IEEE


Acc. to ANSI/IEEE (see also Figures 4-3 to 4-6)		
INVERSE	$t_{\text{Reset}} = \left(\frac{8.8}{1 - (I/I_p)^{2.0938}}\right) \cdot D$ [s]	
SHORT INVERSE	$t_{Reset} = \left(\frac{0.831}{1 - (I/I_p)^{1.2969}}\right) \cdot D$ [s]	
LONG INVERSE	$t_{\text{Reset}} = \left(\frac{12.9}{1 - (I/I_p)^{1}}\right) \cdot D \qquad [s]$	
MODERATELY INV.	$t_{\text{Reset}} = \left(\frac{0.97}{1 - (I/I_p)^2}\right) \cdot D \qquad [s]$	
VERY INVERSE	$t_{\text{Reset}} = \left(\frac{4.32}{1 - (I/I_p)^2}\right) \cdot D$ [s]	
EXTREMELY INV.	$t_{\text{Reset}} = \left(\frac{5.82}{1 - (I/I_p)^2}\right) \cdot D$ [s]	
DEFINITE INV.	$t_{Reset} = \left(\frac{1.03940}{1 - (I/I_p)^{1.5625}}\right) \cdot D$ [s]	
for $0.5 < (I/I_p) \le 0.90$	Where: t _{Reset} Reset time D Setting value of the multiplier I Fault Current I _p Setting value of the pickup current	
The dropout time curves apply to $(I/Ip) \le 0.90$		
For zero sequence current read 3I0p instead of I_p and T_{3I0p} instead of T_p ; for ground fault read I_{Ep} instead of I_p and T_{IEp} instead of T_p		

Dropout Setting

	approx. 1.05 \cdot setting value I_p for $I_p/I_N \ge 0.3;$ this corresponds to approx. 0.95 \cdot pickup value
ANSI with Disk Emulation	approx. 0.90 · I _p setting value

Tolerances

Pickup/dropout thresholds I_p , I_{Ep}	3 % of setting value or 15 mA for I_N = 1 A, or 75 mA for I_N = 5 A
Trip time for $2 \le I/I_p \le 20$	5 % of reference (calculated) value +2 % current tolerance, or 30 ms
Dropout time for I/Ip ≤ 0.90	5 % of reference (calculated) value +2 % current tolerance, or 30 ms

Influencing Variables for Pickup and Dropout

Power supply direct voltage in range $0.8 \le V_{PS}/V_{PSNom} \le 1.15$	1 %
Temperature in range 23.00 °F (-5 °C) $\leq \Theta_{amb} \leq$ 131.00 °F (55 °C)	0.5 %/10 K
Frequency in range of 50 Hz to 70 Hz	
Frequency in range $0.95 \le f/f_{Nom} \le 1.05$	1 %
Frequency outside range $0.95 \le f/f_{Nom} \le 1.05$	Increased tolerances
Harmonics - up to 10 % 3rd harmonic - up to 10 % 5th harmonic	1% 1%
Transient overreaction during fundamental harmonic measuring procedure for $\tau > 100$ ms (with full displacement)	<5 %

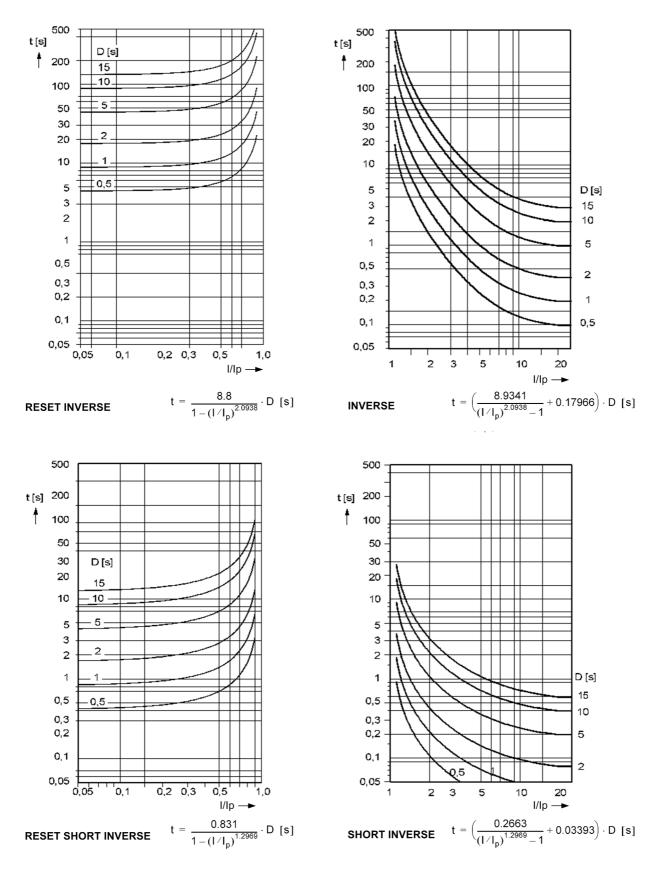


Figure 4-3 Dropout time and trip time curves of the inverse time overcurrent protection, acc. to ANSI/IEEE

SIPROTEC, 7SK80, Manual E50417-G1140-C344-A4, Release date

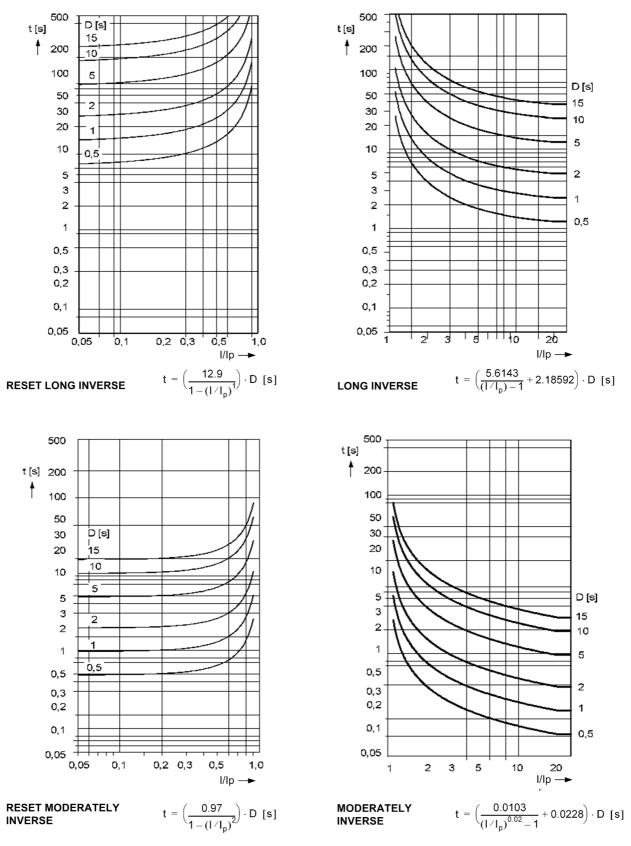
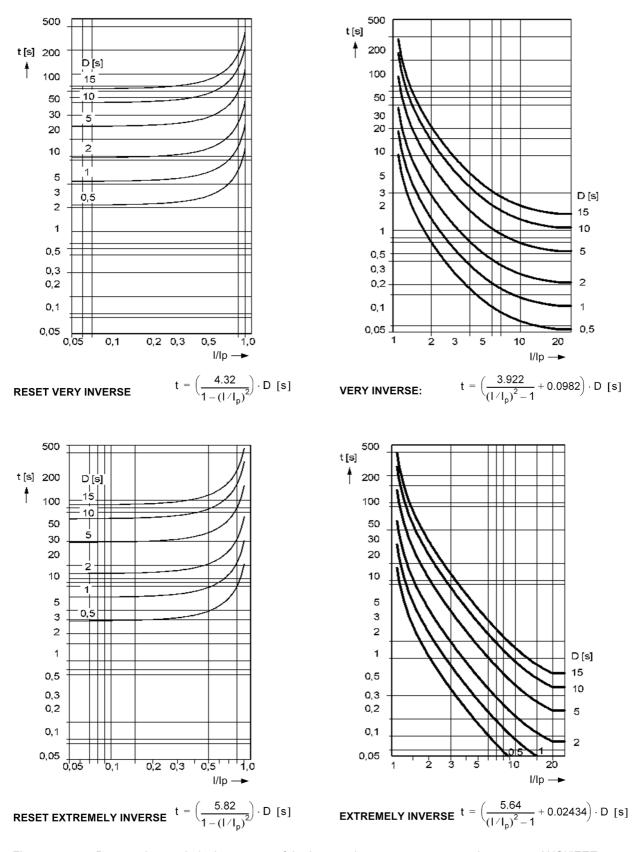
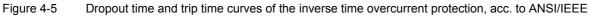
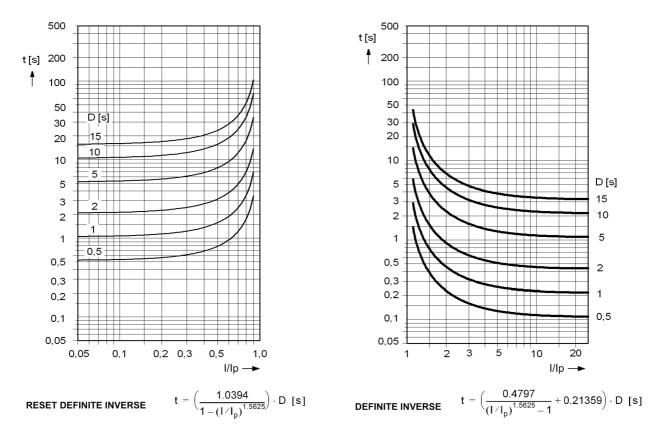




Figure 4-4


Dropout time and trip time curves of the inverse time overcurrent protection, acc. to ANSI/IEEE

Note:

For earth fault read IEP instead of Ip and DIEp instead of DIp.

Figure 4-6 Dropout time and trip time curve of the inverse time overcurrent protection, acc. to ANSI/IEEE

4.4 Directional Ground Overcurrent Protection 67N

Time Overcurrent Elements

The same specifications and characteristics apply as for non-directional time overcurrent protection (see previous Sections).

Determination of Direction

Moreover, the following data apply to direction determination:

For Ground Faults

Polarization	with zero sequence quantities 3V ₀ , 3I ₀
Forward range	$V_{ref,rot} \pm 86^{\circ}$
Rotation of the reference voltage V _{ref,rot}	-180° to +180° Increments 1°
Dropout difference	3°
Directional sensitivity	$V_N \approx 2.5$ V displacement voltage, measured $3V_0 \approx 5$ V displacement voltage, calculated

Polarization	with negative sequence quantities $3V_2$, $3I_2$
Forward range	$V_{ref,rot} \pm 86^{\circ}$
Rotation of the reference voltage V _{ref,rot}	-180° to +180° Increments 1°
Dropout difference	3°
Directional sensitivity	$3V_2 \approx 5$ V negative sequence voltage $3I_2 \approx 45$ mA negative sequence current with $I_{Nom} = 1$ A $3I_2 \approx 225$ mA negative sequence current with $I_{Nom} = 5$ A

Times

Pickup times (without inrush restraint, with restraint + 1period)		
67N-1, 67-2, 67N-2 - for 2 x setting value - for 10 x setting value	approx. 45 ms approx. 40 ms	
Dropout times 67N-1, 67N-2	approx. 40 ms	

Tolerances

Phase-angle error for ground faults	±3° electrical	
-------------------------------------	----------------	--

Influencing variables

Frequency influence	approx. 1° in the range of $0.95 < f/f_N < 1.05$
---------------------	--

4.5 Inrush Restraint

Controlled Functions

Overcurrent elements	50-1, 50N-1, 51, 51N, 67-1, 67N-1

Setting Ranges / Increments

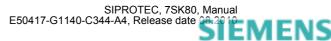
Stabilization factor I _{2f} /I	10 % to 45 %	Increments 1 %
---	--------------	----------------

Functional Limits

Lower function limit phases	for I _{Nom} = 1 A	at least one phase current (50 Hz and 100 Hz) ≥ 50 mA	
	for $I_{Nom} = 5 A$	at least one phase current (50 Hz and 100 Hz) ≥ 125 mA	
Lower function limit ground	for $I_{Nom} = 1 A$	Ground current (50 Hz and 100 Hz) ≥ 50 mA	
	for $I_{Nom} = 5 A$	Ground current (50 Hz and 100 Hz) ≥ 125 mA	
Upper function limit, configurable	for I _{Nom} = 1 A	0.30 A to 25.00 A	Increments 0.01 A
	for I_{Nom} = 5 A	1.50 A to 125.00 A	Increments 0.01 A

Cross-blocking

Cross-blocking I_A , I_B , I_C	ON/OFF
--------------------------------------	--------


4.6 Dynamic Cold Load Pickup

Timed changeover of settings

Controlled elements	Non-directional time overcurrent protection (separate phase and ground settings) 50(N), 51(N)
Initiation criteria	Current criterion BkrClosed I MIN
	Interrogation of the circuit breaker position
	Binary input
Time control	3 time elements
	(T _{CB Open.} , T _{Active} , T _{Stop)}
Current control	Current threshold BkrClosed I MIN (reset on current falling below threshold: monitoring with timer)

Setting Ranges / Increments

Current Control	for L = 1 A	0.04 A to 1.00 A	Increments
			0.01 A
	for I _{Nom} = 5 A	0.20 A to 5.00 A	0.01 A
Time Until Changeover To Dynamic Settings		0 s to 21600 s (= 6 h)	Increments 1 s
T _{CB OPEN}			
Period Dynamic Settings are Effective After a		1 s to 21600 s (= 6 h)	Increments 1 s
Reclosure T _{Active}			
Fast Reset Time T _{Stop}		1 s to 600 s (= 10 min) or ∞ (fast reset inactive)	Increments 1 s
Dynamic Settings of Pickup Currents and		Adjustable within the same ranges and with th	e same incre-
Time Delays or Time Multipliers		ments as the directional and non-directional til	me overcurrent
		protection	

4.7 Voltage Protection 27, 59

Setting ranges / increments

Undervoltages 27-1, 27-2			
Measured quantity used		 Positive sequence system of the voltages Smallest phase-to-phase voltage Smallest phase-to-Ground voltage 	
- Evaluation of phase-to-phase voltages		10 V to 120 V 10 V to 210 V 10 V to 210 V 10 V to 210 V	Increments 1 V Increments 1 V Increments 1 V
Connection of phase-to-phase voltages	;	10 V to 120 V	Increments 1 V
Connection: Single-phase		10 V to 120 V	Increments 1 V
Dropout ratio r for 27-1, 27-2 ¹⁾		1.01 to 3.00	Increments 0.01
•		max. 130 V for phase-to-phase voltage max. 225 V for phase-to-Ground voltage Minimum hysteresis 0.6 V	
Time delays T 27-1, T 27-2		0.00 s to 100.00 s or ∞ (disabled)	Increments 0.01 s
Current criterion "BkrClosed I MIN"	for I _{Nom} = 1 A	0.04 A to 1.00 A	Increments 0.01 A
		0.20 A to 5.00 A	
Overvoltages 59-1, 59-2	L	L	L
Measured quantity used		 Positive sequence system of the voltages Negative sequence system of the voltages Largest phase-to-phase voltage Largest phase-to-Ground voltage 	
Connection of phase-to-Ground voltages: - Evaluation of phase-to-Ground voltages - Evaluation of phase-to-phase voltages - Evaluation of positive sequence system - Evaluation of negative sequence system		20 V to 150 V 20 V to 260 V 20 V to 150 V 2 V to 150 V	Increments 1 V Increments 1 V Increments 1 V Increments 1 V
Connection of phase-to-phase voltages: - Evaluation of phase-to-phase voltages - Evaluation of positive sequence system - Evaluation of negative sequence system		20 V to 150 V 20 V to 150 V 2 V to 150 V	Increments 1 V Increments 1 V Increments 1 V
Connection: Single-phase		20 V to 150 V	Increments 1 V
Dropout ratio r for 27-1, 27-2 ¹⁾ Dropout threshold for (r \cdot 59-1) or (r \cdot 59-2)		0.90 to 0.99 Increments 0.01 V max. 150 V for phase-to-phase voltage max. 260 V for phase-to-Ground voltage Minimum hysteresis 0.6 V	
Time delay T 59-1, T 59-2		0.00 s to 100.00 s or ∞ (disabled)	Increments 0.01 s

¹⁾ $r = V_{dropout}/V_{pickup}$

4.7 Voltage Protection 27, 59

Times

Pickup Times	
- Undervoltage 27-1, 27-2, 27-1 V ₁ , 27-2 V ₁	Approx. 50 ms
- Overvoltage 59-1, 59-2	Approx. 50 ms
- Overvoltage 59-1 V ₁ , 59-2 V ₁ , 59-1 V ₂ , 59-2 V ₂	Approx. 60 ms
Dropout Times	
- Undervoltage 27-1, 27-2, 27-1 V ₁ , 27-2 V ₁	Approx. 50 ms
- Overvoltage 59-1, 59-2	Approx. 50 ms
- Overvoltage 59-1 V ₁ , 59-2 V ₁ , 59-1 V ₂ , 59-2 V ₂	Approx. 60 ms

Tolerances

Pickup Voltage Limits	3 % of setting value or 1 V
Delay times T	1 % of setting value or 10 ms

Influencing Variables

Auxiliary DC voltage in range $0.8 \le V_{Aux}/V_{AuxNom} \le 1.15$	1 %
Temperature in range –5 °C (41 °F) $\leq \Theta_{amb} \leq 55$ °C (131 °F)	0.5 %/10 K
Frequency in range $0.95 \le f/f_{Nom} \le 1.05$	1 %
Frequency outside range $0.95 \le f/f_{Nom} \le 1.05$	Increased tolerances
Harmonics - up to 10 % 3rd harmonic - up to 10 % 5th harmonic	1 % 1 %

4.8 Negative Sequence Protection 46-1, 46-2

Setting Ranges / Increments

Unbalanced load tripping element	for I _{Nom} = 1 A	0.10 A to 3.00 A or ∞ (disabled)	Increments 0.01 A
46-1,46-2	for I_{Nom} = 5 A	0.50 A to 15.00 A or ∞ (disabled)	
Delay Times 46-1, 46-2		0.00 s to 60.00 s or ∞ (disabled)	Increments 0.01 s
Dropout Delay Times 46 T DROP	-OUT	0.00 s to 60.00 s	Increments 0.01 s

Functional Limit

Functional Limit	for I _{Nom} = 1 A	all phase currents ≤ 10 A
	for $I_{Nom} = 5 A$	all phase currents ≤ 50 A

Times

Pickup Times	Approx. 35 ms
Dropout Times	Approx. 35 ms

Dropout Ratio

Characteristic 46-1, 46-2	Approx. 0.95 for $I_2/I_{Nom} \ge 0.3$
---------------------------	--

Tolerances

Pickup values 46-1, 46-2	3 % of setting value or 15 mA for $\rm I_{Nom}$ = 1 A, or 75 mA for $\rm I_{Nom}$ = 5 A	
Time Delays	1 % or 10 ms	

Influencing Variables for Pickup Values

Auxiliary DC voltage in range $0.8 \le V_{Aux}/V_{AuxNom} \le 1.15$	1 %
Temperature in range –5 °C (41 °F) $\leq \Theta_{amb} \leq$ 55 °C (131 °F)	0.5 %/10 K
Frequency in range of 50 Hz to 70 Hz	i
Frequency in range $0.95 \le f/f_{Nom} \le 1.05$	1 %
Frequency outside range $0.95 \le f/f_{Nom} \le 1.05$	Increased tolerances
Harmonics	
- up to 10 % 3rd harmonic	1 %
- up to 10 % 5th harmonic	1 %
Transient overreaction for $\tau > 100$ ms (with full displacement)	<5 %

4.9 Negative Sequence Protection 46-TOC

Setting Ranges / Increments

Pickup value 46-TOC (I _{2p})	for I _{Nom} = 1 A	0.10 A to 2.00 A	Increments 0.01 A
	for I_{Nom} = 5 A	0.50 A to 10.00 A	
Time Multiplier T _{I2p} (IEC)		0.05 s to 3.20 s or ∞ (disabled)	Increments 0.01 s
Time Multiplier D _{I2p} (ANSI)		0.50 s to 15.00 s or ∞ (disabled)	Increments 0.01 s

Functional Limit

Functional Limit	for $I_{Nom} = 1 A$	all phase currents ≤ 10 A
	for $I_{Nom} = 5 A$	all phase currents ≤ 50 A

Trip Time Curves acc. to IEC

See also Figure 4-7	
INVERSE	$t_{TRIP} = \frac{0.14}{(l_2 / l_{2p})^{0.02} - 1} \cdot T_{I2p} $ [s]
VERY INVERSE	$t_{TRIP} = \frac{13.5}{(I_2 / I_{2p})^1 - 1} \cdot T_{I2p} [s]$
EXTREMELY INV.	$t_{TRIP} = \frac{80}{(l_2 / l_{2p})^2 - 1} \cdot T_{l2p}$ [s]
	Where:
	t _{TRIP} Trip Time
	T _{I2P} Setting Value of the Time Multiplier I ₂ Negative Sequence Current
	I ₂ Negative Sequence Current I _{2p} Setting Value of the Pickup Current
The trip times for $I_2/I_{2p} \ge 20$ are identical to those for $I_2/I_{2p} = 20$.	
Pickup Threshold	Approx. 1.10· I _{2p}

Trip Time Curves acc. to ANSI

It can be selected one of the represented trip time characteristic curves in the figures 4-8 and 4-9 each on the right side of the figure.

Tolerances

- <u> </u>	3 % of setting value or 15 mA for $\rm I_{Nom}$ = 1 A or 75 mA at $\rm I_{Nom}$ = 5 A
Time for $2 \le I/I_{2p} \le 20$	5 % of reference (calculated) value +2 % current tolerance, or 30 ms

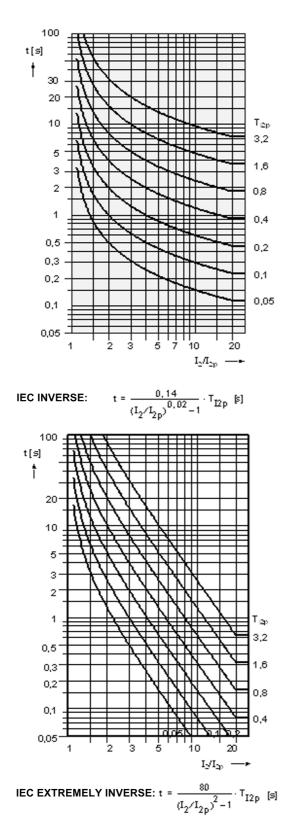
4.9 Negative Sequence Protection 46-TOC

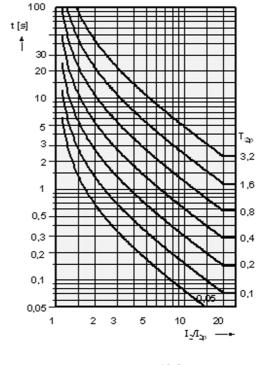
Dropout Time Curves with Disk Emulation acc. to ANSI

Representation of the	possible dropout time curves, see figure 4-8 and 4-9 each on the left side of the figure
INVERSE	$t_{\text{Reset}} = \left(\frac{8.8}{1 - (I_2 / I_{2p})^{2.0938}}\right) \cdot D_{12p} \qquad [s]$
MODERATELY INV	$I. t_{\text{Reset}} = \left(\frac{0.97}{1 - (I_2 / I_{2p})^2}\right) \cdot D_{12p} \qquad [s]$
VERY INVERSE	$\mathbf{t}_{Reset} = \left(\frac{4.32}{1 - (\mathbf{I}_2 / \mathbf{I}_{2p})^2}\right) \cdot \mathbf{D}_{I2p} \qquad [s]$
EXTREMELY INV.	$\mathbf{t}_{Reset} = \left(\frac{5.82}{1 - (I_2 / I_{2p})^2}\right) \cdot D_{I2p} \qquad [s]$
The dropout time cons	stants apply to $(I_2/I_{2p}) \le 0.90$

Dropout Value

	Approx. 1.05 \cdot I_{2p} setting value, which is approx. 0.95 \cdot pickup thresholdI_2
ANSI with Disk Emulation	Approx. 0.90 · I _{2p} setting value

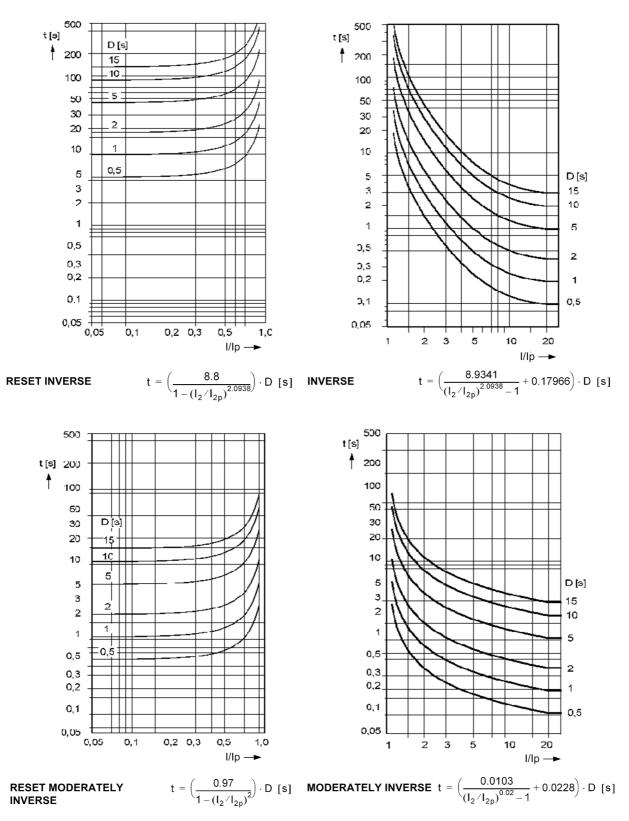

Tolerances

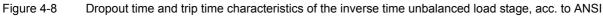

Dropout value I _{2p}	3 % of setting value or 15 mA for I_{Nom} = 1 A
Time for $I_2/I_{2p} \le 0.90$	or 75 mA for I_{Nom} = 5 A 5 % of reference (calculated) value +2 % current tolerance,
	or 30 ms

Influencing Variables for Pickup Values

Power supply direct voltage in range $0.8 \le V_{PS}/V_{PSNom} \le 1.15$	1 %	
Temperature in range 23.00 °F (-5 °C) $\leq \Theta_{amb} \leq 131.00$ °F (55 °C)	0.5 %/10 K	
Frequency in range of 50 Hz to 70 Hz		
Frequency in range 0.95 ≤ f/f _{Nom} ≤ 1.05	1 %	
Frequency outside range $0.95 \le f/f_{Nom} \le 1.05$	Increased tolerances	
Harmonics		
- up to 10 % 3rd harmonic	1 %	
- up to 10 % 5th harmonic	1 %	
Transient overreaction for τ > 100 ms (with full displacement)	<5 %	

 $t = \frac{13.5}{(I_2 A_{2p})^1 - 1} \cdot T_{I2p} [s]$ IEC VERY INVERSE:


Tripping Time Setting Value of the Time Factor t T_{I2p} I₂ I₂ Inverse current


Pickup current of unbalanced load protection

Trip time characteristics of the inverse time negative sequence element 46-TOC, acc. to IEC Figure 4-7

4.9 Negative Sequence Protection 46-TOC

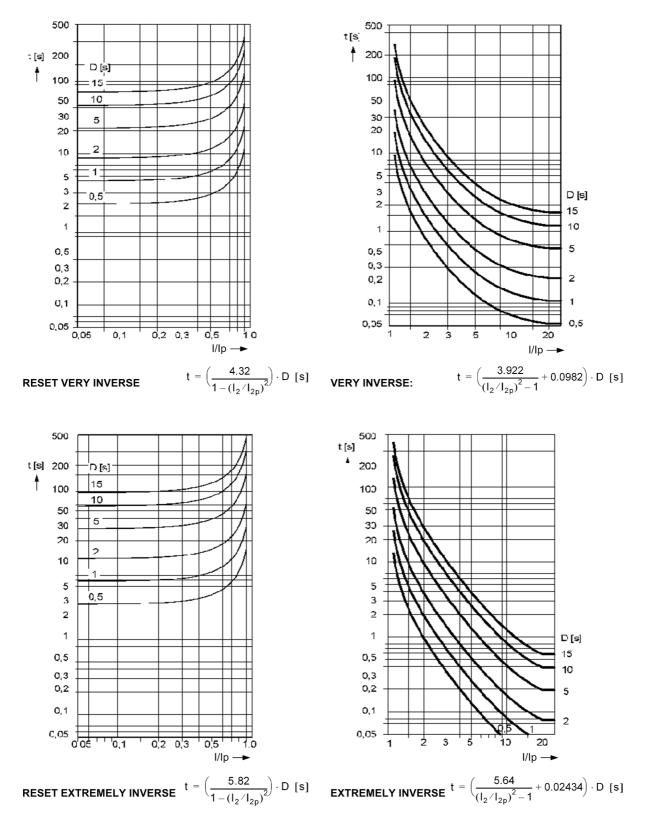


Figure 4-9 Dropout time and trip time characteristics of the inverse time unbalanced load stage, acc. to ANSI

4.10 Motor Starting Protection 48

Setting Ranges / Increments

	for $I_{Nom} = 1 A$	0.50 A to 16.00 A	Increment 0.01 A
motor I _{STARTUP}	for I_{Nom} = 5 A	2.50 A to 80.00 A	
Pickup threshold I _{MOTOR START}	for I _{Nom} = 1 A	0.40 A to 10.0 A	Increment 0.01 A
	for I _{Nom} = 5 A	2.00 A to 50.00 A	
Permissible startup time T _{Max.STARTUP}		1.0 s to 180.0 s	Increments 0.1 s
Permissible locked rotor time TLOCKED ROTOR		0.5 s to 180.0 s or ∞ (disabled)	Increments 0.1 s
Maximum startup time with warm motor		0.5 s to 180.0 s or ∞ (disabled)	Increments 0.1 s
T _{Max.STARTUP W}			
Maximum startup time with cold motor		0 % to 80 % or ∞ (disabled)	Increments 1 %

Trip Curve

Trip time characteristics for I > I _{MOTOR START}	$t_{TRIP} = \left(\frac{I_{S}}{S}\right)$	$\left(\frac{TARTUP}{T_{rms}}\right)^2 \cdot T_{Max.STARTUP}$
Where:	t _{TRIP}	Motor starting current setting. Actual current flowing. Pickup threshold setting, used to detect motor startup. Trip time in seconds. Tripping time for nominal startup current

Dropout Ratio

Dropout ratio	Approx. 0.95

Tolerances

Pickup threshold	3 % of setting value or 15 mA for I_N = 1 A, or 75 mA for I_N = 5 A
Time delay	5 % or 30 ms

Influencing variables

Power supply direct voltage in range $0.8 \le V_{PS}/V_{PSNom} \le 1.15$	1 %
Temperature in range –5 °C $\leq \Theta_{amb} \leq 55$ °C	0.5 %/10 K
Frequency in range of $0.95 \le f/f_{Nom} \le 1.05$	1 %
Frequency outside range of $0.95 \le f/f_{Nom} \le 1.05$	Increased tolerances
Harmonics - up to 10 % 3rd harmonic - up to 10 % 5th harmonic	1 % 1 %

4.11 Motor Restart Inhibit 66

Setting Ranges / Increments

Motor starting current relative to nominal motor current		1.1 to 10.0	Increment 0.1
I _{Start} /I _{Motor Nom.}			
Nominal motor current	for $I_{Nom} = 1 A$	0.20 A to 1.20 A	Increment 0.01 A
I _{Motor Nom.}	for I _{Nom} = 5 A	1.00 A to 6.00 A	
Max. permissible starting time T _{START max.}		1 s to 320 s	Increments 1 s
Equilibrium time T _{Equal}		0.0 min to 320.0 min	Increments 0.1 min
Minimum inhibit time T _{MIN. INHIBIT TIME}		0.2 min to 120.0 min	Increments 0.1 min
Maximum permissible number of warm startups n _{WARM}		1 to 4	Increment 1
Difference between cold and warm startups n _{COLD} - n _{WARM}		1 to 2	Increment 1
Extension of Time Constant at stop $k_{\tau at STOP}$		0.2 to 100.0	Increment 0.1
Extension of Time constant at running $k_{\tau at RUNNING}$		0.2 to 100.0	Increment 0.1

Restart Threshold

$\Theta_{Restart} = \left(\frac{I_{S}}{I_{MO}}\right)$	$\frac{\text{TARTUP}}{\text{TNom} \cdot k_{R}} \right)^{2} \cdot \left(1 - e^{-\frac{(n_{\text{cold}} - 1) \cdot T_{\text{start max}}}{\tau_{R}}}\right)$
Where:	$\begin{array}{l} \Theta_{\text{RESTART}} = \text{Temperature limit below which restarting is possible} \\ k_{\text{R}} = \text{k-factor for the rotor} \\ I_{\text{STARTUP}} = \text{Startup current} \\ I_{\text{MotNom}} = \text{Motor nominal current} \\ T_{\text{start max}} = \text{Max. startup time} \\ \tau_{\text{R}} = \text{Thermal rotor time constant} \\ n_{\text{cold}} = \text{Max. number of cold starts} \end{array}$

Tolerances

Restart inhibit time	5 % or 2 s
Trip on rotor overload	5 % or 2 s

Influencing variables

Power supply direct voltage in range $0.8 \le V_{PS}/V_{PSNom} \le 1.15$	1 %
Temperature in range –5 °C $\leq \Theta_{amb} \leq 55$ °C	0.5 %/10 K
Frequency in range of $0.95 \le f/f_{Nom} \le 1.05$	1 %
Frequency outside range of $0.95 \le f/f_{Nom} \le 1.05$	Increased tolerances

4.12 Load Jam Protection

Setting Ranges / Increments

Tripping threshold	for I _{Nom} = 1 A	0.50 A to 12.00 A	Increments 0.01 A
	for I _{Nom} = 5 A	2.50 A to 60.00 A	
Alarm threshold	for I _{Nom} = 1 A	0.50 A to 12.00 A	Increments 0.01 A
	for I _{Nom} = 5 A	2.50 A to 60.00 A	
Trip delay	·	0.00 s to 600.00 s	Increments 0.01 s
Message delay		0.00 s to 600.00 s	Increments 0.01 s
Blocking duration after mo	tor start	0.00 s to 600.00 s	Increments 0.01 s

Timers

Pickup time	approx. 55 ms
Dropout time	approx. 30 ms

Dropout ratio

Dropout ratio tripping stage	approx. 0.95
Dropout ratio warning stage	approx. 0.95

Tolerances

Pickup threshold	for $I_{Nom} = 1 A$	3 % of setting value or 15 mA
	for $I_{Nom} = 5 A$	3 % of setting value or 75 mA
Time delay		1 % or 10 ms

Influencing variables

Power supply direct voltage in range $0.8 \le V_{PS}/V_{PSNom} \le 1.15$	1 %
Temperature in range –5 °C $\leq \Theta_{amb} \leq 55$ °C	0.5 %/10 K
Frequency in range of $0.95 \le f/f_{Nom} \le 1.05$	1 %
Frequency outside range of $0.95 \le f/f_{Nom} \le 1.05$	Increased tolerances
Harmonics - up to 10 % 3rd harmonic - up to 10 % 5th harmonic	1 % 1 %

4.13 Frequency Protection 81 O/U

Setting ranges / increments

Number of frequency elements	4; each can be set to f> or f<	
Pickup values f> or f< for f _{Nom} = 50 Hz	40.00 Hz to 60.00 Hz	Increments 0.01 Hz
Pickup values f> or f< for f _{Nom} = 60 Hz	50.00 Hz to 70.00 Hz	Increments 0.01 Hz
Dropout threshold = pickup threshold - dropout threshold	0.02 Hz to 1.00 Hz	Increments 0.01 Hz
Delay times T	0.00 s to 100.00 s or ∞ (dis- abled)	Increments 0.01 s
Undervoltage blocking	10 V to 150 V	Increments 1 V

Times

approx. 100 ms at f _{Nom} = 50 Hz approx. 80 ms at f _{Nom} = 60 Hz
approx. 100 ms at f _{Nom} = 50 Hz approx. 80 ms at f _{Nom} = 60 Hz

Dropout Difference

$\Delta f = I$ pickup value - dropout value I	0.02 Hz to 1 Hz
---	-----------------

Dropout Ratio

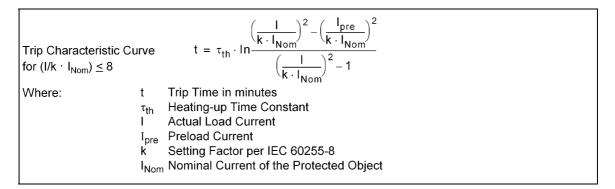
Dropout Datio for Lindon valtage Blocking	approx 1.05
Dropout Ratio for Undervoltage Blocking	approx. 1.05
	••

Tolerances

Pickup frequencies 81/O or 81U	15 mHz (with V = V_{nom} , f = $f_{\text{Nom}} \pm 5$ Hz)
Undervoltage blocking	3 % of setting value or 1 V
Time delays 81/O or 81/U	1 % of setting value or 10 ms

Influencing Variables

Power supply direct voltage in range $0.8 \le V_{PS}/V_{PSNom} \le 1.15$	1 %
Temperature in range 23.00 °F (-5 °C) $\leq \Theta_{amb} \leq 131.00$ °F (55 °C)	0.5 %/10 K
Harmonics	
- up to 10 % 3rd harmonic	1 %
- up to 10 % 5th harmonic	1 %



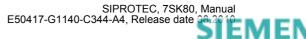
4.14 Thermal Overload Protection 49

Setting Ranges / Increments

K-Factor per IEC 60255-8		0.10 to 4.00	Increments 0.01
Time Constant τ_{th}		1.0 min to 999.9 min	Increments 0.1 min
Thermal Alarm $\Theta_{Alarm} / \Theta_{Trip}$		50% to 100% of the trip excessive temperature	Increments 1 %
Current Overload I _{Alarm}	for I _{Nom} = 1 A	0.10 A to 4.00 A	Increments 0.01 A
	for I _{Nom} = 5 A	0.50 A to 20.00 A	
Extension kt Factor when N Stopped	lachine	1.0 to 10.0 relative to the time constant for the machine running	Increments 0.1
Emergency Time T _{Emergency}		10 s to 15000 s	Increments 1 s
Nominal Overtemperature (for I _{Nom})	40 °C to 200 °C = –13 °F to +185 °F	Increments 1 °C

Trip Characteristic

Dropout Ratios


Θ/Θ _{Trip}	Drops out with Θ_{Alarm}
	Approx. 0.99
	Approx. 0.97

Tolerances

Referring to k · I _{Nom}	3 % or 15 mA for I_{Nom} = 1 A, or 75 mA for I_{Nom} = 5 A,
	2 % class according to IEC 60255-8
Referring to trip time	3 % or 1 s for I/(k ·I _{Nom}) > 1.25;
	3 % class according to IEC 60255-8

Influencing Variables Referring to $\mathbf{k}\cdot\mathbf{I}_{\text{Nom}}$

Auxiliary DC voltage in range $0.8 \le V_{Aux}/V_{AuxNom} \le 1.15$	1 %
	0.5 %/10 K
Frequency in range of 50 Hz to 70 Hz	
Frequency in range $0.95 \le f/f_{Nom} \le 1.05$	1 %
Frequency outside range 0.95 ≤ f/f _{Nom} ≤ 1.05	Increased tolerances

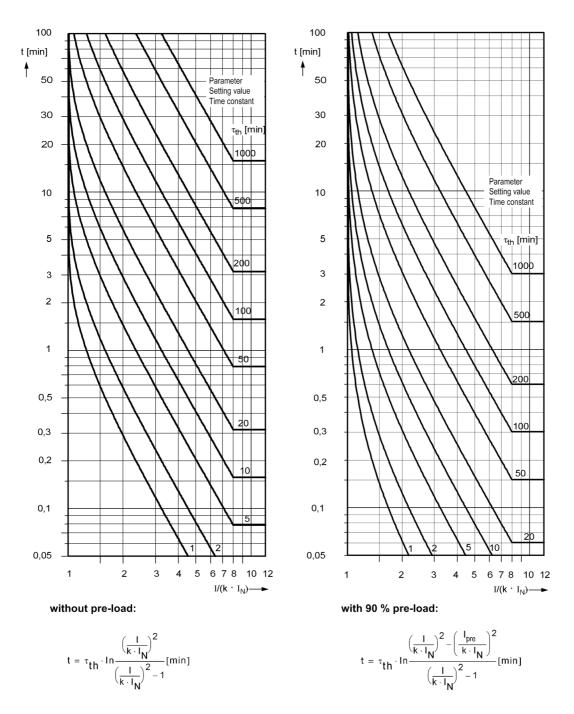


Figure 4-10 Trip time curves for the thermal overload protection (49)

4.15 Ground Fault Protection 64, 67N(s), 50N(s), 51N(s)

Displacement Voltage Element For all Types of Ground Faults

Displacement voltage, measured	V0 > 1.8 V to 200.0 V	Increments 0.1 V	
Displacement voltage, calculated	3V ₀ > 10.0 V to 225.0 V	Increments 0.1 V	
Pickup delay T-DELAY Pickup	0.04 s to 320.00 s or ∞	Increments 0.01 s	
Additional tripping delay 64-1 DELAY	0.10 s to 40000.00 s or ∞ (disabled)	Increments 0.01 s	
Operating time	approx. 50 ms		
Dropout value	0.95 or (pickup value – 0.6 V)	0.95 or (pickup value – 0.6 V)	
Measurement tolerance V0 > (measured) 3V0 > (calculated)	3 % of setting value or 0.3 V 3 % of setting value or 3 V	•	
Operating time tolerances	1 % of setting value or 10 ms	1 % of setting value or 10 ms	

Phase Detection for Ground Faults on an Ungrounded System

Measuring Principle	Voltage measurement (phase-Ground)	
V _{PHASE MIN} (Ground Fault Phase)	10 V to 100 V	Increments 1V
V _{PHASE MAX} (Healthy Phase)	10 V to 100 V	Increments 1V
Measurement Tolerance acc. to VDE 0435, Part 303	3 % of setting value or 1 V	

Ground Fault Pickup for All Types of Ground Faults (Definite Time Characteristic)

Pickup current 50Ns-2 PICKUP, 50Ns-1 PICKUP		
for sensitive 1 A transformer	0.001 A to 1.600 A	Increments 0.001 A
for sensitive 5 A transformer	0.005 A to 8.000 A	Increments 0.005 A
for normal 1 A transformer	0.05 A to 35.00 A	Increments 0.01 A
for normal 5 A transformer	0.25 A to 175.00 A	Increments 0.05 A
Time delay 50Ns-2 DELAY, 50Ns-1 DELAY	0.00 s to 320.00 s or ∞ (disabled)	Increments 0.01 s
Dropout time delay 50Ns T DROP-OUT	0.00 s to 60.00 s	Increments 0.01 s
Operating time	≤ 50 ms (non-directional)	
	≤ 50 ms (directional)	
Dropout ratio	approx. 0.95 for 50Ns > 50 mA	
Measurement tolerance		
sensitive	3 % of setting value or 1 mA for I _{Nom} = 1 A, or 5 mA for	
	I _{Nom} = 5 A	
	for setting values < 10 mA approx. 20 %	
non-sensitive	3 % of setting value or 15 mA for I _{Nom} = 1 A, or 75 mA	
	for I _{Nom} = 5 Å	
Operating time tolerance	1 % of setting value or 10 ms	

Ground Fault Pickup for All Types of Ground Faults (Inverse Time Characteristic)

User-defined characteristic (defined by a maxim	um of 20 value pairs of current and time	e delay in direction	
measurement method "cos phi and sin phi")		,	
Pickup current 51Ns			
for sensitive 1 A transformer	0.001 A to 1.400 A	Increments 0.001 A	
for sensitive 5 A transformer	0.005 A to 7.000 A	Increments 0.005 A	
for normal 1 A transformer	0.05 A to 4.00 A	Increments 0.01 A	
for normal 5-A transformer	0.25 A to 20.00 A	Increments 0.05 A	
Time multiplier T _{51Ns}	0.10 s to 4.00 s or ∞ (disabled) Increments 0.01 s		
Pickup threshold	Approx. 1.10 · I _{51Ns}		
Dropout ratio	Approx. 1.05 · I _{51Ns} for I _{51Ns} > 50 mA		
Measurement tolerance			
sensitive	3 % of setting value or 1 mA for I_{Nom} = 1 A, or 5 mA for I_{Nom} = 5 A		
	for setting values < 10 mA approx. 20 %		
non-sensitive	3 % of setting value or 15 mA for I_{Nom} = 1 A, or 75 mA for I_{Nom} = 5 A		
Operating time tolerance in linear range	7 % of reference (calculated) value for 2 \leq $\rm I/I_{51Ns}$ \leq 20 + 2 % current tolerance, or 70 ms		

Influencing Variables

Auxiliary DC voltage in range $0.8 \le V_{Aux}/V_{AuxNom} \le 1.15$	1 %	
Temperature in range $-5 \degree C (41 \degree F) \le \Theta_{amb} \le 55 \degree C (131 \degree F)$	0.5 %/10 K	
Frequency in range 0.95 ≤ f/f _{Nom} ≤ 1.05	1 %	
Frequency outside range $0.95 \le f/f_{Nom} \le 1.05$	Increased tolerances	
Harmonics - up to 10 % 3rd harmonic - up to 10 % 5th harmonic	1 % 1 %	
Note: When using the sensitive transformer, the linear range of the measuring input for sensitive ground fault detection is from 0.001 A to 1.6 A or 0.005 A to 8.0 A, depending on parameter 205 CT SECONDARY. The function is however still preserved for larger currents.		

Direction Determination for all Types of Ground Fault with cos ϕ / sin ϕ Measurement

Direction measurement	- I_N and V_N measured - $3I_0$ and $3V_0$ calculated	
Measuring principle	Active/reactive power measurement	
Measuring release RELEASE DIRECT. (current component perpendicular (90°) to directional limit line) for sensitive 1 A transformer for sensitive 5 A transformer for normal 1 A transformer for normal 5-A transformer	0.001 A to 1.600 A 0.005 A to 8.000 A 0.05 A to 35.00 A 0.25 A to 175.00 A	Increments 0.001 A Increments 0.005 A Increments 0.01 A Increments 0.05 A
Dropout ratio	Approx. 0.80	
Measurement method	$\cos \phi$ and $\sin \phi$	
Directional limit line PHI CORRECTION	-45.0° to +45.0°	Increments 0.1°
Dropout delay RESET DELAY	1 s to 60 s	Increments 1 s

Direction Determination for all Types of Ground Fault with V0 ϕ / I0 ϕ Measurement

Direction measurement	- $I_{\rm N}$ and $V_{\rm N}$ measured - $3I_0$ and $3V_0$ calculated	
Measuring principle	U0 / I0 phase angle measurement	
50Ns-1 element		
Minimum voltage 50Ns-1 Vmin V0 measured 3V0 calculated	0.4 V to 50 V 10 V to 90 V	Increments 0.1 V Increments 1 V
Phase angle 50Ns-1 Phi	- 180° to 180°	Increments 1°
Delta phase angle 50Ns-1 DeltaPhi	0° to 180°	Increments 1°
50Ns-2 element		
Minimum voltage 50Ns-2 Vmin V0 measured 3V0 calculated	0.4 V to 50 V 10 V to 90 V	Increments 0.1 V Increments 1 V
Phase angle 50Ns-2 Phi	- 180° to 180°	Increments 1°
Delta phase angle 50Ns-2 DeltaPhi	0° to 180°	Increments 1°

Angle Correction

Angle correction for cable converter in two operating points F1/I1 and F2/I2:		
Angle correction F1, F2 (for resonant-grounded system)	0.0° to 5.0°	Increments 0.1°
Current values I1, I2 for angle correction for sensitive 1 A transformer for sensitive 5 A transformer for normal 1 A transformer for normal 5 A transformer	0.001 A to 1.600 A 0.005 A to 8.000 A 0.05 A to 35.00 A 0.25 A to 175.00 A	Increments 0.001 A Increments 0.005 A Increments 0.01 A Increments 0.05 A
Measurement tolerance sensitive non-sensitive	I _{Nom} = 5 A for setting values < 10 m	mA for I _{Nom} = 1 A, or 5 mA for A approx. 20 % MA for I _{Nom} = 1 A, or 75 mA for
Angle tolerance 3° Note: Due to the high sensitivity, the linear range of the measuring input I_{Nom} with integrated sensitive input transformer is from $0.001 \cdot I_{Nom}$ to $1.6 \cdot I_{Nom}$. For currents greater than $1.6 \cdot I_{Nom}$, correct direction determi-		
nation can no longer be guaranteed.	or currents greater than 1.0	Nom, concertancetion determi-

4.16 Breaker Failure Protection 50BF

Setting Ranges / Increments

Pickup threshold 50-1 BF	for $I_{Nom} = 1 A$	0.05 A to 20.00 A	Increments 0.01 A
	for I _{Nom} = 5 A	0.25 A to 100.00 A	
Pickup threshold 50N-1 BF	for I _{Nom} = 1 A	0.05 A to 20.00 A	Increments 0.01 A
	for I _{Nom} = 5 A	0.25 A to 100.00 A	
Time delay 50 BF trip timer		0.06 s to 60.00 s or ∞	Increments 0.01 s

Times

Pickup times - for internal start - for external start	Included in time delay Included in time delay
Dropout time Dropout ratio 50-1, 50N-1	approx. 25 ms ¹⁾ = 0.95 (minimum hystersis between Pickup and dropout ≥ 32.5 mA)

Tolerances

	3 % of setting value, or 15 mA for I_{Nom} = 1 A or 75 mA for I_{Nom} = 5 A
Time delay 50 BF trip timer	1 % or 20 ms

Influencing Variables for Pickup Values

Auxiliary DC voltage in range $0.8 \le V_{Aux}/V_{AuxNom} \le 1.15$	1 %
Temperature in range –5 °C (41 °F) $\leq \Theta_{amb} \leq$ 55 °C (131 °F)	0.5 %/10 K
Frequency in range $0.95 \le f/f_{Nom} \le 1.05$	1 %
Harmonics - up to 10 % 3rd harmonic - up to 10 % 5th harmonic	1 % 1 %

¹⁾ A further delay for the current may be caused by compensation in the secondary CT circuit.

4.17 Flexible Protection Functions

Measured Values / Modes of Operation

Three-phase	I, 3I ₀ , I1, I2, I2/I1, V, 3V ₀ , V1, V2, P forward, P reverse, Q forward, Q reverse, $\cos \varphi$
Single-phase	I, I_N , I_{Ns} , I_{N2} , V, V_N , V_x , P forward, P reverse, Q forward, Q reverse, $\cos\varphi$
Without fixed phase reference	f, df/dt, binary input
Measurement method for I, V	Fundamental, r.m.s. value (true RMS), positive sequence system, negative sequence system, zero sequence system
Pickup on	exceeding threshold value or falling below threshold value

Setting Ranges / Increments

Pickup thresholds:			
Current I, I ₁ , I ₂ , 3I ₀ , I _N	for I _N = 1 A	0.05 A to 40.00 A	Increments 0.01 A
	for I _N = 5 A	0.25 A to 200.00 A	
Relationship I ₂ /I ₁		15 % to 100 %	Increments 1%
Sensitive ground current I _{Ns}		0.001 A to 1.500 A	Increments 0.001 A
Voltage V, V ₁ , V ₂ , 3V ₀		2.0 V to 260.0 V	Increments 0.1 V
Displacement voltage V _N		2.0 V to 200.0 V	Increments 0.1 V
Power P, Q	for I _N = 1 A	2.0 W to 10000 W	Increment 0.1 W
	for I _N = 5 A	10 W to 50000 W	
Power factor $\cos \varphi$		-0.99 to +0.99	Increments 0.01
Frequency	for f _{Nom} = 50 Hz	40.0 Hz to 60.0 Hz	Increments 0.01 Hz
	for $f_{Nom} = 60 \text{ Hz}$	50.0 Hz to 70.0 Hz	Increments 0.01 Hz
Frequency change df/dt		0.10 Hz/s to 20.00 Hz/s	Increments 0.01 Hz/s
Dropout ratio > element		1.01 to 3.00	Increments 0.01
Dropout ratio < element		0.70 to 0.99	Increments 0.01
Dropout difference f		0.02 Hz to 1.00 Hz	Increments 0.01 Hz
Pickup delay (standard)		0.00 s to 60.00 s	Increments 0.01 s
Pickup delay for I ₂ /I ₁		0.00 s to 28800.00 s	Increments 0.01 s
Command delay time		0.00 s to 3600.00 s	Increments 0.01 s
Dropout delay		0.00 s to 60.00 s	Increments 0.01 s

Function Limits

Power measurement three-phase	for I _{Nom} = 1 A	Positive sequence system current > 0.03 A
	for $I_{Nom} = 5 A$	Positive sequence system current > 0.15 A
Power measurement single-phase	for I _{Nom} = 1 A	Phase current > 0.03 A
	for $I_{Nom} = 5 A$	Phase current > 0.15 A
Relationship I ₂ /I ₁	for I _{Nom} = 1 A	Positive or negative sequence system current > 0.1 A
measurement	for $I_{Nom} = 5 A$	Positive or negative sequence system current > 0.5 A

Times

Pickup times:	
Current, voltage (phase quantities)	
for 2 times the setting value	approx. 30 ms
for 10 times the setting value	approx. 20 ms
Current, voltage (symmetrical components)	
for 2 times the setting value	approx. 40 ms
for 10 times the setting value	approx. 30 ms
Power	
typical	approx. 120 ms
maximum (small signals and threshold values)	approx. 350 ms
Power factor	300 to 600 ms
Frequency	approx. 100 ms
Frequency change for 1.25 times the setting value	approx. 220 ms
Binary input	approx. 20 ms
Dropout times:	
Current, voltage (phase quantities)	< 20 ms
Current, voltage (symmetrical components)	< 30 ms
Power	
typical	< 50 ms
maximum	< 350 ms
Power factor	< 300 ms
Frequency	< 100 ms
Frequency change	< 200 ms
Binary input	< 10 ms

Tolerances

Pickup thresholds:		
Current	for I _{Nom} = 1 A	3% of setting value or 15 mA
	for I _{Nom} = 5 A	3% of setting value or 75 mA
Current (symmetrical components)	for I _{Nom} = 1 A	4% of setting value or 20 mA
	for I _{Nom} = 5 A	4% of setting value or 100 mA
Current (I ₂ /I ₁)		4% of setting value
Voltage		3% of setting value or 0.2 V
Voltage (symmetrical components)		4% of setting value or 0.2 V
Power	for I _{Nom} = 1 A	3% of setting value or 0.5 W (for nominal values)
	for I _{Nom} = 5 A	3% of setting value or 2.5 W (for nominal values)
Power factor		3°
Frequency		15 mHz
Frequency change		5% of setting value or 0.05 Hz/s
Times		1% of setting value or 10 ms

Influencing Variables for Pickup Values

Auxiliary DC voltage in range $0.8 \le V_{Aux}/V_{AuxNom} \le 1.15$	1 %
Temperature in range $-5 \degree C (41 \degree F) \le \Theta_{amb} \le 55 \degree C (131 \degree F)$	0.5 %/10 K
Frequency in range $0.95 \le f/f_{Nom} \le 1.05$	1 %
Frequency outside range $0.95 \le f/f_{Nom} \le 1.05$	Increased tolerances
Harmonics - up to 10 % 3rd harmonic - up to 10 % 5th harmonic	1 % 1 %

4.18 Temperature Detection

Temperature Detectors

Connectable RTD-boxes	1 or 2
Number of temperature detectors per RTD-box	Max. 6
Measuring method	Pt 100 Ω or Ni 100 Ω or Ni 120 Ω selectable 2 or 3 phase connection
Mounting identification	"Oil" or "Ambient" or "Stator" or "Bearing" or "Other"

Temperature Detectors with Direct Connection (only 7SK805/7SK806)

Number of temperature detectors at the I/O 2 extension module	max. 5
Measurement method	Pt 100 Ω or Ni 100 Ω or Ni 120 Ω 3-wire connection, shielded cable
Installation identification	"Oil" or "Ambient" or "Stator" or "Bearing" or "Other"

Operational Measured Values via External Temperature Detection

Number of measuring points	Maximal of 12 temperature measuring points	
Temperature Unit	°C or °F, adjustable	
Measuring Range		
– for Pt 100	–199 °C to 800 °C (–326 °F to 1472 °F)	
– for Ni 100	–54 °C to 278 °C (–65 °F to 532 °F)	
– for Ni 120	–52 °C to 263 °C (–62 °F to 505 °F)	
Resolution	1 °C or 1 °F	
Tolerance	\pm 0.5 % of measured value \pm 1 digit	

Operational Measured Values via the I/O 2 Extension Module

Number of Measuring Points	Max. 5 temperature measuring points
Temperature Unit	°C or °F, adjustable
Measuring Range - for Pt 100 - for Ni 100 or Ni 120	–65 °C to 710 °C (–85 °F to 1310 °F) –50 °C to 250 °C (–58 °F to 482 °F)
Resolution at temperatures ≥ 100 °C at temperatures < 100 °C	\pm 0.5 % of measured value \pm 1 °C or 1 °F \pm 1.5 °C
Tolerance	± 0.5 % of measured value ± 1 digit
Current sensor	3.58 mA
Line resistance	14 Ω

Technical Data 4.18 Temperature Detection

Thresholds for Indications

for each measuring point		
Stage 1	 -50 °C to 250 °C -58 °F to 482 °F or ∞ (no message) 	(increment 1 °C) (increment 1 °F)
Stage 2	–50 °C to 250 °C –58 °F to 482 °F or ∞ (no message)	(increment 1 °C) (increment 1 °F)

4.19 User-defined Functions (CFC)

Function Modules and Possible Assignments to Task Levels

Function Module	Explanation	Task Level			
		MW_ PLC1_ PLC_ SFS_			
		BEARB	BEARB	BEARB	BEARB
ABSVALUE	Magnitude Calculation	Х		_	
ADD	Addition	Х	Х	Х	Х
ALARM	Alarm clock	Х	Х	Х	Х
AND	AND - Gate	Х	Х	Х	Х
FLASH	Blink block	Х	Х	Х	Х
BOOL_TO_CO	Boolean to Control (conversion)	_	Х	X	_
BOOL_TO_DI	Boolean to Double Point (conversion)	_	Х	X	Х
BOOL_TO_IC	Bool to Internal SI, Conversion	_	Х	Х	Х
BUILD_DI	Create Double Point Annunciation	_	х	X	Х
CMD_CANCEL	Command cancelled	Х	Х	Х	Х
CMD_CHAIN	Switching Sequence	-	Х	Х	—
CMD_INF	Command Information	_	_		Х
COMPARE	Metered value compar- ison	Х	Х	X	Х
CONNECT	Connection	—	Х	Х	Х
COUNTER	Counter	Х	Х	Х	Х
DI_GET_STATUS	Decode double point indication	Х	Х	X	Х
DI_SET_STATUS	Generate double point indication with status	Х	Х	X	Х
D_FF	D- Flipflop	_	Х	Х	Х
D_FF_MEMO	Status Memory for Restart	Х	Х	X	Х
DI_TO_BOOL	Double Point to Boolean (conversion)	_	х	X	Х
DINT_TO_REAL	Adaptor	Х	Х	Х	Х
DIST_DECODE	Conversion double point indication with status to four single in- dications with status	Х	Х	X	X
DIV	Division	Х	Х	Х	Х
DM_DECODE	Decode Double Point	Х	Х	Х	Х
DYN_OR	Dynamic OR	Х	Х	Х	Х
INT_TO_REAL	Conversion	Х	Х	Х	Х
LIVE_ZERO	Live-zero, non-linear Curve	Х	—	-	—
LONG_TIMER	Timer (max.1193h)	Х	Х	Х	Х
LOOP	Feedback Loop	Х	Х	—	Х
LOWER_SETPOINT	Lower Limit	Х			

Function Module	Explanation	Task Level			
		MW_	PLC1_	PLC_	SFS_
		BEARB	BEARB	BEARB	BEARB
MUL	Multiplication	Х	Х	Х	Х
MV_GET_STATUS	Decode status of a value	Х	Х	X	Х
MV_SET_STATUS	Set status of a value	Х	Х	Х	Х
NAND	NAND - Gate	Х	Х	Х	Х
NEG	Negator	Х	Х	Х	Х
NOR	NOR - Gate	Х	Х	Х	Х
OR	OR - Gate	Х	Х	Х	Х
REAL_TO_DINT	Adaptor	Х	Х	Х	Х
REAL_TO_INT	Conversion	Х	Х	Х	Х
REAL_TO_UINT	Conversion	Х	Х	Х	Х
RISE_DETECT	Rise detector	Х	Х	Х	Х
RS_FF	RS- Flipflop	_	Х	Х	Х
RS_FF_MEMO	RS- Flipflop with state memory	_	Х	X	X
SQUARE_ROOT	Root Extractor	Х	Х	Х	Х
SR_FF	SR- Flipflop		Х	Х	Х
SR_FF_MEMO	SR- Flipflop with state memory	_	Х	x	Х
ST_AND	AND gate with status	Х	Х	Х	Х
ST_NOT	Inverter with status	Х	Х	Х	Х
ST_OR	OR gate with status	Х	Х	Х	Х
SUB	Substraction	Х	Х	Х	Х
TIMER	Timer	_	Х	Х	_
TIMER_SHORT	Simple timer	_	Х	Х	—
UINT_TO_REAL	Conversion	Х	Х	Х	Х
UPPER_SETPOINT	Upper Limit	Х		-	—
X_OR	XOR - Gate	Х	Х	Х	Х
ZERO_POINT	Zero Supression	Х	_	—	—

General Limits

Description	Limit	Comment
Maximum number of all CFC charts considering all task levels	32	If the limit is exceeded, the device rejects the parameter set with an error message, restores the last valid parameter set and restarts using that parameter set.
Maximum number of all CFC charts considering one task level	16	When the limit is exceeded, an error message is output by the device. Consequently, the device starts monitoring. The red ERROR-LED lights up.
Maximum number of all CFC inputs considering all charts	400	When the limit is exceeded, an error message is output by the device. Consequently, the device starts monitoring. The red ERROR-LED lights up.
Maximum number of reset-resistant flipflops D_FF_MEMO	350	When the limit is exceeded, an error message is output by the device. Consequently, the device starts monitoring. The red ERROR-LED lights up.

Device-specific Limits

Description	Limit	Comment
Maximum number of synchronous changes of chart inputs per task level	165	When the limit is exceeded, an error message is output by the device. Consequently, the device starts monitoring. The
Maximum number of chart outputs per task level	150	red ERROR-LED lights up.

Additional Limits

Additional limits ¹⁾ for the following CFC blocks:				
Task Level	Task Level Maximum Number of Modules in the Task Levels			
	TIMER ^{2) 3)}	TIMER ^{2) 3)} TIMER_SHORT ^{2) 3)}		
MW_BEARB	—	_		
PLC1_BEARB	15	30		
PLC_BEARB				
SFS_BEARB	—	_		

¹⁾ When the limit is exceeded, an error message is output by the device. Consequently, the device starts monitoring. The red ERROR-LED lights up.

- ²⁾ The following condition applies for the maximum number of timers: (2 · number of TIMER + number of TIMER_SHORT) < 30. TIMER and TIMER_SHORT hence share the available timer resources within the frame of this inequation. The limit does not apply to the LONG_TIMER.</p>
- ³⁾ The time values for the blocks TIMER and TIMER_SHORT must not be selected shorter than the time resolution of the device of 10 ms, as the blocks will not then start with the starting pulse.

Maximum Number of TICKS in the Task Levels

Task level	Limit in TICKS ¹⁾
MW_BEARB (measured value processing)	10000
PLC1_BEARB (slow PLC processing)	2000
PLC_BEARB (fast PLC processing)	400
SFS_BEARB (interlocking)	10000

¹⁾ When the sum of TICKS of all blocks exceeds the limits mentioned before, an error message is output in the CFC.

Processing Times in TICKS Required by the Individual Elements

Individual Element		Number of TICKS	
Block, basic requirement	5		
Each input more than 3 inputs f	1		
Connection to an input signal		6	
Connection to an output signal		7	
Additional for each chart		1	
Arithmetic	ABS_VALUE	5	
	ADD	26	
	SUB	26	
	MUL	26	
	DIV	54	
	SQUARE_ROOT	83	
Basic logic	AND	5	
	CONNECT	4	
	DYN_OR	6	
	NAND	5	
	NEG	4	
	NOR	5	
	OR	5	
	RISE_DETECT	4	
	X_OR	5	
Information status	SI_GET_STATUS	5	
	CV_GET_STATUS	5	
	DI_GET_STATUS	5	
	MV_GET_STATUS	5	
	SI_SET_STATUS	5	
	DI_SET_STATUS	5	
	MV_SET_STATUS	5	
	ST_AND	5	
	ST_OR	5	
	ST_NOT	5	
Memory	D_FF	5	
	D_FF_MEMO	6	
	RS_FF	4	
	RS_FF_MEMO	4	
	SR_FF	4	
	SR_FF_MEMO	4	
Control commands	BOOL_TO_CO	5	
	BOOL_TO_IC	5	
	 CMD_INF	4	
	 CMD_CHAIN	34	
	 CMD_CANCEL	3	
	LOOP	8	

	Number of TICKS	
Type converter	BOOL_TO_DI	5
	BUILD_DI	5
	DI_TO_BOOL	5
	DM_DECODE	8
	DINT_TO_REAL	5
	DIST_DECODE	8
	UINT_TO_REAL	5
	REAL_TO_DINT	10
	REAL_TO_UINT	10
Comparison	COMPARE	12
	LOWER_SETPOINT	5
	UPPER_SETPOINT	5
	LIVE_ZERO	5
	ZERO_POINT	5
Metered value	COUNTER	6
Time and clock pulse	TIMER	5
	TIMER_LONG	5
	TIMER_SHORT	8
	ALARM	21
	FLASH	11

Configurable in Matrix

In addition to the defined preassignments, indications and measured values can be freely configured to buffers, preconfigurations can be removed.

4.20 Additional Functions

Operational measured values

Currents	in A (kA) primary and in A secondary or in % of I _{Nom}	
I _A ; I _B ; I _C	Nom	
Positive Sequence Component I ₁		
Negative Sequence Component I ₂		
I _N or 3I0		
Range	10 % to 150 % I _{Nom}	
Tolerance ¹⁾	1,5 % of measured value, or 1 % I _{Nom}	
	and 151 % to 200 % $\rm I_{Nom}$ 3 % of measured value	
Phase-to-ground voltages	in kV primary, in V secondary or in % of V_{Nom}	
$V_{A-N}, V_{B-N}, V_{C-N}$		
Phase-to-phase voltages		
$V_{A-B}, V_{B-C}, V_{C-A}$		
V_N , V_{ph-gnd} , V_x or V_0 Positive sequence component V_1		
Negative sequence component V_2		
Range Tolerance ¹⁾	10 % to 120 % of V_{Nom}	
	1.5 % of measured value, or 0.5 % of V _{Nom}	
S, apparent power	in kVAr (MVAR or GVAR) primary and in % of $\rm S_{Nom}$	
Range	0 % to 120 % S _{Nom}	
Tolerance ¹⁾	1 % of S _{Nom}	
	For V/V _{Nom} and I/I_{Nom} = 50 to 120%	
P, active power	with sign, total and phase-segregated in kW (MW or GW)	
	primary and in % S _{Nom}	
Range	0 % to 120 % S _{Nom}	
Tolerance ¹⁾	2 % of S _{Nom}	
	For V/V _N and I/I_{Nom} = 50 to 120% and cos φ = 0.707 to 1	
	With $S_{Nom} = \sqrt{3} \cdot V_{Nom} \cdot I_{Nom}$	
Q, reactive power	with sign, total and phase-segregated in kVAr (MVAr or GVAr)	
	primary and in % S _{Nom}	
Range	0 % to 120 % S _{Nom}	
Tolerance ¹⁾	2 % of S _{Nom}	
	For V/V _{Nom} and I/I _{Nom} = 50 to 120% and sin φ = 0.707 to 1	
	With $S_{Nom} = \sqrt{3} \cdot V_{Nom} \cdot I_{Nom}$	
$\cos \varphi$, power factor ²⁾	total and phase-segregated	
Range	-1 to +1	
Tolerance ¹⁾	2 % for cos $φ$ ≥ 0.707	
Angle φ_A ; φ_B ; φ_C ,	in degrees (°)	
Range	0 to 180°	
Tolerance ¹⁾	0,5°	
Frequency f	in Hz	
Range	f _{Nom ±} 5 Hz	
Tolerance ¹⁾	20 mHz	
Temperature overload protection	in %.	
$\Theta / \Theta_{\text{Trip}}$		
Range	0 % to 400 %	
Tolerance ¹⁾	5% class accuracy per IEC 60255-8	
Currents of sensitive ground fault detection	in A (kA) primary and in mA secondary	
(total, active, and reactive current)		
I _{Ns} , I _{Ns real} ; I _{Ns reactive}		

Range	0 mA to 1600 mA	
	or 0 A to 8 A for I _{Nom} = 5 A	
Tolerance ¹⁾	3 % of measured value or 1 mA	
Temperature	in %.	
Restart inhibit		
Θ_L / Θ_L Trip		
Range	0 % to 400 %	
Tolerance ¹⁾	5% class accuracy per IEC 60255-8	
Restart threshold	in %.	
Θ _{Restart} /Θ _{L Trip}		
Inhibit time T _{Reclose}	in min	
Phase angle between zero sequence voltage	in °	
and sensitive ground current ϕ (3V0, INs)		
Range	- 180° to + 180°	
Tolerance ¹⁾	± 1°	
RTD box	See section (Temperature Detection via RTD Boxes)	

¹⁾ at nominal frequency

 $^{2)}\,$ Display of cos ϕ above I/I $_{\text{Nom}}$ and V/V $_{\text{Nom}}$ greater than 10%

Long-Term Averages

Time Window	5, 15, 30 or 60 minutes
Frequency of Updates	adjustable
Long-Term Averages	
of Currents of Real Power of Reactive Power of Apparent Power	$ I_{Admd}; I_{Bdmd}; I_{Cdmd}; I_{1dmd} \text{ in A (kA)} $ $ P_{dmd} \text{ in W (kW, MW)} $ $ Q_{dmd} \text{ in VAr (kVAr, MVAr)} $ $ S_{dmd} \text{ in VAr (kVAr, MVAr)} $

Min / Max Report

Storage of Measured Values	with date and time
Reset automatic	Time of day adjustable (in minutes, 0 to 1439 min) Time frame and starting time adjustable (in days, 1 to 365 days, and ∞)
Manual Reset	Using binary input Using keypad Via communication
Min/Max Values for Current	$I_A; I_B; I_C;$ I_1 (positive sequence component)
Min/Max Values for Voltages	V_{A-N} ; V_{B-N} ; V_{C-N} ; V_1 (Positive Sequence Component); V_{A-B} ; V_{B-C} ; V_{C-A}
Min/Max Values for Power	S, P; Q, $\cos \varphi$; frequency
Min/Max Values for Overload Protection	Θ/Θ _{Trip}
Min/Max Values for Mean Values	I _{Admd} ; I _{Bdmd} ; I _{Cdmd} ; I ₁ (positive sequence component); S _{dmd} ; P _{dmd} ; Q _{dmd}

Fuse Failure Monitor

Setting range of the displacement voltage 3U0 above which voltage failure is detected	10 - 100 V
Setting range of the ground current above which no voltage failure is assumed	0.1 - 1 A for I _{Bdmd} = 1 A 0.5 - 5A for I _{Bdmd} = 5A
	0.1 - 35 A for I _{Bdmd} = 1 A 0.5 - 175 A for I _{Bdmd} = 5A
Measuring voltage monitoring	depends on the MLFB and configuration with measured and calculated values V_{N} and I_{N}

Broken-wire Monitoring of Voltage Transformer Circuits

suited for single-, two- or three-pole broken-wire detection of voltage transformer circuits; only for connection of phase-Ground voltages

Local Measured Value Monitoring

Current asymmetry	I_{max}/I_{min} > symmetry factor, for I > I_{limit}
Voltage asymmetry	V_{max}/V_{min} > symmetry factor, for V > V_{limit}
Current sum	$ i_A + i_B + i_C + k_1 \cdot i_N > $ limit value, with
	$k_{I} = \frac{\text{lgnd-CT PRIM / lgnd-CT SEC}}{\text{CT PRIMARY / CT SECONDARY}}$
Current phase sequence	Clockwise (ABC) / counter-clockwise (ACB)
Voltage phase sequence	Clockwise (ABC) / counter-clockwise (ACB)

Fault Event Recording

Recording of indications of the last 8 power system faults
Recording of indications of the last 3 power system ground faults

Time Allocation

Resolution for Event Log (Operational Annuncia- tions)	1 ms
Resolution for Trip Log (Fault Annunciations)	1 ms
Maximum Time Deviation (Internal Clock)	0.01 %
	Lithium battery 3 V/1 Ah, type CR 1/2 AA Message "Battery Fault" for insufficient battery charge

Fault Recording

maximum of 8 fault records saved; memory maintained by buffer battery in the case of auxiliary voltage failure	
Recording time5 s per fault record, in total up to 18 s at 50 Hz (max. 15 s at 60 Hz)	
Intervals at 50 Hz Intervals at 60 Hz	1 instantaneous value each per 1.0 ms 1 instantaneous value each per 0.83 ms

Energy Counter

Meter Values for Energy Wp, Wq (real and reactive energy)	in kWh (MWh or GWh) and in kVARh (MVARh or GVARh)
	28 bit or 0 to 2 68 435 455 decimal for IEC 60870-5-103 (VDEW protocol) 31 bit or 0 to 2 147 483 647 decimal for other protocols (other than VDEW) \leq 2 % for I > 0.1 I _{Nom} , V > 0.1 V _{Nom} and cos ϕ \geq 0.707
Tolerance ¹⁾	

1) At nominal frequency

Switching statistics

Stored number of trips	up to 9 decimal places
Accumulated interrupted current (separate for each breaker pole)	up to 4 decimal places

Motor Statistics

Total number of motor startups	0 to 9999	Resolution1	
Total operating time	0 to 99999 h	Resolution1 h	
Total down-time	0 to 99999 h	Resolution1 h	
Ratio operating time / down-time	0 to 100 %	Resolution 0.1 %	
Active energy and reactive energy	(see Operational Measured	(see Operational Measured Values)	
Motor start-up data:	of the last 5 start-ups	of the last 5 start-ups	
- Start-up time	0.30 s to 9999.99 s	Resolution 10 ms	
- Start-up current (primary)	0 A to 1000 kA	Resolution1 A	
- Start-up voltage (primary)	0 V to 100 kV	Resolution1 V	

Operating Hours Counter

Display Range	Up to 7 digits	
Criterion	Overshoot of an adjustable current threshold (element 50-1, BkrClosed I MIN)	

Circuit Breaker Monitoring

	on r.m.s. value basis: ΣI , ΣI^x , 2P; on instantaneous value basis: I^2t
Measured value acquisition/processing	phase-selective
Evaluation	one limit value each per subfunction
Saved number of statistical values	up to 13 decimal places

Trip Circuit Monitoring

With one or two binary inputs.

Commissioning Aids

- Phase rotation test

- Operational measured values
- Circuit breaker test by means of control function
- Creation of a test fault report
- Creation of messages

Clock

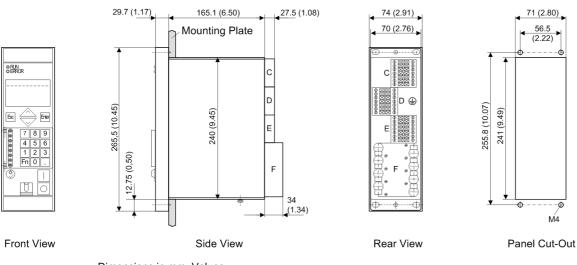
Time synchronization		Binary input Communication		
Modes of operation for time tracking				
No.	Mode of operation	Explanations		
1	Internal	Internal synchronization using RTC (presetting)		
2	IEC 60870-5-103	External synchronization using port B (IEC 60870-5-103)		
3	Pulse via binary input	External synchronization with pulse via binary input		
4	Field bus (DNP, Modbus, VDEW Re- dundant)	External synchronization using field bus		
5	NTP (IEC 61850)	External synchronization using port B (IEC 61850)		

Group Switchover of the Function Parameters

Number of available setting groups	4 (parameter group A, B, C and D)
	the keypad on the device DIGSI using the operator interface protocol using port B binary input

IEC 61850 GOOSE (Inter-Relay Communication)

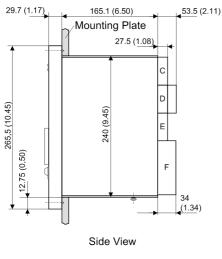
The GOOSE communication service of IEC 61850 is qualified for switchgear interlocking. Since the transmission time of GOOSE messages depends on both the number of IEC 61850 clients and the relay's pickup condition, GOOSE is not generally qualified for protection-relevant applications. The protective application is to be checked with regard to the required transmission time and cleared with the manufacturer.



4.21 Breaker Control

Number of Controlled Switching Devices	Depends on the number of binary inputs and outputs available
Interlocking	Freely programmable interlocking
Messages	Feedback messages; closed, open, intermediate position
Control Commands	Single command / double command
Switching Command to Circuit Breaker	1-, 1½ - and 2-pole
Programmable Logic Controller	PLC logic, graphic input tool
Local Control	Control via menu control assignment of function keys
Remote Control	Using Communication Interfaces Using a substation automation and control system (e.g. SICAM) Using DIGSI (e.g. via Modem)

4.22 Dimensions



4.22.1 Panel Flush and Cubicle Mounting (Housing Size 1/6)

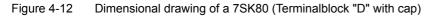

Dimensions in mm Values in Brackets in inches

Figure 4-11 Dimensional drawing of a 7SK80 for panel flush or cubicle mounting (housing size $\frac{1}{6}$)

Note: An angle strip set (contains upper and lower mounting brackets) (Order-No. C73165-A63-D200-1) is necessary to install the device in a rack. Using the Ethernet interface it might be necessary to rework the lower mounting bracket. Please consider enough space for the cabling of the communication modules at the bottom of the relay or below the relay.

Dimensions in mm Values in Brackets in inches

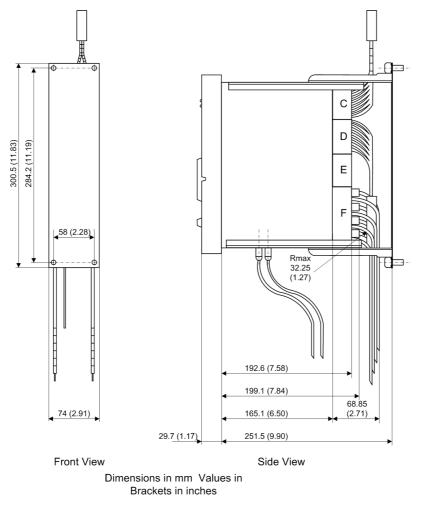
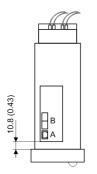



Figure 4-13 Dimensional drawing of a 7SK80 for panel surface mounting (housing size ¹/₆)

4.22.3 Bottom view

Bottom view

Figure 4-14 Bottom view of a 7SK80 (housing size ¹/₆)

