TELECOMMUNICATIONS AND TIMING GROUP

IRIG SERIAL TIME CODE FORMATS

WHITE SANDS MISSILE RANGE KWAJALEIN MISSILE RANGE YUMA PROVING GROUND
DUGWAY PROVING GROUND
ABERDEEN TEST CENTER
NATIONAL TRAINING CENTER
ATLANTIC FLEET WEAPONS TRAINING FACILITY NAVAL AIR WARFARE CENTER WEAPONS DIVISION
NAVAL AIR WARFARE CENTER AIRCRAFT DIVISION NAVAL UNDERSEA WARFARE CENTER DIVISION, NEWPORT

PACIFIC MISSILE RANGE FACILITY
NAVAL UNDERSEA WARFARE CENTER DIVISION, KEYPORT

30TH SPACE WING 45TH SPACE WING
AIR FORCE FLIGHT TEST CENTER
AIR FORCE DEVELOPMENT TEST CENTER
AIR WARFARE CENTER
ARNOLD ENGINEERING DEVELOPMENT CENTER GOLDWATER RANGE
UTAH TEST AND TRAINING RANGE

DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION IS UNLIMITED

IRIG SERIAL TIME CODE FORMATS

MAY 1998

Prepared by

TIMING COMMITTEE
TELECOMMUNICATIONS AND TIMING GROUP RANGE COMMANDERS COUNCIL

Published by

Secretariat
Range Commanders Council
U.S. Army White Sands Missile Range,

New Mexico 88002-5110
siemens-russia.com

PREFACE

This document was updated in February 1995. It defined the characteristics of the serial time code formats A, B, D, E, G, and H. The task of revising this standard was assigned to the Telecommunications and Timing Group of the Range Commanders Council. This 1998 edition of the document incorporates Manchester modulation for codes so designated. This standard should be adhered to by all U.S. Government ranges and facilities where serial time codes are generated for correlation of data with time.

TABLE OF CONTENTS

Page
PREFACE iii
LIST OF FIGURES vi
LIST OF TABLES vi
ABBREVIATIONS AND TERMS vii
DEFINITIONS viii
GLOSSARY OF SELECTED TIME TERMS x
INTRODUCTION 1
1.0 General Description of Standard 3
2.0 General Description of Formats 3
2.1 Pulse Rise Time 3
2.2 Jitter 3
2.3 Bit Rates and Index Count 3
2.4 Time Frame, Time Frame Reference, and Time Frame Rates 4
2.5 Position Identifiers 4
2.6 Time Code Words 5
2.7 BCD Time-of-Year Code Word 5
2.8 Control Functions 6
2.9 Index Markers 6
2.10 Amplitude Modulated Carrier 6
3.0 Detail Description of Formats 9
4.0 General Description of Time Codes 15
4.1 Time Code Format A 15
4.2 Time Code Format B 15
4.3 Time Code Format D 16
4.4 Time Code Format E 16
4.5 Time Code Format G 16
4.6 Time Code Format H 17
5.0 Detailed Description of Time Codes 17
5.1 Format A, Signal A000 17
5.2 Format B, Signal B000 19
5.3 Format D, Signal D001 24
5.4 Format E, Signal E001 27
5.5 Format G, Signal G001 30
5.6 Format H, Signal H001 33

APPENDIXES

A Leap Year/Leap Second Convention A-1
B BCD Count/Binary Count B-1
C Time Code Generator Hardware Design Considerations C-1
LIST OF FIGURES

1. Typical modulated carrier signal 7
2. IRIG-B coding comparisons: level shift, 1 kHz am, and Modified Manchester 13
3. Modified Manchester Coding 14
4. Format A: BCD time-of-year in days, hours, minutes, seconds, and fractions of seconds; straight binary seconds-of-day plus optional control bits 18
5. Format B: BCD time-of-year in days, hours, minutes, and seconds; straight binary seconds-of-day plus optional control bits 21
6. Format D: BCD time-of-year in days and hours plus optional control Bits 25
7. Format E: BCD time-of-year in days, hours, minutes, and seconds plus optional control bits 28
8. Format G: BCD time-of-year in days, hours, minutes, seconds and fractions of seconds plus optional control bits 31
9. Format H: BCD time-of-year in days, hours and minutes plus optional control bits 34
LIST OF TABLES
10. Typical modulated carrier signal. 8
11. Format A: Signal A000 20
12. Format B: Signal B000 23
13. Format D: Signal D001 26
14. Format E: Signal E001 29
15. Format G: Signal G001 32
16. Format H: Signal H001 35

ABBREVIATIONS AND TERMS

ABBREVIATION
CF
Hz
kHz
fph
fpm
fps
pph
ppm
pps
y
mo
d
h
m
s
ms
1 s
ns
DoY
DoM
HoD
MoH
SoD
MoD
MioD
BCD
SBS

SB

LSB
MSB

TERM
Control Function
an abbreviation for Hertz (cycles per second)
kilohertz (1000 Hz)
frames per hour
frames per minute frames per second
pulses per hour pulses per minute pulses per second
year
month
day
hour
minute
second
millisecond ($10{ }^{3} \mathrm{~s}$)
microsecond ($10^{-6} \mathrm{~s}$)
nanosecond ($10^{-9} \mathrm{~s}$)
day-of-year
day-of-month
hour-of-day
minutes-of-hour
seconds-of-day (86.4×10^{3})
milliseconds-of-day (86.4×10^{6})
microseconds-of-day $\left(86.4 \times 10^{9}\right)$
binary coded decimal
straight binary second(s)
straight binary
least significant bit
most significant bit

DEFINITIONS

The following terms are defined as they are used in this document.

ACCURACY -- Systematic uncertainty (deviation) of a measured value with respect to a standard reference.

BINARY CODED DECIMAL (BCD) -- A numbering system which uses decimal digits encoded in a binary representation (1 n 2 n 4 n 8 n) where $\mathrm{n}=1,10,100,1 \mathrm{k}, 10 \mathrm{k} \ldots \mathrm{N}$ (see appendix B).

BINARY NUMBERING SYSTEM (Straight Binary) -- A numbering system which has two as its base and uses two symbols, usually denoted by 0 and 1 (see appendix B).

BIT -- An abbreviation of binary or binary-coded decimal digits which forms each subword and which determines the granularity or resolution of the time code word.

FRAME RATE -- The repetition rate of the time code.
INDEX COUNT -- The number which identifies a specific bit position with respect to a reference marker.

INDEX MARKERS -- Uncoded, periodic, interpolating bits in the time code.
INSTRUMENTATION TIMING -- A parameter serving as the fundamental variable in terms of which data may be correlated.

LEAP SECOND -- See appendix A.
LEAP YEAR -- See appendix A.
ON-TIME -- The state of any bit being coincident with a Standard Time Reference (U.S. Naval Observatory or National Bureau of Standards or other national laboratory).

ON-TIME REFERENCE MARKER -- The leading edge of the reference bit P_{r} of each time frame.

POSITION IDENTIFIER -- A particular bit denoting the position of a portion or all of a time code.

PRECISION -- An agreement of measurement with respect to a defined value.

DEFINITIONS (CONT'D)

REFERENCE MARKER -- A periodic combination of bits which establishes that instant of time defined by the time code word.

RESOLUTION (of a time code) -- The smallest increment of time or least significant bit which can be defined by a time code word or subword.

SECOND -- Basic unit of time or time interval in the International System of Units (SI) which is equal to 9192631770 periods of radiation corresponding to the transition between the two hyperfine levels of the ground state of Cesium 133.

SUBWORD -- A subdivision of the time code word containing only one type of time unit, for example, days, hours, seconds or milliseconds.

TIME -- Signifies epoch, that is, the designation of an instant of time on a selected time scale such as astronomical, atomic or UTC.

TIME CODE -- A system of symbols used for identifying specific instants of time.
TIME CODE WORD -- A specific set of time code symbols which identifies one instant of time. A time code word may be subdivided into subwords.

TIME FRAME -- The time interval between consecutive reference markers that contains all the bits that determine the time code format.

TIME INTERVAL -- The duration between two instants read on the same time scale, usually expressed in seconds or in a multiple or submultiple of a second.

TIME REFERENCE -- The basic repetition rate chosen as the common time reference for all instrumentation timing (usually 1 pps).

TIME T_{0}-- The initial time $0^{\mathrm{h}} 0^{\mathrm{m}} 0^{\mathrm{s}}$ January 1 or the beginning of an epoch.

GLOSSARY OF SELECTED TIME TERMS

These definitions of time-related terms are useful in understanding the text of the standard and the relationship between the various time scales.

COORDINATED UNIVERSAL TIME (UTC) -- is maintained by the Bureau International de l'Heure (BIH) which forms the basis of a coordinated dissemination of standard frequencies and time signals. A UTC clock has the same rate as a TAI clock, but differs by an integral number of seconds. The step-time adjustments are called "leap seconds." Leap seconds are subtracted or added to UTC to keep in synchronism with UT1 to within ± 0.9 seconds (see appendix A).

DUT1 -- is the predicted difference between UT1 and UTC and is given by DUT1 = UT1-UTC.
EPHEMERIS TIME (ET) -- is obtained from observations of the motion of the moon about the earth.

EPOCH -- signifies the beginning of an event.
INTERNATIONAL ATOMIC TIME (TAI) -- is atomic time scale based on data from a worldwide set of clocks and is the internationally agreed to time reference. The TAI is maintained by the BIH, Paris, France. Its epoch was set such that TAI was in approximate agreement with UT1 on 1 January 1958.

INTERNATIONAL ATOMIC TIME (TAI) TIME CODE -- represents a binary count of elapsed time in seconds since the 1 January 1958 epoch. The Bureau International de l'Heure (BIH), the U.S. Naval Observatory (USNO), and other national observatories and laboratories maintain this count which accumulates at 86,400 seconds per day.

SIDEREAL TIME -- is determined and defined by observations of the earth with respect to the stars. A mean sidereal day is approxi-mately $23^{\mathrm{h}} 56^{\mathrm{m}} 4.09^{\mathrm{s}}$. A solar year contains 366.24 sidereal days.

SOLAR TIME -- is based on the rotation of the earth about the sun.
TIME SCALE -- is a reference system for specifying occurrences with respect to time.

GLOSSARY OF SELECTED TIME TERMS (CONT'D)

UNIVERSAL TIME (UT) -- is the mean solar time of the prime meridian plus 12^{h}, determined by measuring the angular position of the earth about its axis. The UT is sometimes designated GMT, but this designation should be avoided. The official U.S. Naval Observatory designation is "Z" or Zulu for UT.

UT0 -- measures UT with respect to the observer's meridian (position on earth) which varies because of the conical motion of the poles.

UT1 -- is UT0 corrected for variations in the polar motion and is proportional to the rotation of the earth in space. In its monthly bulletin, Circular-D, the Bureau International de l'Heure (BIH) publishes the current values of UT1 with respect to International Atomic Time (TAI).

UT2 -- is UT1 corrected empirically for annual and semiannual variations of the rotation rate of the earth. The maximum correction is about 30 ms .

INTRODUCTION

Modern day electronic systems such as communication systems, data handling systems, missile and spacecraft tracking, and telemetry systems require time-of-day information for data correlation with time. Parallel and serial formatted time codes are used to efficiently interface the timing system (time-of-day source) to the user system. Parallel time codes are defined in IRIG Standard 205-87. Standardization of time codes is necessary to ensure system compatibility among the various ranges, ground tracking networks, spacecraft and missile projects, data reduction and processing facilities, and international cooperative projects.

This standard defines the characteristics of six serial time codes presently used by U.S. Government agencies and private industry. Four new combinations have been added to the list of standard formats: A002, A132, B002, and B122. Moreover, this standard reflects the state of the art and is not intended to constrain proposals for new serial time codes with greater resolution.

1.0 GENERAL DESCRIPTION OF STANDARD

This standard consists of a family of rate-scaled serial time codes with formats containing up to three-coded expressions or words. The first word of the time-code frame is time-of-year in binary coded decimal (BCD) notation in days, hours, minutes, seconds, and fractions of seconds depending on the code-frame rate. The second word is a set of bits reserved for encoding of various control, identification, and other special purpose functions. The third word is seconds-of-day weighted in straight binary seconds (SBS) notation.

Manufacturers of time code generating equipment today do not include the seconds-of-day code or the control bits in their design of IRIG serial time code generators. Fill bits of all 0s are added to achieve the desired frame length and code repetition rate. If the user desires the SBS code or control bits, it must be specified (see section 3 for standard code formats).

2.0 GENERAL DESCRIPTION OF FORMATS

An overview of the formats is described in the following subparagraphs.

2.1 Pulse Rise Time

The specified pulse (dc level shift bit) rise time shall be obtained between the 10 and 90 percent amplitude points (see appendix C).

2.2 Jitter

The modulated code is defined as ≤ 1 percent at the carrier frequency. The dc level shift code is defined as the pulse-to-pulse variation at the 50 percent amplitude points on the leading edges of successive pulses or bits (see appendix C).

2.3 Bit Rates and Index Count

Each pulse in a time code word/subword is called a bit. The "on-time" reference point for all bits is the leading edge of the bit. The repetition rate at which the bits occur is called the bit rate. Each bit has an associated numerical index count identification. The time interval between the leading edge of two consecutive bits is the index count interval. The index count begins at the frame reference point with index count 0 and increases one count each index count until the time frame is complete.

The bit rates and index count intervals of the time code formats are

Format	Bit Rate	Index Count Interval
A	1 kpps	1 millisecond
B	100 pps	10 milliseconds
D	1 ppm	1 minute
E	10 pps	0.1 second
G	10 kpps	0.1 millisecond
H	1 pps	1 second

2.4 Time Frame, Time Frame Reference, and Time Frame Rates

A time code frame begins with a frame reference marker P_{0} (position identifier) followed by a reference bit P_{r} with each having a duration equal to 0.8 of the index count interval of the respective code. The on-time reference point of a time frame is the leading edge of the reference bit P_{r}. The repetition rate at which the time frames occur is called the time frame rate.

The time frame rates and time frame intervals of the formats are

Format	Time Frame Rate	Time Frame Interval
A	10 fps	0.1 second
B	1 fps	1 second
D	1 fph	1 hour
E	6 fpm	10 seconds
G	100 fps	10 ms
H	1 fpm	1 minute

2.5 Position Identifiers

Position identifiers have a duration equal to 0.8 of the index count interval of the respective code. The leading edge of the position identifier P_{0} occurs one index count interval before the frame reference point P_{r} and the succeeding position identifiers ($\mathrm{P}_{2}, \mathrm{P}_{2} \ldots \mathrm{P}_{0}$) occur every succeeding tenth bit. The repetition rate at which the position identifiers occur is always 0.1 of the time format bit rate.

2.6 Time Code Words

The two time code words employed in this standard are
BCD time-of-year
SBS time-of-day (seconds-of-day)
All time code formats are pulse-width coded. A binary (1) bit has a duration equal to 0.5 of the index count interval, and a binary (0) bit has a duration equal to 0.2 of the index count interval. The BCD time-of-year code reads 0 hours, minutes, seconds, and fraction of seconds at 2400 each day and reads day 001 at 2400 of day 365 or day 366 (leap year). The SBS time-of-day code reads 0 seconds at 2400 each day excluding leap second days when a second may be added or subtracted. Coordinated Universal Time (UTC) is generated for all interrange applications.

2.7 BCD Time-of-Year Code Word

The BCD time-of-year code word consists of subwords in days, hours, minutes, seconds, and fractions of a second encoded in a binary representation (1 n 2 n 4 n 8 n) where $\mathrm{n}=1,10,100,1$ k...N. Time code digit values less than N are considered zero and are encoded as a binary 0 .

The position identifiers preceding the decimal digits and the index count locations of the decimal digits (if present) are

BCD Code Decimal Digits	Decimal Digits Follow Position Identifier	Digits Occupy Index Count Positions
Units of Seconds	P_{0}	$1-4$
Tens of Seconds	P_{1}	$6-8$
Units of Minutes	P_{2}	$10-13$
Tens of Minutes	P_{2}	$15-17$
Units of Hours	P_{4}	$20-23$
Tens of Hours	P_{5}	$35-26$
Units of Days	$35-33$	
Tens of Days		$40-41$
Hundreds of Days	$45-48$	
Tenths of Seconds	Hundredths of	Seconds

Format A and B include an optional straight binary seconds-of-day (SBS) time code word in addition to the BCD time-of-year time code word. The SBS word follows position identifier P_{8} beginning with the least significant binary bit $\left(2^{0}\right)$ at index count 80 and progressing to the most significant binary bit $\left(2^{16}\right)$ at index count 97 with a position identifier P_{9} occurring between the ninth $\left(2^{8}\right)$ and tenth $\left(2^{9}\right)$ binary bits.

2.8 Control Functions

All time code formats reserve a set of bits known as control functions (CF) for the encoding of various control, identification, or other special purpose functions. The control bits may be programmed in any predetermined coding system. A binary 1 bit has a duration equal to 0.5 of the index count interval, and a binary (0) has a duration equal to 0.2 of the index count interval. Control function bits follow position identifier P_{5} or P_{6} beginning at index count 50 or 60 with one control function bit per index count, excepting each tenth bit which is a position identifier. The number of available control bits in each time code format are

Format	Control Functions
A	27
B	27
D	9
E	45
G	36
H	9

Control functions are presently intended for intrarange use but not for interrange applications; therefore, no standard coding system exists. The inclusion of control functions into a time code format as well as the coding system employed is an individual user defined option.

2.9 Index Markers

Index markers occur at all index count positions which are not assigned as a reference marker, position identifier, code, or control function bit. Index marker bits have a duration equal to 0.2 of the index count interval of the respective time code format.

2.10 Amplitude Modulated Carrier

A standard sine wave carrier frequency to be amplitude modulated by a time code is synchronized to have positive-going, zero-axis crossings coincident with the leading edges of the modulating code bits. A mark-to-space ratio of $10: 3$ is standard with a range of $3: 1$ to $6: 1$ (see figure 1 and table 1, Typical Modulated Carrier Signals).

Figure 1. Typical modulated carrier signal.

TABLE 1. TYPICAL MODULATED CARRIER SIGNAL

					MARK INTERVAL NUMBER OF CYCLES			
FORMAT	$\begin{aligned} & \text { SIGNAL } \\ & \text { NO. } \end{aligned}$	TIME FRAME RATE	CARRIER FREQUENCY F	SIGNAL BIT RATE ER	RATIO F/ER	$\begin{gathered} \text { CODE "0" } \\ \& \\ \text { INDEX } \end{gathered}$	CODE "1"	$\begin{aligned} & \text { POSITION } \\ & \text { IDENTIFIER } \\ & \text { \& REF. } \end{aligned}$
A	$\begin{gathered} \mathrm{A} 130,132 \\ 133 \end{gathered}$	10 per sec.	10 kHz	1 kpps	10:1	2	5	8
B	$\begin{gathered} \text { B120,122 } \\ 123 \end{gathered}$	1 per sec.	1 kHz	100 pps	10:1	2	5	8
D	$\begin{gathered} \mathrm{D} 111,112 \\ 121,122 \end{gathered}$	1 per hr.	$\begin{aligned} & 100 \mathrm{~Hz} \\ & 1 \mathrm{kHz} \end{aligned}$	1 ppm 1 ppm	$\begin{array}{r} 6000: 1 \\ 60000: 1 \end{array}$	$\begin{array}{r} 1200 \\ 12000 \end{array}$	$\begin{array}{r} 3000 \\ 30000 \end{array}$	$\begin{gathered} 4800 \\ 48000 \end{gathered}$
E	$\begin{array}{r} \mathrm{E} 111,112 \\ 121,122 \end{array}$	6 per min.	$\begin{gathered} 100 \mathrm{~Hz} \\ 1 \mathrm{kHz} \end{gathered}$	$\begin{aligned} & 10 \mathrm{pps} \\ & 10 \mathrm{pps} \end{aligned}$	$\begin{array}{r} 10: 1 \\ 100: 1 \end{array}$	$\begin{array}{r} 2 \\ 20 \end{array}$	$\begin{array}{r} 5 \\ 50 \end{array}$	$\begin{array}{r} 8 \\ 80 \end{array}$
G	G141,142	100 per sec.	100 kHz	10 kpps	10:1	2	5	8
H	$\begin{array}{r} \mathrm{H} 111,112 \\ 121122 \end{array}$	1 per min.	$\begin{aligned} & 100 \mathrm{~Hz} \\ & 1 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 1 \mathrm{pps} \\ & 1 \mathrm{pps} \\ & \hline \end{aligned}$	$\begin{array}{r} 100: 1 \\ 1000: 1 \end{array}$	$\begin{array}{r} 20 \\ 200 \end{array}$	$\begin{array}{r} 50 \\ 500 \end{array}$	$\begin{array}{r} 80 \\ 800 \end{array}$

3.0 DETAILED DESCRIPTION OF FORMATS

The family of rate scaled serial time code formats is alphabetically designated $\mathrm{A}, \mathrm{B}, \mathrm{D}, \mathrm{E}$, G, and H. Various combinations of subwords and signal forms make up a time code word. All formats do not contain each standard coded expression, and various signal forms are possible. To differentiate between these forms, signal identification numbers are assigned to each permissible combination according to the following procedure.

Format:

The resolution of a time code is that of the smallest increment of time or the least significant bit which can be defined by a time code word or subword. The accuracy of a modified, Manchester time code can be determined by the risetime of the on-time pulse in the Manchester code which marks the beginning of the on-time one-pulse-per-second as shown in Figure 1. The accuracy can be milliseconds to nanoseconds or better depending on equipment and measurement
technique. For the case of the unmodulated Manchester codes, the Position Marker, PO, which marks the beginning of the second can be used.

The following chart shows the permissible code formats. Codes D, E and H remain unchanged. Codes A, B and G have changed to permit 1 MHz and Manchester modulation as indicated in the chart shown below. No other combinations are standard.

FORMAT	MODULATION FREQUENCY	FREQUENCY/ RESOLUTION	CODED EXPRESSIONS
A	$0,1,2$	$0,3,4,5$	$0,1,2,3$
B	$0,1,2$	$0,2,3,4,5$	$0,1,2,3$
D	0,1	$0,1,2$	1,2
E	0,1	$0,1,2$	1,2
G	$0,1,2$	$0,4,5$	1,2
H	0,1	$0,1,2$	1,2

EXAMPLES:

Signal A 1300 : Format A, amplitude modulated, 10 kHz carrier $/ 0.1 \mathrm{~ms}$ resolution, containing BCD, CF and SBS code expressions.

Signal A 243 : Format A, Manchester modulated, 100 kHz carrier $/ 10 \mathrm{~ms}$ resolution, containing BCD and SBS code expressions.

Signal B $0<0 \quad 3$: Format B, pulse-width coded, dc level shift/ 10 ms resolution, containing BCD and SBS code expressions

Signal H $1 \begin{array}{lll}2 & 2 & \text { : Format H, amplitude modulated, } 1 \mathrm{kHz} \text { carrier } / 1 \mathrm{~ms} \text { resolution, }\end{array}$ containing BCD code expression.

The Telecommunications and Timing Group (TTG) of the Range Commanders Council (RCC) has adopted a Modified Manchester modulation technique as an option for the IRIG serial time codes A, B, and G as an addition to the standard AM modulation and level shift modulation now permitted.

It should be noted that at present, the assignment of control bits (control functions) to specific functions in the IRIG serial time codes is left to the end-user of the time codes. However, since none of the IRIG codes have a "year" designation in their formats, ("day-of-year" but not "year"),
the TTG is looking at the possibility of adding "year" to specific codes such as IRIG-A to accommodate the "year 2000" rollover. As an example, for IRIG-A, selected control bits between P50 and P80 would be assigned for the "year" designation. Codes being considered are IRIG A, B, E, and G.

MANCHESTER II CODING

Standard Manchester modulation or encoding is a return-to-zero type, where a rising edge in the middle of the clock window indicates a binary one (1) and a falling edge indicates a binary zero (0). This modification to the Manchester code shifts the data window so the data are at the edge of the clock window which is on-time with the one-pulse-per-second clock Universal Time Coordinated (UTC). Thus, the data edge is the on-time mark in the code. This code is easy to generate digitally, easy to modulate onto fiber or coaxial cable, simple to decode, and has a zero mean, thus it is easy to detect even at low levels.

Figures 2 and 3 show the basic Modified Manchester modulation, compared with the AM and level shift modulations. The Manchester encoding uses a square-wave as the encoding (data) clock, with the rising edge on-time with UTC. The frequency of the encoding clock shall be ten times the index rate of the time code generated. Example: The clock rate for IRIG B230 will be 10 kHz .

This modulation technique has several advantages: no dc component, can be ac coupled, better signal-to-noise ratio, good spectral power density, easily decoded, and has better timing resolution. Also, the link integrity monitoring capability is intrinsic to bipolar pulse modulation. The Modified Manchester coding technique is designed to operate over fiber-optic or coaxial lines for short distances.

MANCHESTER II DECODING

A Manchester II encoded sequence is shown below, where each symbol is "subbit" encoded, i.e., a data one equals a zero-one, and a data zero equals a one-zero:

A Manchester II Encoded Sequence

The above encoded sequence is formed by modulo-2 adding the NRZ-L sequence with the clock. The truth table is shown below for a modulo-2 adder, i.e., an Exclusive-Or (XOR):

INPUT A	INPUT B	OUTPUT
0	0	0
0	1	1
1	0	1
1	1	0

To decode the encoded sequence, it is only necessary to modulo-2 add the clock with the encoded sequence and the original NRZ-L sequence results. It should be noted that the bit determination is made after integrating across a bit period. In this way, the maximum amount of bit energy is used in the determination of each bit. Likewise, one could have integrated or sampled both halves of the encoded sequence, and reconstructed the original NRZ-L sequence by applying the encoding rule; that is, if sampled halves are $0-1$, then a data 1 is reconstructed, or if the sampled halves are $1-0$, then a data 0 is reconstructed. Once again, as much energy as possible is used from the encoded sequence to reconstruct the original NRZ-L sequence. This procedure minimizes the probability of error.

NOTE: When the above procedure is used, the reconstructed data are coherent with the clock; that is, the NRZ-L data transitions will agree with the positive going edge of the clock. However, since the decisions are made at the end of the symbol period, the reconstructed NRZ-L data are delayed one clock period which means that when the entire time is received, the received time code or local clock needs to be advanced by one clock period. Also, if desired, one can correct the receive clock for significant signal propagation delays.

Figure 2. IRIG-B coding comparisons: level shift, 1 kHz am, and Modified Manchester.

Figure 3. Modified Manchester Coding.

4.0 GENERAL DESCRIPTION OF TIME CODES

A general description of individual time code formats is described in the following subparagraphs.

4.1 Time Code Format A

4.1.1 The 78-bit time code contains 34 bits of binary coded decimal (BCD) time-of-year information in days, hours, minutes, seconds, and tenths of seconds; 17 bits of straight binary seconds-of-day (SBS) and 27 bits for control functions.
4.1.2 The BCD code (seconds subword) begins at index count 1 (LSB first) with binary coded bits occurring between position identifiers P_{0} and $\mathrm{P}_{5}: 7$ for seconds, 7 for minutes, 6 for hours, 10 for days, and 4 for tenths of seconds to complete the BCD word. An index marker occurs between the decimal digits in each subword, except for the tenths of seconds, to provide separation for visual resolution. The BCD time code word recycles yearly.
4.1.3 The SBS word begins at index count 80 and is between position identifiers P_{8} and P_{0} with a position identifier bit $\left(\mathrm{P}_{9}\right)$ between the 9 th and 10th binary SBS coded bits. The SBS time code recycles each 24-hour period.
4.1.4 The control bits occur between position identifiers P_{5} and P_{8} with a position identifier occurring every 10 bits.
4.1.5 The frame rate or repetition rate is 0.1 second with resolutions of 1 ms (dc level shift) and 0.1 ms (modulated 10 kHz carrier).

4.2 Time Code Format B

4.2.1 The 74-bit time code contains 30 bits of BCD time-of-year information in days, hours, minutes, and seconds; 17 bits of SB seconds-of-day; and 27 bits for control functions.
4.2.2 The BCD code (seconds subword) begins at index count 1 (LSB first) with binary coded bits occurring between position identifier bits P_{0} and $P_{5}: 7$ for seconds, 7 for minutes, 6 for hours, and 10 for days, to complete the BCD word. An index marker occurs between the decimal digits in each subword to provide separation for visual resolution. The BCD time code recycles yearly.
4.2.3 The SBS word begins at index count 80 and is between position identifiers P_{8} and P_{0} with a position identifier bit $\left(\mathrm{P}_{9}\right)$ between the 9 th and 10th binary SBS coded bits. The SBS time code recycles each 24 hour period.
4.2.4 The control bits occur between position identifiers P_{5} and P_{8}, with a position identifier every 10 bits.
4.2.5 The frame rate is 1.0 second with resolutions of 10 ms (dc level shift) and 1 ms (modulated 1 kHz carrier).

4.3 Time Code Format D

4.3.1 The 25-bit time code contains 16 bits of BCD time-of-year information in days, hours, and minutes, and 9 bits for control functions.
4.3.2 The BCD code (hours subword) begins at index count 20
(LSB first) with binary coded bits occurring between position identifier bits P_{2} and P_{5} : 6 for hours and 10 for days to complete the BCD word. An index marker occurs between the decimal digits in each subword for visual resolution. The time code recycles yearly.
4.3.3 The control bits occur between position identifiers P_{5} and P_{0}.
4.3.4 The frame rate is one hour with resolutions of 1 minute (dc level shift), 10 ms (modulated 100 Hz carrier) and 1 ms (modulated 1 kHz carrier).

4.4 Time Code Format E

4.4.1 The 71-bit time code contains 26 bits of BCD time-of-year information in days, hours, minutes, and seconds, and 45 bits for control functions.
4.4.2 The BCD code (seconds subword) begins at index count 6 (LSB first). Binary coded bits occur between position identifier bits P_{0} and $\mathrm{P}_{5}: 3$ for tens of seconds, 7 for minutes, 6 for hours, and 10 for days to complete the BCD word. An index marker occurs between the decimal digits in each subword to provide for visual resolution. The time code recycles yearly.
4.4.3 The control bits occur between position identifiers P_{5} and P_{0}.
4.4.4 The frame rate is 10 seconds with resolutions of 0.1 second (dc level), 10 ms (modulated 100 Hz carrier) and 1 ms (modulated 1 kHz carrier). The time code recycles yearly.

4.5 Time Code Format G

4.5.1 The 74-bit time code contains 38 bits of BCD time-of-year information in days, hours, minutes, seconds, and fractions of seconds, and 36 bits for control functions.
4.5.2 The BCD code (seconds subword) begins at index count 1 (LSB first). Binary coded bits occur between position identifier bits P_{0} and P_{6} : 7 for seconds, 7 for minutes, 6 for hours, 10 for days, 4 for tenths of seconds, and 4 for hundredths of seconds to complete the BCD word. An index marker occurs between the decimal digits in each subword (except fractional seconds) to provide for resolution. The time code recycles yearly.
4.5.3 The control bits occur between position identifiers P_{6} and P_{0}.
4.5.4 The frame rate is 10 ms with resolutions of 0.1 ms (dc level shift) and $10 \mu \mathrm{~s}$ (modulated 100 kHz carrier). The time code recycles yearly.

4.6 Time Code Format H

4.6.1 The 32-bit time code word contains 23 bits of BCD time-of-year information in days, hours, and minutes and 9 bits for control functions.
4.6.2 The BCD code (minutes subword) begins at index count 10 (LSB first) with binary coded bits occurring between position identifier bits P_{1} and P_{5} : 7 for minutes, 6 for hours, and 10 for days to complete the BCD word. An index marker occurs between decimal digits in each subword to provide separation for visual resolution. The time code recycles yearly.
4.6.3 The control bits occur between position identifiers P_{5} and P_{0}.
4.6.4 The frame rate is 1 minute with resolutions of 1 second (dc level shift), 10 ms (modulated 100 Hz carrier) and 1 ms (modulated 1 kHz carrier).

5.0 DETAILED DESCRIPTION OF TIME CODES

A detailed description of individual time code formats is described in the following paragraphs.

5.1 Format A, Signal A000

5.1.1 The beginning of each 0.1 second time frame is identified by two consecutive 0.8 ms bits, P_{0} and P_{r}. The leading edge of P_{r} is the on-time reference point for the succeeding time code words. Position identifiers, P_{0} and P_{1} through P_{9}, (0.8 ms duration) occur every 10th bit and 1 ms before the leading edge of each succeeding 100 pps "on-time" bit (see figure 4).
5.1.2 The two time code words and the control functions presented during the time frame are pulse width coded. The binary zero and index markers have a duration of 0.2 ms , and the binary one has a duration of 0.5 ms . The 1 k pps leading edge is the on-time reference point for all bits.

Figure 4. Format A: BCD time-of-year in days, hours, minutes, seconds, and fractions of seconds; straight binary seconds-of-day plus optional control bits.
5.1.3 The binary coded decimal (BCD) time-of-year code word consists of 34 bits beginning at index count one. The binary coded subword bits occur between position identifiers P_{0} and $P_{5}: 7$ for seconds, 7 for minutes, 6 for hours, 10 for days, and 4 for tenths of seconds to complete the time code word. An index marker occurs between the decimal digits in each subword, except tenths of seconds, to provide separation for visual resolution. The LSB occurs first except for the fractional seconds subword which follows the day-of-year subword. The BCD code recycles yearly. Each BCD bit position is identified on the time-of-year chart shown in table 2.
5.1.4 Twenty-seven control bits occur between position identifiers P_{5} and P_{8}. Any control function bit or combination of bits can be programmed to read a binary one or a binary zero during any specified number of time frames. Each control bit position is identified as shown in table 2.
5.1.5 The straight binary (SB) seconds-of-day code word occurs at index count 80 between position identifiers P_{8} and P_{0}. Seventeen bits give time-of-day in seconds with the LSB occurring first. A position identifier occurs between the 9th and 10th binary coded bits. The code recycles each 24 -hour period. Each bit position is identified in table 2.
5.1.6

Pulse Rates	Pulse Duration
Bit rate: 1 k pps	Index marker: 0.2 ms
Position identifier rate: 100 pps	Binary zero or uncoded bit: 0.2 ms
Reference marker: 10 pps	Binary one or coded bit: 0.5 ms
	Position identifiers: 0.8 ms Reference bit: 0.8 ms

Resolution	Mark-To-Space Ratio
1 ms dc level	Nominal value of $10: 3$
0.1 ms modulated 10 kHz carrier	Range of $3: 1$ to $6: 1$

5.2 Format B, Signal B000

5.2.1 The beginning of each 1.0 second time frame is identified by two consecutive 8.0 ms bits, P_{0} and P_{r}. The leading edge of P_{r} is the on-time reference point for the succeeding time code words. Position identifiers, P_{0} and P_{1} through P_{9}, (8 ms duration) occur every 10th bit and 10 ms before the leading edge of each succeeding 10 pps "on-time" bit (see figure 5).

BCD TIME-OF-YEAR CODE (34 DIGITS)

SECONDS SUBWORD			MINUTES SUBWORD			HOURS SUBWORD			DAYS AND FRACTIONAL SECOND SUBWORDS					
BCD Code Digit No.	$\begin{gathered} \text { Subword } \\ \text { Digit Wt } \\ \text { SECONDS } \\ \hline \end{gathered}$	BIT Time (Note 1)	BCD Code Digit No.	Subword Digit Wt MINUTES	BIT Time	BCD Code Digit No.	Subword Digit Wt HOURS	BIT Time	BCD Code Digit No.	Subword Digit Wt DAYS	BIT Time	BCD Code Digit No.	Subword Digit Wt DAYS	BIT Time
Reference BIT		Pr_{r}	8	1	$\mathrm{Pr}+10 \mathrm{~ms}$	15	1	$\mathrm{P}_{\mathrm{r}}+20 \mathrm{~ms}$	21	1	$\mathrm{P}_{\mathrm{r}}+30 \mathrm{~ms}$	29	100	$\mathrm{P}_{\mathrm{r}}+40 \mathrm{~ms}$
1	1	$\mathrm{Pr}_{\mathrm{r}}+1 \mathrm{~ms}$	9	2	$\mathrm{Pr}_{\mathrm{r}}+11 \mathrm{~ms}$	16	2	$\mathrm{Pr}+21 \mathrm{~ms}$	22	2	$\mathrm{Pr}_{\mathrm{r}}+31 \mathrm{~ms}$	30	200	$\mathrm{Pr}_{\mathrm{r}}+41 \mathrm{~ms}$
2	2	$\mathrm{P}_{\mathrm{r}}+2 \mathrm{~ms}$	10	4	$\mathrm{Pr}_{\mathrm{r}}+12 \mathrm{~ms}$	17	4	$\mathrm{P}_{\mathrm{r}}+22 \mathrm{~ms}$	23	4	$\mathrm{P}_{\mathrm{r}}+32 \mathrm{~ms}$	Inde	BIT	$\mathrm{P}_{\mathrm{r}}+42 \mathrm{~ms}$
3	4	$\mathrm{P}_{\mathrm{r}}+3 \mathrm{~ms}$	11	8	$\mathrm{Pr}_{\mathrm{r}}+13 \mathrm{~ms}$	18	8	$\mathrm{P}_{\mathrm{r}}+23 \mathrm{~ms}$	24	8	$\mathrm{P}_{\mathrm{r}}+33 \mathrm{~ms}$	Inde	BIT	$\mathrm{P}_{\mathrm{r}}+43 \mathrm{~ms}$
4	8	$\mathrm{P}_{\mathrm{r}}+4 \mathrm{~ms}$	Index BIT		$\mathrm{Pr}_{\mathrm{r}}+14 \mathrm{~ms}$	Index BIT		$\mathrm{P}_{\mathrm{r}}+24 \mathrm{~ms}$	Index BIT		$\mathrm{P}_{\mathrm{r}}+34 \mathrm{~ms}$	Index BIT		$\mathrm{P}_{\mathrm{r}}+44 \mathrm{~ms}$
Index BIT		$\mathrm{P}_{\mathrm{r}}+5 \mathrm{~ms}$	12	10	$\mathrm{Pr}_{\mathrm{r}}+15 \mathrm{~ms}$	19	10	$\mathrm{P}_{\mathrm{r}}+25 \mathrm{~ms}$	25	10	$\mathrm{P}_{\mathrm{r}}+35 \mathrm{~ms}$	31	0.1	$\mathrm{P}_{\mathrm{r}}+45 \mathrm{~ms}$
5	10	$\mathrm{P}_{\mathrm{r}}+6 \mathrm{~ms}$	13	20	$\mathrm{Pr}_{\mathrm{r}}+16 \mathrm{~ms}$	20	20	$\mathrm{P}_{\mathrm{r}}+26 \mathrm{~ms}$	26	20	$\mathrm{P}_{\mathrm{r}}+36 \mathrm{~ms}$	32	0.2	$\mathrm{P}_{\mathrm{r}}+46 \mathrm{~ms}$
6	20	$\mathrm{P}_{\mathrm{r}}+7 \mathrm{~ms}$	14	40	$\mathrm{P}_{\mathrm{r}}+17 \mathrm{~ms}$	Index BIT		$\mathrm{P}_{\mathrm{r}}+27 \mathrm{~ms}$	27	40	$\mathrm{P}_{\mathrm{r}}+37 \mathrm{~ms}$	33	0.4	$\mathrm{P}_{\mathrm{r}}+47 \mathrm{~ms}$
7	40	$\mathrm{P}_{\mathrm{r}}+8 \mathrm{~ms}$	Index BIT		$\mathrm{Pr}_{\mathrm{r}}+18 \mathrm{~ms}$	Index BIT		$\mathrm{P}_{\mathrm{r}}+28 \mathrm{~ms}$	28	80	$\mathrm{P}_{\mathrm{r}}+38 \mathrm{~ms}$	34	0.8	$\mathrm{P}_{\mathrm{r}}+48 \mathrm{~ms}$
Position Ident. (P_{1})		$\mathrm{P}_{\mathrm{r}}+9 \mathrm{~ms}$	Position Ident. (P_{2})		$\mathrm{P}_{\mathrm{r}}+19 \mathrm{~ms}$	Position Ident. (P_{3})		$\mathrm{P}_{\mathrm{r}}+29 \mathrm{~ms}$	Position Ident. (P_{4})		$\mathrm{P}_{\mathrm{r}}+39 \mathrm{~ms}$	Position Ident. (P_{5})		$\mathrm{P}_{\mathrm{r}}+49 \mathrm{~ms}$

CONTROL FUNCTIONS (27 BITS)					
Control Function BIT	BIT Time	Control Function BIT	BIT Time	Control Function BIT	BIT Time
1	$\mathrm{P}_{\mathrm{r}}+50 \mathrm{~ms}$	10	$\mathrm{P}_{\mathrm{r}}+60 \mathrm{~ms}$	19	$\mathrm{P}_{\mathrm{r}}+70 \mathrm{~ms}$
2	$\mathrm{P}_{\mathrm{r}}+51 \mathrm{~ms}$	11	$\mathrm{P}_{\mathrm{r}}+61 \mathrm{~ms}$	20	$\mathrm{P}_{\mathrm{r}}+71 \mathrm{~ms}$
3	$\mathrm{P}_{\mathrm{r}}+52 \mathrm{~ms}$	12	$\mathrm{P}_{\mathrm{r}}+62 \mathrm{~ms}$	21	$\mathrm{P}_{\mathrm{r}}+72 \mathrm{~ms}$
4	$\mathrm{P}_{\mathrm{r}}+53 \mathrm{~ms}$	13	$\mathrm{P}_{\mathrm{r}}+63 \mathrm{~ms}$	22	$\mathrm{P}_{\mathrm{r}}+73 \mathrm{~ms}$
5	$\mathrm{P}_{\mathrm{r}}+54 \mathrm{~ms}$	14	$\mathrm{P}_{\mathrm{r}}+64 \mathrm{~ms}$	23	$\mathrm{P}_{\mathrm{r}}+74 \mathrm{~ms}$
6	$\mathrm{P}_{\mathrm{r}}+55 \mathrm{~ms}$	15	$\mathrm{P}_{\mathrm{r}}+65 \mathrm{~ms}$	24	$\mathrm{P}_{\mathrm{r}}+75 \mathrm{~ms}$
7	$\mathrm{P}_{\mathrm{r}}+56 \mathrm{~ms}$	16	$\mathrm{P}_{\mathrm{r}}+66 \mathrm{~ms}$	25	$\mathrm{P}_{\mathrm{r}}+76 \mathrm{~ms}$
8	$\mathrm{P}_{\mathrm{r}}+57 \mathrm{~ms}$	17	$\mathrm{P}_{\mathrm{r}}+67 \mathrm{~ms}$	26	$\mathrm{P}_{\mathrm{r}}+77 \mathrm{~ms}$
9	$\mathrm{P}_{\mathrm{r}}+58 \mathrm{~ms}$	18	$\mathrm{P}_{\mathrm{r}}+68 \mathrm{~ms}$	27	$\mathrm{P}_{\mathrm{r}}+78 \mathrm{~ms}$
Position Ident. (P6)	$\mathrm{P}_{\mathrm{r}}+59 \mathrm{~ms}$	Position Ident. ($\left.\mathrm{P}_{7}\right)$	$\mathrm{P}_{\mathrm{r}}+69 \mathrm{~ms}$	Position Ident. ($\left.\mathrm{P}_{8}\right)$	$\mathrm{P}_{\mathrm{r}}+79 \mathrm{~ms}$

	RAIGHT BIN	SECOND	E-OF-DA	ODE (17 D	
SB Code BIT	Subword Digit Weight	$\begin{gathered} \text { BIT } \\ \text { Time } \end{gathered}$	SB Code BIT	Subword Digit Weight	BIT Time
1	$2^{0}=(1)$	$\mathrm{P}_{\mathrm{r}}+80 \mathrm{~ms}$	10	$2^{9}=$ (512)	$\mathrm{Pr}_{\mathrm{r}}+90 \mathrm{~ms}$
2	$2^{1}=(2)$	$\mathrm{P}_{\mathrm{r}}+81 \mathrm{~ms}$	11	$2^{10}=(1024)$	$\mathrm{Pr}_{\mathrm{r}}+91 \mathrm{~ms}$
3	$2^{2}=(4)$	$\mathrm{P}_{\mathrm{r}}+82 \mathrm{~ms}$	12	$2^{11}=(2048)$	$\mathrm{P}_{\mathrm{r}}+92 \mathrm{~ms}$
4	$2^{3}=(8)$	$\mathrm{P}_{\mathrm{r}}+83 \mathrm{~ms}$	13	$2^{12}=(4096)$	$\mathrm{P}_{\mathrm{r}}+93 \mathrm{~ms}$
5	$2^{4}=(16)$	$\mathrm{P}_{\mathrm{r}}+84 \mathrm{~ms}$	14	$2^{13}=(8192)$	$\mathrm{P}_{\mathrm{r}}+94 \mathrm{~ms}$
6	$2^{5}=(32)$	$\mathrm{P}_{\mathrm{r}}+85 \mathrm{~ms}$	15	$2^{14}=(16384)$	$\mathrm{P}_{\mathrm{r}}+95 \mathrm{~ms}$
7	$2^{6}=(64)$	$\mathrm{Pr}_{\mathrm{r}}+86 \mathrm{~ms}$	16	$2^{15}=(32768)$	$\mathrm{Pr}_{\mathrm{r}}+96 \mathrm{~ms}$
8	$2^{7}=(128)$	$\mathrm{Pr}_{\mathrm{r}}+87 \mathrm{~ms}$	17	$2^{16}=(65536)$	$\mathrm{Pr}+97 \mathrm{~ms}$
9	$2^{8}=(256)$	$\mathrm{P}_{\mathrm{r}}+88 \mathrm{~ms}$	Index BIT		$\mathrm{P}_{\mathrm{r}}+98 \mathrm{~ms}$
Position Ident. (P_{9})		$\mathrm{P}_{\mathrm{r}}+89 \mathrm{~ms}$	Position Ident. (P_{0})		$\mathrm{P}_{\mathrm{r}}+99 \mathrm{~ms}$

Note 1: The BIT Time is the time of the BIT leading edge and refers to the leading edge of Pr.

Figure 5. Format B: BCD time-of-year in days, hours, minutes and seconds; straight binary seconds-of-day plus optional control bits.
5.2.2 The two time code words and the control functions presented during the time frame are pulse width coded. The binary zero and the index markers have a duration of 2.0 ms , and a binary one has a duration of 5.0 ms . The 100 pps leading edge is the on-time reference point for all bits.
5.2.3 The BCD time-of-year code word consists of 30 bits beginning at index count one. The subword bits occur between position identifiers P_{0} and $\mathrm{P}_{5}: 7$ for seconds, 7 for minutes, 6 for hours, and 10 for days to complete the BCD time code word. An index marker occurs between the decimal digits in each subword to provide separation for visual resolution. The LSB occurs first. The code recycles yearly. Each bit position is identified in table 3.
5.2.4 Twenty-seven control functions occur between position identifiers P_{5} and P_{8}. Any control function bit or combination of bits can be programmed to read a binary one or zero during any specified number of time frames. Each control bit position is identified in table 3.
5.2.5 The SB seconds-of-day code word occurs between position identifiers P_{8} and P_{0}. Seventeen bits give time-of-day in seconds with the LSB occurring first. A position identifier occurs between the 9th and 10th binary coded bit. The code recycles each 24-hour period. Each bit position is identified as shown in table 3 .
5.2.6

Pulse Rates	Pulse Duration
Bit rate: 100 pps	Index marker: 2 ms
Position identifier: 10 pps	Binary zero or uncoded bit: 2 ms
Reference mark: 1 pps	Binary one or coded bit: 5 ms
	Position identifiers: 8 ms
	Reference bit: 8 ms

Resolution	Mark-To-Space Ratio
10 ms dc level	Nominal value of $10: 3$
1 ms modulated 1 kHz carrier	Range of 3:1 to 6:1

TABLE 3. FORMAT B, SIGNAL B000															
BCD TIME-OF-YEAR CODE (30 DIGITS)															
SECONDS SUBWORD				MINUTES SUBWORD			HOURS SUBWORD			DAYS SUBWORD					
BCD Code Digit No.	Subword Digit Wt SECONDS	BIT Time (Note 1)		BCD Code Digit No.	Subword Digit Wt MINUTES	BIT Time	BCD Code Digit No.	Subword Digit Wt HOURS	BIT Time	BCD Code Digit No.	Subword Digit Wt DAYS	BIT Time	BCD Code Digit No.	Subword Digit Wt DAYS	BIT Time
Reference BIT		Pr_{r}		8	1	$\mathrm{P}_{\mathrm{r}}+100 \mathrm{~ms}$	15	1	$\mathrm{P}_{\mathrm{r}}+200 \mathrm{~ms}$	21	1	$\mathrm{P}_{\mathrm{r}}+300 \mathrm{~ms}$	29	100	$\mathrm{P}_{\mathrm{r}}+400 \mathrm{~ms}$
1	1	$\mathrm{Pr}_{\mathrm{r}}+10 \mathrm{~ms}$		9	2	$\mathrm{P}_{\mathrm{r}}+110 \mathrm{~ms}$	16	2	$\mathrm{P}_{\mathrm{r}}+210 \mathrm{~ms}$	22	2	$\mathrm{P}_{\mathrm{r}}+310 \mathrm{~ms}$	30	200	$\mathrm{P}_{\mathrm{r}}+410 \mathrm{~ms}$
2	2	$\mathrm{P}_{\mathrm{r}}+20 \mathrm{~ms}$		10	4	$\mathrm{P}_{\mathrm{r}}+120 \mathrm{~ms}$	17	4	$\mathrm{P}_{\mathrm{r}}+220 \mathrm{~ms}$	23	4	$\mathrm{P}_{\mathrm{r}}+320 \mathrm{~ms}$	Index BIT		$\mathrm{P}_{\mathrm{r}}+420 \mathrm{~ms}$
3	4	$\mathrm{Pr}_{\mathrm{r}}+30 \mathrm{~ms}$		11	8	$\mathrm{P}_{\mathrm{r}}+130 \mathrm{~ms}$	18	8	$\mathrm{P}_{\mathrm{r}}+230 \mathrm{~ms}$	24	8	$\mathrm{Pr}_{\mathrm{r}}+330 \mathrm{~ms}$	Index BIT		$\mathrm{Pr}_{\mathrm{r}}+430 \mathrm{~ms}$
4	8	$\mathrm{Pr}+40 \mathrm{~ms}$		Index BIT		$\mathrm{Pr}_{\mathrm{r}}+140 \mathrm{~ms}$	Index BIT		$\mathrm{Pr}_{\mathrm{r}}+240 \mathrm{~ms}$	Index BIT		$\mathrm{Pr}_{\mathrm{r}}+340 \mathrm{~ms}$	Index BIT		$\mathrm{P}_{\mathrm{r}}+440 \mathrm{~ms}$
Index BIT		$\mathrm{P}_{\mathrm{r}}+50 \mathrm{~ms}$		12	10	$\mathrm{P}_{\mathrm{r}}+150 \mathrm{~ms}$	19	10	$\mathrm{P}_{\mathrm{r}}+250 \mathrm{~ms}$	25	10	$\mathrm{P}_{\mathrm{r}}+350 \mathrm{~ms}$	Index BIT		$\mathrm{P}_{\mathrm{r}}+450 \mathrm{~ms}$
5	10	$\mathrm{Pr}_{\mathrm{r}}+60 \mathrm{~ms}$		13	20	$\mathrm{P}_{\mathrm{r}}+160 \mathrm{~ms}$	20	20	$\mathrm{P}_{\mathrm{r}}+260 \mathrm{~ms}$	26	20	$\mathrm{P}_{\mathrm{r}}+360 \mathrm{~ms}$	Index BIT		$\mathrm{P}_{\mathrm{r}}+460 \mathrm{~ms}$
6	20	$\mathrm{Pr}_{\mathrm{r}}+70 \mathrm{~ms}$		14	40	$\mathrm{P}_{\mathrm{r}}+170 \mathrm{~ms}$	Index BIT		$\mathrm{P}_{\mathrm{r}}+270 \mathrm{~ms}$	27	40	$\mathrm{P}_{\mathrm{r}}+370 \mathrm{~ms}$	Index BIT		$\mathrm{P}_{\mathrm{r}}+470 \mathrm{~ms}$
7	40	$\mathrm{Pr}_{\mathrm{r}}+80 \mathrm{~ms}$		Index BIT		$\mathrm{P}_{\mathrm{r}}+180 \mathrm{~ms}$	Index BIT		$\mathrm{P}_{\mathrm{r}}+280 \mathrm{~ms}$	28	80	$\mathrm{P}_{\mathrm{r}}+380 \mathrm{~ms}$	Index BIT		$\mathrm{P}_{\mathrm{r}}+480 \mathrm{~ms}$
Position Ident. (P_{1})		$\mathrm{Pr}+90 \mathrm{~ms}$		Position Ident. (P_{2})		$\mathrm{Pr}_{\mathrm{r}}+190 \mathrm{~ms}$	Position Ident. (P_{3})		$\mathrm{Pr}_{\mathrm{r}}+290 \mathrm{~ms}$	Position Ident. (P_{4})		$\mathrm{Pr}_{\mathrm{r}}+390 \mathrm{~ms}$	Position Ident. (P_{5})		$\mathrm{Pr}_{\mathrm{r}}+490 \mathrm{~ms}$
				FUN	ONS (27 BI					STR	HT BIN	SECONDS	E-OF-D	CODE (17 D	TS)
Contro Functio BIT	BIT T	ime		trol ction IT	BIT Time	$\begin{gathered} \text { Control } \\ \text { Function } \\ \text { BIT } \\ \hline \end{gathered}$	BIT	ime	SB C BI'		bword Weight	BIT Time	SB Code BIT	Subword Digit Weight	BIT Time
1	$\mathrm{P}_{\mathrm{r}}+50$	0 ms		0	$\mathrm{P}_{\mathrm{r}}+600 \mathrm{~ms}$	19	$\mathrm{P}_{\mathrm{r}}+7$	0 ms	1		$=(1)$	$\mathrm{Pr}_{\mathrm{r}}+800 \mathrm{~ms}$	10	$2^{9}=(512)$	$\mathrm{P}_{\mathrm{r}}+900 \mathrm{~ms}$
2	$\mathrm{P}_{\mathrm{r}}+51$	0 ms		1	$\mathrm{P}_{\mathrm{r}}+610 \mathrm{~ms}$	20	$\mathrm{Pr}_{\mathrm{r}}+7$	0 ms	2		$=(2)$	$\mathrm{P}_{\mathrm{r}}+810 \mathrm{~ms}$	11	$2^{10}=(1024)$	$\mathrm{P}_{\mathrm{r}}+910 \mathrm{~ms}$
3	$\mathrm{Pr}_{\mathrm{r}}+52$	0 ms		2	$\mathrm{P}_{\mathrm{r}}+620 \mathrm{~ms}$	21	$\mathrm{Pr}_{\mathrm{r}}+7$	0 ms	3		$=(4)$	$\mathrm{Pr}_{\mathrm{r}}+820 \mathrm{~ms}$	12	$2^{11}=(2048)$	$\mathrm{P}_{\mathrm{r}}+920 \mathrm{~ms}$
4	$\mathrm{Pr}_{\mathrm{r}}+53$	0 ms		3	$\mathrm{P}_{\mathrm{r}}+630 \mathrm{~ms}$	22	$\mathrm{Pr}_{\mathrm{r}}+7$	0 ms	4		$=(8)$	$\mathrm{Pr}_{\mathrm{r}}+830 \mathrm{~ms}$	13	$2^{12}=(4096)$	$\mathrm{P}_{\mathrm{r}}+930 \mathrm{~ms}$
5	$\mathrm{P}_{\mathrm{r}}+54$	0 ms		4	$\mathrm{P}_{\mathrm{r}}+640 \mathrm{~ms}$	23	$\mathrm{P}_{\mathrm{r}}+7$	0 ms	5		= (16)	$\mathrm{P}_{\mathrm{r}}+840 \mathrm{~ms}$	14	$2^{13}=(8192)$	$\mathrm{P}_{\mathrm{r}}+940 \mathrm{~ms}$
6	$\mathrm{P}_{\mathrm{r}}+55$	0 ms		5	$\mathrm{P}_{\mathrm{r}}+650 \mathrm{~ms}$	24	$\mathrm{P}_{\mathrm{r}}+7$	0 ms	6		= (32)	$\mathrm{P}_{\mathrm{r}}+850 \mathrm{~ms}$	15	$2^{14}=(16384)$	$\mathrm{P}_{\mathrm{r}}+950 \mathrm{~ms}$
7	$\mathrm{P}_{\mathrm{r}}+56$	0 ms		6	$\mathrm{P}_{\mathrm{r}}+660 \mathrm{~ms}$	25	$\mathrm{P}_{\mathrm{r}}+7$	0 ms	7		$=(64)$	$\mathrm{P}_{\mathrm{r}}+860 \mathrm{~ms}$	16	$2^{15}=(32768)$	$\mathrm{P}_{\mathrm{r}}+960 \mathrm{~ms}$
8	$\mathrm{P}_{\mathrm{r}}+57$	0 ms		7	$\mathrm{P}_{\mathrm{r}}+670 \mathrm{~ms}$	26	$\mathrm{P}_{\mathrm{r}}+7$	0 ms	8		$=(128)$	$\mathrm{P}_{\mathrm{r}}+870 \mathrm{~ms}$	17	$2^{16}=(65536)$	$\mathrm{P}_{\mathrm{r}}+970 \mathrm{~ms}$
9	$\mathrm{P}_{\mathrm{r}}+58$	0 ms		8	$\mathrm{P}_{\mathrm{r}}+680 \mathrm{~ms}$	27	$\mathrm{Pr}_{\mathrm{r}}+7$	0 ms	9		$=(256)$	$\mathrm{P}_{\mathrm{r}}+880 \mathrm{~ms}$		x BIT	$\mathrm{P}_{\mathrm{r}}+980 \mathrm{~ms}$
Position Ident. (P	$\mathrm{P}_{6}+59$	0 ms		tion $\text { t. }\left(\mathrm{P}_{7}\right)$	$\mathrm{Pr}_{\mathrm{r}}+690 \mathrm{~ms}$	Position Ident. $\left(\mathrm{P}_{8}\right)$	$\mathrm{Pr}_{\mathrm{r}}+7$	0 ms		ition Ide	(P_{9})	$\mathrm{Pr}_{\mathrm{r}}+890 \mathrm{~ms}$	Positio	Ident. (P_{0})	$\mathrm{P}_{\mathrm{r}}+990 \mathrm{~ms}$

5.3 Format D, Signal D001

5.3.1 The beginning of each 2-hour time frame is identified by two consecutive 48 -second bits, P_{0} and P_{r}. The leading edge of P_{r} is the on-time point for the succeeding time code word. Position identifiers, P_{0} and P_{1} through P_{5}, occur every 10th bit and one minute before the leading edge of each succeeding 6 pph on-time bit (see figure 6).
5.3.2 The time code word and the control bits presented during the time frame are pulse width coded. The binary zero and the index markers have a duration of 12 seconds and the binary one has a duration of 30 seconds. The 1 ppm leading edge is the on-time reference point for all bits.
5.3.3 The BCD time-of-year code consists of 16 bits beginning at index count 20. The subword bits occur between position identifiers P_{2} and $\mathrm{P}_{5}: 6$ for hours and 10 for days to complete the time code word. An index marker occurs between the decimal digits in each subword to provide separation for visual resolution. The LSB occurs first. The code recycles yearly. Each bit position is identified in table 4.
5.3.4 Nine control bits occur between position identifiers P_{5} and P_{0}. Any control function bit or combination of bits can be programmed to read a binary one or zero during any specified number of time frames. Each control bit position is identified in table 4.
5.3.5

Pulse Rate	Pulse Duration
Bit rate: 1 ppm	Index marker: 12 s
Position identifiers: 6 pph	Binary zero or uncoded bit: 12 s
Reference mark: 1 pph	Binary one or coded bit: 30 s
	Position identifiers: 48 s
	Reference bit: 48 s

Resolution	Mark-To-Space Ratio
1 m dc level	Nominal value of $10: 1$
10 ms modulated 100 Hz carrier	Range of $3: 1$ to $6: 1$
1 ms modulated 1 kHz carrier	

Figure 6. Format D: BCD time-of-year in days and hours plus optional control bits.

TABLE 4. FORMAT D, SIGNAL D001														
BCD TIME-OF-YEAR CODE (16 DIGITS)														
MINUTES SUBWORD						HOURS SUBWORD			DAYS SUBWORD					
BCD Code Digit No.	Subword Digit Wt MINUTES	$\begin{aligned} & \text { BIT Time } \\ & \text { (Note 1) } \end{aligned}$	BCD Code Digit No.	Subword Digit Wt MINUTES	BIT Time	BCD Code Digit No.	Subword Digit Wt HOURS	BIT Time	BCD Code Digit No.	Subword Digit Wt DAYS	BIT Time	BCD Code Digit No.	Subword Digit Wt DAYS	BIT Time
Refer	nce BIT	Pr_{r}	Index Marker		$\mathrm{P}_{\mathrm{r}}+10$ min	1	1	$\mathrm{P}_{\mathrm{r}}+20 \mathrm{~min}$	7	1	$\mathrm{P}_{\mathrm{r}}+30 \mathrm{~min}$	15	100	$\mathrm{P}_{\mathrm{r}}+40 \mathrm{~min}$
Index	Marker	$\mathrm{Pr}_{\mathrm{r}}+1$ min	Index Marker		$\mathrm{Pr}_{\mathrm{r}}+11$ min	2	2	$\mathrm{P}_{\mathrm{r}}+21$ min	8	2	$\mathrm{P}_{\mathrm{r}}+31$ min	16	200	$\mathrm{Pr}_{\mathrm{r}}+41 \mathrm{~min}$
Index	Marker	$\mathrm{P}_{\mathrm{r}}+2$ min	Index Marker		$\mathrm{P}_{\mathrm{r}}+12 \mathrm{~min}$	3	4	$\mathrm{P}_{\mathrm{r}}+22 \mathrm{~min}$	9	4	$\mathrm{P}_{\mathrm{r}}+32 \mathrm{~min}$	Index Marker		$\mathrm{P}_{\mathrm{r}}+42 \mathrm{~min}$
Index	Marker	$\mathrm{Pr}+3 \mathrm{~min}$	Index Marker		$\mathrm{Pr}+13 \mathrm{~min}$	4	8	$\mathrm{Pr}_{\mathrm{r}}+23 \mathrm{~min}$	10	8	$\mathrm{Pr}_{\mathrm{r}}+33 \mathrm{~min}$	Index Marker		$\mathrm{P}_{\mathrm{r}}+43 \mathrm{~min}$
Index	Marker	$\mathrm{Pr}+4$ min	Index Marker		$\mathrm{Pr}+14$ min	Index Marker		$\mathrm{Pr}_{\mathrm{r}}+24$ min	Index BIT		$\mathrm{Pr}_{\mathrm{r}}+34 \mathrm{~min}$	Index Marker		$\mathrm{P}_{\mathrm{r}}+44 \mathrm{~min}$
Index	Marker	$\mathrm{P}_{\mathrm{r}}+5 \mathrm{~min}$	Index Marker		$\mathrm{Pr}_{\mathrm{r}}+15$ min	5	10	$\mathrm{P}_{\mathrm{r}}+25 \mathrm{~min}$	11	10	$\mathrm{P}_{\mathrm{r}}+35 \mathrm{~min}$	Index Marker		$\mathrm{P}_{\mathrm{r}}+45 \mathrm{~min}$
Index	Marker	$\mathrm{Pr}_{\mathrm{r}}+6$ min	Index Marker		$\mathrm{P}_{\mathrm{r}}+16 \mathrm{~min}$	6	20	$\mathrm{P}_{\mathrm{r}}+26$ min	12	20	$\mathrm{P}_{\mathrm{r}}+36 \mathrm{~min}$	Index Marker		$\mathrm{P}_{\mathrm{r}}+46 \mathrm{~min}$
Index	Marker	$\mathrm{Pr}_{\mathrm{r}}+7 \mathrm{~min}$	Index Marker		$\mathrm{P}_{\mathrm{r}}+17 \mathrm{~min}$	Index Marker		$\mathrm{Pr}_{\mathrm{r}}+27 \mathrm{~min}$	13	40	$\mathrm{Pr}_{\mathrm{r}}+37 \mathrm{~min}$	Index Marker		$\mathrm{P}_{\mathrm{r}}+47 \mathrm{~min}$
Index	Marker	$\mathrm{Pr}_{\mathrm{r}}+8 \mathrm{~min}$	Index Marker		$\mathrm{P}_{\mathrm{r}}+18$ min	Index Marker		$\mathrm{P}_{\mathrm{r}}+28 \mathrm{~min}$	14	80	$\mathrm{P}_{\mathrm{r}}+38 \mathrm{~min}$	Index Marker		$\mathrm{P}_{\mathrm{r}}+48 \mathrm{~min}$
Position	Ident. (P_{1})	$\mathrm{Pr}_{\mathrm{r}}+9$ min	Position Ident. (P_{2})		$\mathrm{Pr}_{\mathrm{r}}+19 \mathrm{~min}$	Position Ident. (P_{3})		$\mathrm{Pr}_{\mathrm{r}}+29 \mathrm{~min}$	Position Ident. (P_{4})		$\mathrm{Pr}_{\mathrm{r}}+39 \mathrm{~min}$	Position Ident. (P_{5})		$\mathrm{Pr}_{\mathrm{r}}+49 \mathrm{~min}$

CONTROL FUNCTIONS (9 BITS)	
Control Function BIT	BIT Time
1	$\mathrm{P}_{\mathrm{r}}+50 \mathrm{~min}$
2	$\mathrm{P}_{\mathrm{r}}+51 \mathrm{~min}$
3	$\mathrm{P}_{\mathrm{r}}+52 \mathrm{~min}$
4	$\mathrm{P}_{\mathrm{r}}+53 \mathrm{~min}$
5	$\mathrm{P}_{\mathrm{r}}+54 \mathrm{~min}$
6	$\mathrm{P}_{\mathrm{r}}+55 \mathrm{~min}$
7	$\mathrm{P}_{\mathrm{r}}+56 \mathrm{~min}$
8	$\mathrm{P}_{\mathrm{r}}+57 \mathrm{~min}$
9	$\mathrm{P}_{\mathrm{r}}+58 \mathrm{~min}$
Position Ident. $\left(\mathrm{P}_{0}\right)$	$\mathrm{P}_{\mathrm{r}}+59 \mathrm{~min}$

Note 1: The BIT Time is the time of the BIT leading edge and refers to the leading edge of Pr

5.4 Format E, Signal E001

5.4.1 The beginning of each 10 second time frame is identified by two consecutive 80 ms bits, P_{0} and P_{r}. The leading edge of P_{r} is the on-time reference point for the succeeding time code. Position identifiers, P_{0} and P_{1} through P_{9}, occur every 10th bit and 0.1 seconds before the leading edge of each succeeding 1 pps on-time bit (see figure 7).
5.4.2 The time code word and control functions presented during the timeframe are pulse width coded. The binary zero and index markers have a duration of 20 ms , and the binary one has a duration of 50 ms . The 10 pps leading edge is the on-time reference point for all bits.
5.4.3 The BCD time-of year code word consists of 26 bits beginning at index count 6 . The code subword bits occur between position identifiers P_{0} and $\mathrm{P}_{5}: 3$ for seconds, 7 for minutes, 6 for hours, and 10 for days, to complete the time code word. An index marker occurs between the decimal digits in each subword to provide separation for visual resolution. The LSB occurs first. The code recycles yearly. Each bit position is identified in table 5.
5.4.4 Forty-five control functions occur between position identifiers P_{5} and P_{0}. Any control function bit or combination of bits can be programmed to read a binary one or zero during any specified number of time frames. Each control bit position is identified in table 5.
5.4.5

Pulse Rate	Pulse Duration
Bit rate: 10 pps	Index marker: 20 ms
Position identifier: 1 pps	Binary zero or uncoded bit: 20 ms
Reference mark: 6 ppm	Binary one or coded bit: 50 ms
	Position identifier: 80 ms
	Reference bit: 80 ms

Resolution	Mark-To-Space Ratio
0.1 s dc level	Nominal value of $10: 3$
10 ms modulated 100 kHz carrier	Range of 3:1 to 6:1
1 ms modulated 1 kHz carrier	

Figure 7. Format E: BCD time-of-year in days, hours, minutes and seconds plus optional control bits.

TABLE 5. FORMAT E, SIGNAL E001

BCD TIME-OF-YEAR CODE (26 DIGITS)														
SECONDS SUBWORD			MINUTES SUBWORD			HOURS SUBWORD			DAYS SUBWORD					
	Subword Digit Wt SECONDS	BIT Time (Note 1)	$\begin{array}{\|c\|} \hline \text { BCD } \\ \text { Code } \\ \text { Digit } \\ \text { No. } \\ \hline \end{array}$	Subword Digit Wt MINUTES	BIT Time	BCD Code Digit No.	Subword Digit Wt HOURS	BIT Time	BCD Code Digit No.	Subword Digit Wt DAYS	BIT Time	BCD Code Digit No.	Subword Digit Wt DAYS	BIT Time
Reference BIT		Pr_{r}	4	1	$\mathrm{Pr}_{\mathrm{r}}+1.0 \mathrm{sec}$	11	1	$\mathrm{P}_{\mathrm{r}}+2.0 \mathrm{sec}$	17	1	$\mathrm{P}_{\mathrm{r}}+3.0 \mathrm{sec}$	25	100	$\mathrm{P}_{\mathrm{r}}+4.0 \mathrm{sec}$
Index Marker		$\mathrm{Pr}_{\mathrm{r}}+0.1 \mathrm{sec}$	5	2	$\mathrm{Pr}_{\mathrm{r}}+1.1 \mathrm{sec}$	12	2	$\mathrm{P}_{\mathrm{r}}+2.1 \mathrm{sec}$	18	2	$\mathrm{P}_{\mathrm{r}}+3.1 \mathrm{sec}$	26	200	$\mathrm{P}_{\mathrm{r}}+4.1 \mathrm{sec}$
Index Marker		$\mathrm{P}_{\mathrm{r}}+0.2 \mathrm{sec}$	6	4	$\mathrm{P}_{\mathrm{r}}+1.2 \mathrm{sec}$	13	4	$\mathrm{P}_{\mathrm{r}}+2.2 \mathrm{sec}$	19	4	$\mathrm{P}_{\mathrm{r}}+3.2 \mathrm{sec}$	Inde	Marker	$\mathrm{P}_{\mathrm{r}}+4.2 \mathrm{sec}$
Index Marker		$\mathrm{Pr}_{\mathrm{r}}+0.3 \mathrm{sec}$	7	8	$\mathrm{Pr}_{\mathrm{r}}+1.3 \mathrm{sec}$	14	8	$\mathrm{Pr}_{\mathrm{r}}+2.3 \mathrm{sec}$	20	8	$\mathrm{Pr}_{\mathrm{r}}+3.3 \mathrm{sec}$	Inde	Marker	$\mathrm{P}_{\mathrm{r}}+4.3 \mathrm{sec}$
Index Marker		$\mathrm{Pr}+0.4 \mathrm{sec}$	Index Marker		$\mathrm{Pr}+1.4 \mathrm{sec}$	Index Marker		$\mathrm{Pr}_{\mathrm{r}}+2.4 \mathrm{sec}$	Index Marker		$\mathrm{Pr}+3.4 \mathrm{sec}$	Inde	Marker	$\mathrm{P}_{\mathrm{r}}+4.4 \mathrm{sec}$
Index Marker		$\mathrm{Pr}_{\mathrm{r}}+0.5 \mathrm{sec}$	8	10	$\mathrm{Pr}_{\mathrm{r}}+1.5 \mathrm{sec}$	15	10	$\mathrm{P}_{\mathrm{r}}+2.5 \mathrm{sec}$	21	10	$\mathrm{P}_{\mathrm{r}}+3.5 \mathrm{sec}$	Inde	Marker	$\mathrm{Pr}_{\mathrm{r}}+4.5 \mathrm{sec}$
1	10	$\mathrm{Pr}_{\mathrm{r}}+0.6 \mathrm{sec}$	9	20	$\mathrm{Pr}_{\mathrm{r}}+1.6 \mathrm{sec}$	16	20	$\mathrm{P}_{\mathrm{r}}+2.6 \mathrm{sec}$	22	20	$\mathrm{P}_{\mathrm{r}}+3.6 \mathrm{sec}$	Inde	Marker	$\mathrm{P}_{\mathrm{r}}+4.6 \mathrm{sec}$
2	20	$\mathrm{P}_{\mathrm{r}}+0.7 \mathrm{sec}$	10	40	$\mathrm{P}_{\mathrm{r}}+1.7 \mathrm{sec}$	Index Marker		$\mathrm{P}_{\mathrm{r}}+2.7 \mathrm{sec}$	23	40	$\mathrm{P}_{\mathrm{r}}+3.7 \mathrm{sec}$	Inde	Marker	$\mathrm{P}_{\mathrm{r}}+4.7 \mathrm{sec}$
3	40	$\mathrm{Pr}_{\mathrm{r}}+0.8 \mathrm{sec}$	Index Marker		$\mathrm{P}_{\mathrm{r}}+1.8 \mathrm{sec}$	Index Marker		$\mathrm{P}_{\mathrm{r}}+2.8 \mathrm{sec}$	24	80	$\mathrm{P}_{\mathrm{r}}+3.8 \mathrm{sec}$	Inde	Marker	$\mathrm{Pr}_{\mathrm{r}}+4.8 \mathrm{sec}$
Position Ident. (P_{1})		$\mathrm{Pr}_{\mathrm{r}}+0.9 \mathrm{sec}$	Position Ident. (P_{2})		$\mathrm{Pr}+1.9 \mathrm{sec}$	Position Ident. (P_{3})		$\mathrm{Pr}+2.9 \mathrm{sec}$	Position Ident. (P_{4})		$\mathrm{Pr}+3.9 \mathrm{sec}$	Positio	Ident. (P5)	$\mathrm{Pr}+4.9 \mathrm{sec}$

CONTROL FUNCTIONS (45 BITS)									
Control Function BIT	BIT Time	Control Function BIT	BIT Time	Control Function BIT	BIT Time	Control Function BIT	BIT Time	Control Function BIT	BIT Time
1	$\mathrm{Pr}+5.0 \mathrm{sec}$	10	$\mathrm{Pr}_{\mathrm{r}}+6.0 \mathrm{sec}$	19	Pr +7.0 sec	28	$\mathrm{Pr}+8.0 \mathrm{sec}$	37	$\mathrm{Pr}+9.0 \mathrm{sec}$
2	$\mathrm{Pr}_{\mathrm{r}}+5.1 \mathrm{sec}$	11	$\mathrm{Pr}_{\mathrm{r}}+6.1 \mathrm{sec}$	20	$\mathrm{Pr}_{\mathrm{r}}+7.1 \mathrm{sec}$	29	$\mathrm{Pr}_{\mathrm{r}}+8.1 \mathrm{sec}$	38	$\mathrm{P}_{\mathrm{r}}+9.1 \mathrm{sec}$
4	$\mathrm{P}_{\mathrm{r}}+5.2 \mathrm{sec}$	12	$\mathrm{P}_{\mathrm{r}}+6.2 \mathrm{sec}$	21	$\mathrm{P}_{\mathrm{r}}+7.2 \mathrm{sec}$	30	$\mathrm{Pr}_{\mathrm{r}}+8.2 \mathrm{sec}$	39	$\mathrm{P}_{\mathrm{r}}+9.2 \mathrm{sec}$
3	$\mathrm{P}_{\mathrm{r}}+5.3 \mathrm{sec}$	13	$\mathrm{P}_{\mathrm{r}}+6.3 \mathrm{sec}$	22	$\mathrm{P}_{\mathrm{r}}+7.3 \mathrm{sec}$	31	$\mathrm{Pr}_{\mathrm{r}}+8.3 \mathrm{sec}$	40	$\mathrm{P}_{\mathrm{r}}+9.3 \mathrm{sec}$
5	$\mathrm{Pr}_{\mathrm{r}}+5.4 \mathrm{sec}$	14	$\mathrm{P}_{\mathrm{r}}+6.4 \mathrm{sec}$	23	$\mathrm{P}_{\mathrm{r}}+7.4 \mathrm{sec}$	32	$\mathrm{Pr}_{\mathrm{r}}+8.4 \mathrm{sec}$	41	$\mathrm{P}_{\mathrm{r}}+9.4 \mathrm{sec}$
6	$\mathrm{Pr}_{\mathrm{r}}+5.5 \mathrm{sec}$	15	$\mathrm{Pr}_{\mathrm{r}}+6.5 \mathrm{sec}$	24	$\mathrm{P}_{\mathrm{r}}+7.5 \mathrm{sec}$	33	$\mathrm{Pr}_{\mathrm{r}}+8.5 \mathrm{sec}$	42	$\mathrm{Pr}_{\mathrm{r}}+9.5 \mathrm{sec}$
7	$\mathrm{Pr}_{\mathrm{r}}+5.6 \mathrm{sec}$	16	$\mathrm{Pr}_{\mathrm{r}}+6.6 \mathrm{sec}$	25	$\mathrm{Pr}_{\mathrm{r}}+7.6 \mathrm{sec}$	34	$\mathrm{Pr}_{\mathrm{r}}+8.6 \mathrm{sec}$	43	$\mathrm{Pr}_{\mathrm{r}}+9.6 \mathrm{sec}$
8	$\mathrm{Pr}_{\mathrm{r}}+5.7 \mathrm{sec}$	17	$\mathrm{P}_{\mathrm{r}}+6.7 \mathrm{sec}$	26	$\mathrm{P}_{\mathrm{r}}+7.7 \mathrm{sec}$	35	$\mathrm{P}_{\mathrm{r}}+8.7 \mathrm{sec}$	44	$\mathrm{P}_{\mathrm{r}}+9.7 \mathrm{sec}$
9	$\mathrm{Pr}_{\mathrm{r}}+5.8 \mathrm{sec}$	18	$\mathrm{P}_{\mathrm{r}}+6.8 \mathrm{sec}$	27	$\mathrm{P}_{\mathrm{r}}+7.8 \mathrm{sec}$	36	$\mathrm{Pr}_{\mathrm{r}}+8.8 \mathrm{sec}$	45	$\mathrm{P}_{\mathrm{r}}+9.8 \mathrm{sec}$
Position Ident. $\left(\mathrm{P}_{6}\right)$	$\mathrm{Pr}_{\mathrm{r}}+5.9 \mathrm{sec}$	$\begin{aligned} & \text { Position } \\ & \text { Ident. }\left(\mathrm{P}_{7}\right) \\ & \hline \end{aligned}$	$\mathrm{P}_{\mathrm{r}}+6.9 \mathrm{sec}$	$\begin{gathered} \text { Position } \\ \text { Ident. }\left(\mathrm{P}_{8}\right) \\ \hline \end{gathered}$	$\mathrm{P}_{\mathrm{r}}+7.9 \mathrm{sec}$	Position Ident. (P_{9})	$\mathrm{Pr}_{\mathrm{r}}+8.9 \mathrm{sec}$	Position Ident (P_{0})	$\mathrm{Pr}_{\mathrm{r}}+9.9 \mathrm{sec}$

Note 1: The BIT Time is the time of the BIT leading edge and refers to the leading edge of Pr

5.5 Format G, Signal G001

5.5.1 The beginning of each 0.01 second time frame is identified by two consecutive $80 \mu \mathrm{~s}$ bits, P_{0} and P_{r}. The leading edge of P_{r} is the on-time reference point for the succeeding time code. Position identifiers, P_{0} and P_{1} through P_{9}, occur every 10 th bit, 0.1 ms before the leading edge of each succeeding 1 k pps on-time bit (see figure 8).
5.5.2 The time code word and the control functions presented during the time frame are pulse width coded. The binary zero and index markers have durations of $20 \mu \mathrm{~s}$, and the binary one has a duration of $50 \mu \mathrm{~s}$. The 10 k pps leading edge is the on-time reference point for all bits.
5.5.3 The BCD time-of-year code word consists of 38 bits beginning at index count one. The subword bits occur between position identifiers P_{0} and P_{6} : 7 for seconds, 7 for minutes, 6 for hours, 10 for days, 4 for tenths of seconds, and 4 for hundredths of seconds to complete the time code word. An index marker occurs between the decimal digits in each subword, except for fractional seconds, to provide visual separation. The LSB occurs first, except for the fractional second information which follows the day-of-year information. The code recycles yearly. Each bit position is identified in table 6 .
5.5.4 Thirty-six control bits occur between position identifiers P_{6} and P_{0}. Any control function bit or combination of bits can be programmed to read a binary one or zero during any specified number of time frames. Each control bit position is identified in table 6.

5.5.5

Pulse Rate	Pulse Duration
Bit rate: 10 k pps	Index marker: $20 \mu \mathrm{~s}$
Position identifier: 1 k pps	Binary zero or uncoded bit: $20 \mu \mathrm{~s}$
Reference marker: 100 pps	Binary one or coded bit: $50 \mu \mathrm{~s}$
	Position identifiers: $80 \mu \mathrm{~s}$
	Reference bit: $80 \mu \mathrm{~s}$

Resolution	Mark-To-Space Ratio
0.1 ms dc level	Nominal value of $10: 3$
$10 \mu \mathrm{~s}$ modulated 100 kHz	Range of 3:1 to 6:1 carrier

Figure 8. Format G: BCD time-of-year in days, hours, minutes, seconds, and fractions of seconds plus optional control bits.

TABLE 6. FORMAT G, SIGNAL G001														
BCD TIME-OF-YEAR CODE (38 DIGITS)														
SECONDS SUBWORD			MINUTES SUBWORD			HOURS SUBWORD			DAYS AND FRACTIONAL SECOND SUBWORD					
	Subword Digit Wt SECONDS	BIT Time (Note 1)	$\begin{array}{\|c} \hline \text { BCD } \\ \text { Code } \\ \text { Digit No. } \end{array}$	Subword Digit Wt MINUTES	BIT Time	BCD Code Digit No.	Subword Digit Wt HOURS	BIT Time	$\begin{gathered} \text { BCD } \\ \text { Code } \\ \text { Digit } \\ \text { No. } \\ \hline \end{gathered}$	Subword Digit Wt DAYS	BIT Time	BCD Code Digit No.	Subword Digit Wt DAYS	BIT Time
Reference BIT		Pr_{r}	8	1	$\mathrm{Pr}_{\mathrm{r}}+1.0 \mathrm{~ms}$	15	1	$\mathrm{Pr}+2.0 \mathrm{~ms}$	21	1	$\mathrm{Pr}+3.0 \mathrm{~ms}$	29	100	$\mathrm{Pr}_{\mathrm{r}}+4.0 \mathrm{~ms}$
1	1	$\mathrm{Pr}_{\mathrm{r}}+0.1 \mathrm{~ms}$	9	2	$\mathrm{P}_{\mathrm{r}}+1.1 \mathrm{~ms}$	16	2	$\mathrm{P}_{\mathrm{r}}+2.1 \mathrm{~ms}$	22	2	$\mathrm{P}_{\mathrm{r}}+3.1 \mathrm{~ms}$	30	200	$\mathrm{Pr}_{\mathrm{r}}+4.1 \mathrm{~ms}$
2	2	$\mathrm{Pr}^{+}+0.2 \mathrm{~ms}$	10	4	$\mathrm{P}_{\mathrm{r}}+1.2 \mathrm{~ms}$	17	4	$\mathrm{P}_{\mathrm{r}}+2.2 \mathrm{~ms}$	23	4	$\mathrm{P}_{\mathrm{r}}+3.2 \mathrm{~ms}$	Inde	BIT	$\mathrm{Pr}_{\mathrm{r}}+4.2 \mathrm{~ms}$
3	4	$\mathrm{P}_{\mathrm{r}}+0.3 \mathrm{~ms}$	11	8	$\mathrm{P}_{\mathrm{r}}+1.3 \mathrm{~ms}$	18	8	$\mathrm{P}_{\mathrm{r}}+2.3 \mathrm{~ms}$	24	8	$\mathrm{P}_{\mathrm{r}}+3.3 \mathrm{~ms}$	Inde	BIT	$\mathrm{P}_{\mathrm{r}}+4.3 \mathrm{~ms}$
4	8	$\mathrm{Pr}_{\mathrm{r}}+0.4 \mathrm{~ms}$	Index BIT		$\mathrm{P}_{\mathrm{r}}+1.4 \mathrm{~ms}$	Index BIT		$\mathrm{P}_{\mathrm{r}}+2.4 \mathrm{~ms}$	Index BIT		$\mathrm{P}_{\mathrm{r}}+3.4 \mathrm{~ms}$	Index BIT		$\mathrm{P}_{\mathrm{r}}+4.4 \mathrm{~ms}$
Index Bit		$\mathrm{P}_{\mathrm{r}}+0.5 \mathrm{~ms}$	12	10	$\mathrm{P}_{\mathrm{r}}+1.5 \mathrm{~ms}$	19	10	$\mathrm{Pr}_{\mathrm{r}}+2.5 \mathrm{~ms}$	25	10	$\mathrm{P}_{\mathrm{r}}+3.5 \mathrm{~ms}$	31	0.1	$\mathrm{P}_{\mathrm{r}}+4.5 \mathrm{~ms}$
5	10	$\mathrm{Pr}_{\mathrm{r}}+0.6 \mathrm{~ms}$	13	20	$\mathrm{P}_{\mathrm{r}}+1.6 \mathrm{~ms}$	20	20	$\mathrm{P}_{\mathrm{r}}+2.6 \mathrm{~ms}$	26	20	$\mathrm{P}_{\mathrm{r}}+3.6 \mathrm{~ms}$	32	0.2	$\mathrm{P}_{\mathrm{r}}+4.6 \mathrm{~ms}$
6	20	$\mathrm{Pr}^{+}+0.7 \mathrm{~ms}$	14	40	$\mathrm{P}_{\mathrm{r}}+1.7 \mathrm{~ms}$	Index BIT		$\mathrm{P}_{\mathrm{r}}+2.7 \mathrm{~ms}$	27	40	$\mathrm{P}_{\mathrm{r}}+3.7 \mathrm{~ms}$	33	0.4	$\mathrm{P}_{\mathrm{r}}+4.7 \mathrm{~ms}$
7	40	$\mathrm{Pr}^{+}+0.8 \mathrm{~ms}$	Index BIT		$\mathrm{P}_{\mathrm{r}}+1.8 \mathrm{~ms}$	Index BIT		$\mathrm{P}_{\mathrm{r}}+2.8 \mathrm{~ms}$	28	80	$\mathrm{Pr}_{\mathrm{r}}+3.8 \mathrm{~ms}$	34	0.8	$\mathrm{Pr}_{\mathrm{r}}+4.8 \mathrm{~ms}$
Position Ident. (P_{1})		$\mathrm{P}_{\mathrm{r}}+0.9 \mathrm{~ms}$	Position Ident. (P_{2})		$\mathrm{P}_{\mathrm{r}}+1.9 \mathrm{~ms}$	Position Ident. (P_{3})		$\mathrm{P}_{\mathrm{r}}+2.9 \mathrm{~ms}$	Position Ident. (P_{4})		$\mathrm{P}_{\mathrm{r}}+3.9 \mathrm{~ms}$	Position Ident. (P_{5})		$\mathrm{Pr}_{\mathrm{r}}+4.9 \mathrm{~ms}$

BCD TIME-OF-YEAR CODE (Cont'd)		
FRACTIONAL SECOND SUB-WORD		
BCD Code Digit No.	Subword Digit Wt SECONDS	BIT Time
35	0.01	$\mathrm{P}_{\mathrm{r}}+5.0 \mathrm{~ms}$
36	0.02	$\mathrm{P}_{\mathrm{r}}+5.1 \mathrm{~ms}$
37	0.04	$\mathrm{P}_{\mathrm{r}}+5.2 \mathrm{~ms}$
38	0.08	$\mathrm{P}_{\mathrm{r}}+5.3 \mathrm{~ms}$
Index BIT		
Index BIT		
Index BIT		
Index BIT	$\mathrm{P}_{\mathrm{r}}+5.4 \mathrm{~ms}$	
Index BIT		$\mathrm{P}_{\mathrm{r}}+5.6 \mathrm{~ms}$
Position Ident. (P P_{6})		$\mathrm{P}_{\mathrm{r}}+5.8 \mathrm{~ms}$

Control Function BIT	BIT Time	Control Function BIT	BIT Time	Control Function BIT	BIT Time	Control Function BIT	BIT Time
1	$\mathrm{P}_{\mathrm{r}}+6.0 \mathrm{~ms}$	10	$\mathrm{P}_{\mathrm{r}}+7.0 \mathrm{~ms}$	19	$\mathrm{P}_{\mathrm{r}}+8.0 \mathrm{~ms}$	28	$\mathrm{P}_{\mathrm{r}}+9.0 \mathrm{~ms}$
2	$\mathrm{P}_{\mathrm{r}}+6.1 \mathrm{~ms}$	11	$\mathrm{P}_{\mathrm{r}}+7.1 \mathrm{~ms}$	20	$\mathrm{P}_{\mathrm{r}}+8.1 \mathrm{~ms}$	29	$\mathrm{P}_{\mathrm{r}}+9.1 \mathrm{~ms}$
3	$\mathrm{P}_{\mathrm{r}}+6.2 \mathrm{~ms}$	12	$\mathrm{P}_{\mathrm{r}}+7.2 \mathrm{~ms}$	21	$\mathrm{P}_{\mathrm{r}}+8.2 \mathrm{~ms}$	30	$\mathrm{P}_{\mathrm{r}}+9.2 \mathrm{~ms}$
4	$\mathrm{P}_{\mathrm{r}}+6.3 \mathrm{~ms}$	13	$\mathrm{P}_{\mathrm{r}}+7.3 \mathrm{~ms}$	22	$\mathrm{P}_{\mathrm{r}}+8.3 \mathrm{~ms}$	31	$\mathrm{P}_{\mathrm{r}}+9.3 \mathrm{~ms}$
5	$\mathrm{P}_{\mathrm{r}}+6.4 \mathrm{~ms}$	14	$\mathrm{P}_{\mathrm{r}}+7.4 \mathrm{~ms}$	23	$\mathrm{P}_{\mathrm{r}}+8.4 \mathrm{~ms}$	32	$\mathrm{P}_{\mathrm{r}}+9.4 \mathrm{~ms}$
6	$\mathrm{P}_{\mathrm{r}}+6.5 \mathrm{~ms}$	15	$\mathrm{P}_{\mathrm{r}}+7.5 \mathrm{~ms}$	24	$\mathrm{P}_{\mathrm{r}}+8.5 \mathrm{~ms}$	33	$\mathrm{P}_{\mathrm{r}}+9.5 \mathrm{~ms}$
7	$\mathrm{P}_{\mathrm{r}}+6.6 \mathrm{~ms}$	16	$\mathrm{P}_{\mathrm{r}}+7.6 \mathrm{~ms}$	25	$\mathrm{P}_{\mathrm{r}}+8.6 \mathrm{~ms}$	34	$\mathrm{P}_{\mathrm{r}}+9.6 \mathrm{~ms}$
8	$\mathrm{P}_{\mathrm{r}}+6.7 \mathrm{~ms}$	17	$\mathrm{P}_{\mathrm{r}}+7.7 \mathrm{~ms}$	26	$\mathrm{P}_{\mathrm{r}}+8.7 \mathrm{~ms}$	35	$\mathrm{P}_{\mathrm{r}}+9.7 \mathrm{~ms}$
9	$\mathrm{P}_{\mathrm{r}}+6.8 \mathrm{~ms}$	18	$\mathrm{P}_{\mathrm{r}}+7.8 \mathrm{~ms}$	27	$\mathrm{P}_{\mathrm{r}}+8.8 \mathrm{~ms}$	36	$\mathrm{P}_{\mathrm{r}}+9.8 \mathrm{~ms}$
Position Ident. $\left(\mathrm{P}_{7}\right)$	$\mathrm{P}_{\mathrm{r}}+6.9 \mathrm{~ms}$	Position Ident. $\left(\mathrm{P}_{8}\right)$	$\mathrm{P}_{\mathrm{r}}+7.9 \mathrm{~ms}$	Position Ident. $\left(\mathrm{P}_{9}\right)$	$\mathrm{P}_{\mathrm{r}}+8.9 \mathrm{~ms}$	Position Ident. $\left(\mathrm{P}_{0}\right)$	$\mathrm{P}_{\mathrm{r}}+9.9 \mathrm{~ms}$

Note 1: The BIT Time is the time of the BIT leading edge and refers to the leading edge of P_{r}.

5.6 Format H, Signal H001

5.6.1 The beginning of each 1-minute time frame is identified by two consecutive 0.8 second bits, P_{0} and P_{r}. The leading edge of P_{r} is the on-time reference point for the succeeding time code. Position identifiers P_{0} and P_{1} through P_{5}, occur every 10th bit one second before the leading edge of each succeeding 6 ppm on-time bit (see figure 9).
5.6.2 The time code word and the control functions presented during the time frame are pulse width coded. The binary zero and the index markers have a duration of 0.2 seconds, and a binary one has a duration of 0.5 seconds. The leading edge is the 1 pps on-time reference point for all bits.
5.6.3 The BCD time-of-year consists of 23 bits beginning at index count 10. The subword bits occur between position identifiers P_{0} and $\mathrm{P}_{5}: 7$ for minutes, 6 for hours, and 10 for days to complete the time code word. An index marker occurs between the decimal digits in each subword to provide separation for visual resolution. The LSB occurs first. The code recycles yearly. Each bit position is identified in table 7.
5.6.4 Nine control functions occur between position identifiers P_{5} and P_{0}. Any control function bit or combination of bits can be programmed to read a binary one or zero during any specified number of time frames. Each control function position is identified in table 7.
5.6.5

Pulse Rate	Pulse Duration
Bit rate: 1 pps	Index marker: 0.2 s
Position identifier: 6 ppm	Binary zero or uncoded bit: 0.2 s
Reference marker: 1 ppm	Binary one or coded bit: 0.5 s
	Position identifiers: 0.8 s
	Reference bit: 0.8 s

Resolution	Mark-To-Space Ratio
1 s dc level	Nominal value of $10: 3$
10 ms modulated 100 Hz carrier	Range of 3:1 to 6:1
1 ms modulated 1 kHz carrier	

Figure 9. Format H: BCD time-of-year in days, hours and minutes plus optional control bits.

TABLE 7. FORMAT H, SIGNAL H001

TABLE 7. FORMAT H, SIGNAL H001														
BCD TIME-OF-YEAR CODE (23 DIGITS)														
			MINUTES SUBWORD			HOURS SUBWORD			DAYS SUBWORD					
BCD Code Digit No.	Subword Digit Wt SECONDS	BIT Time (Note 1)	BCD Code Digit No.	Subword Digit Wt MINUTES	BIT Time	BCD Code Digit No.	Subword Digit Wt HOURS	BIT Time	BCD Code Digit No.	Subword Digit Wt DAYS	BIT Time	BCD Code Digit No.	Subword Digit Wt DAYS	BIT Time
Refer	ence BIT	P_{r}	1	1	$\mathrm{P}_{\mathrm{r}}+10 \mathrm{sec}$	8	1	$\mathrm{P}_{\mathrm{r}}+20 \mathrm{sec}$	14	1	$\mathrm{P}_{\mathrm{r}}+30 \mathrm{sec}$	22	100	$\mathrm{P}_{\mathrm{r}}+40 \mathrm{sec}$
Inde	Marker	$\mathrm{P}_{\mathrm{r}}+1 \mathrm{sec}$	2	2	$\mathrm{P}_{\mathrm{r}}+11 \mathrm{sec}$	9	2	$\mathrm{P}_{\mathrm{r}}+21 \mathrm{sec}$	15	2	$\mathrm{P}_{\mathrm{r}}+31 \mathrm{sec}$	33	200	$\mathrm{P}_{\mathrm{r}}+41 \mathrm{sec}$
Inde	Marker	$\mathrm{P}_{\mathrm{r}}+2 \mathrm{sec}$	3	4	$\mathrm{P}_{\mathrm{r}}+12 \mathrm{sec}$	10	4	$\mathrm{P}_{\mathrm{r}}+22 \mathrm{sec}$	16	4	$\mathrm{P}_{\mathrm{r}}+32 \mathrm{sec}$	Index	arker	$\mathrm{Pr}_{\mathrm{r}}+42 \mathrm{sec}$
Inde	Marker	$\mathrm{P}_{\mathrm{r}}+3 \mathrm{sec}$	4	8	$\mathrm{Pr}_{\mathrm{r}}+13 \mathrm{sec}$	11	8	$\mathrm{P}_{\mathrm{r}}+23 \mathrm{sec}$	17	8	$\mathrm{P}_{\mathrm{r}}+33 \mathrm{sec}$	Index	arker	$\mathrm{P}_{\mathrm{r}}+43 \mathrm{sec}$
Inde	Marker	$\mathrm{Pr}+4 \mathrm{sec}$	Index Marker		$\mathrm{Pr}_{\mathrm{r}}+14 \mathrm{sec}$	Index Marker		$\mathrm{Pr}_{\mathrm{r}}+24 \mathrm{sec}$	Index Marker		$\mathrm{Pr}_{\mathrm{r}}+34 \mathrm{sec}$	Index	arker	$\mathrm{Pr}_{\mathrm{r}}+44 \mathrm{sec}$
Inde	Marker	$\mathrm{Pr}+5 \mathrm{sec}$	5	10	$\mathrm{Pr}_{\mathrm{r}}+15 \mathrm{sec}$	12	10	$\mathrm{Pr}_{\mathrm{r}}+25 \mathrm{sec}$	18	10	$\mathrm{Pr}_{\mathrm{r}}+35 \mathrm{sec}$	Index	arker	$\mathrm{Pr}_{\mathrm{r}}+45 \mathrm{sec}$
Inde	Marker	$\mathrm{P}_{\mathrm{r}}+6 \mathrm{sec}$	6	20	$\mathrm{Pr}_{\mathrm{r}}+16 \mathrm{sec}$	13	20	$\mathrm{P}_{\mathrm{r}}+26 \mathrm{sec}$	19	20	$\mathrm{P}_{\mathrm{r}}+36 \mathrm{sec}$	Index	arker	$\mathrm{P}_{\mathrm{r}}+46 \mathrm{sec}$
Inde	Marker	$\mathrm{P}_{\mathrm{r}}+7 \mathrm{sec}$	7	40	$\mathrm{P}_{\mathrm{r}}+17 \mathrm{sec}$	Index Marker		$\mathrm{P}_{\mathrm{r}}+27 \mathrm{sec}$	20	40	$\mathrm{P}_{\mathrm{r}}+37 \mathrm{sec}$	Index	arker	$\mathrm{P}_{\mathrm{r}}+47 \mathrm{sec}$
Inde	Marker	$\mathrm{P}_{\mathrm{r}}+8 \mathrm{sec}$	Index Marker		$\mathrm{P}_{\mathrm{r}}+18 \mathrm{sec}$	Index Marker		$\mathrm{P}_{\mathrm{r}}+28 \mathrm{sec}$	21	80	$\mathrm{P}_{\mathrm{r}}+38 \mathrm{sec}$	Index	arker	$\mathrm{P}_{\mathrm{r}}+48 \mathrm{sec}$
Position	Ident. (P_{1})	$\mathrm{Pr}_{\mathrm{r}}+9 \mathrm{sec}$	Position Ident. (P_{2})		$\mathrm{Pr}_{\mathrm{r}}+19 \mathrm{sec}$	Position Ident. (P_{3})		$\mathrm{P}_{\mathrm{r}}+29 \mathrm{sec}$	Position Ident. (P_{4})		$\mathrm{P}_{\mathrm{r}}+39 \mathrm{sec}$	Position	dent. (P_{5})	$\mathrm{Pr}_{\mathrm{r}}+49 \mathrm{sec}$

CONTROL FUNCTIONS (9 BITS	
Control Function BIT	BIT Time
1	$\mathrm{P}_{\mathrm{r}}+50 \mathrm{sec}$
2	$\mathrm{P}_{\mathrm{r}}+51 \mathrm{sec}$
3	$\mathrm{P}_{\mathrm{r}}+52 \mathrm{sec}$
4	$\mathrm{P}_{\mathrm{r}}+53 \mathrm{sec}$
5	$\mathrm{P}_{\mathrm{r}}+54 \mathrm{sec}$
6	$\mathrm{P}_{\mathrm{r}}+55 \mathrm{sec}$
7	$\mathrm{P}_{\mathrm{r}}+56 \mathrm{sec}$
8	$\mathrm{P}_{\mathrm{r}}+57 \mathrm{sec}$
9	$\mathrm{P}_{\mathrm{r}}+58 \mathrm{sec}$
Position Ident. (P_{0})	$\mathrm{P}_{\mathrm{r}}+59 \mathrm{sec}$
Nit The BIT Time the	

Note 1: The BIT Time is the time of the BIT leading edge and refers to the leading edge of P_{r}

APPENDIX A

LEAP YEAR/LEAP SECOND CONVENTION

A-1
siemens-russia.com

LEAP YEAR/LEAP SECOND CONVENTION

LEAP YEAR:

The length of a year is not an even multiple of days. The year is about 365.25 days. Thus, every four years there is an extra day, February 29, provided the year is divisible by 4. Years divisible by 400 are leap years. If the year is divisible by 100 , it is not a leap year. Consequently, the years 1988, 1992, 1996, and 2000 are leap years. The year 2100 will not be a leap year because it is not divisible by 400 . With the addition of leap years, the calendar stays in step with the seasons.

ACCUMULATED LEAP SECOND:

Since 1 January 1972, the relationship between International Atomic Time (TAI) and Coordinated Universal Time (UTC) has been given by a simple accumulation of leap seconds occurring approximately once per year.

At any instant $(\mathrm{i}), \mathrm{T}_{\mathrm{i}}=$ TAI time

$$
\begin{aligned}
& \mathrm{U}_{\mathrm{i}}=\mathrm{UTC} \text { time expressed in seconds } \\
& \mathrm{T}_{\mathrm{i}}=\mathrm{U}_{\mathrm{i}}+\mathrm{L}_{\mathrm{i}},
\end{aligned}
$$

where $\left(\mathrm{L}_{\mathrm{i}}\right)$ is the accumulated leap second additions between the epoch and the instant $\left({ }_{\mathrm{i}}\right)$. The following table contains a reference list of the accumulated leap second additions $\left(\mathrm{L}_{\mathrm{i}}\right)$ between 1972.0 and 1988.0:

TIME PERIOD	$\mathbf{L}_{\mathbf{i}}$
1972 Jan 1 --- 1972 Jul 1	10.0000000 s
1972 Jul 1 --- 1973 Jan 1	11.0000000 s
1973 Jan 1 --- 1974 Jan 1	12.0000000 s
1974 Jan 1 --- 1975 Jan 1	13.0000000 s
1975 Jan 1 --- 1976 Jan 1	14.0000000 s
1976 Jan 1 --- 1977 Jan 1	15.0000000 s
1977 Jan 1 --- 1978 Jan 1	16.0000000 s
1978 Jan 1 --- 1979 Jan 1	17.0000000 s
1979 Jan 1 --- 1980 Jan 1	18.0000000 s
1980 Jan 1 --- 1981 Jul 1	19.0000000 s
1981 Jul 1 --- 1982 Jul 1	20.0000000 s
1982 Jul 1 --- 1983 Jul 1	21.0000000 s
1983 Jul 1 --- 1985 Jul 1	22.0000000 s
1985 Jul 1 --- 1986 Jan 1	23.0000000 s
1986 Jan 1 --- 1988 Jan 1	24.0000000 s

NOTE: Time changes are made on 31 December and 30 June at 2400 if required.
siemens-russia.com

APPENDIX B

BCD COUNT/BINARY COUNT

BCD COUNT (8 n 4 n 2 n 1 n)		
Decimal Number	\underline{n}	BCD Bits
1	1	1
5	1	3
10	10	5
15	10	5
150	100	9
1500	1×10^{3}	13
15000	10×10^{3}	17
150000	100×10^{3}	21
1500000	1×10^{6}	25
15000000	10×10^{6}	29
150000000	100×10^{6}	33
1500000000	1×10^{9}	37
15000000000	10×10^{9}	41
150000000000	100×10^{9}	45
1500000000000	1×10^{12}	49
15000000000000	10×10^{12}	53
150000000000000	100×10^{12}	57

BINARY COUNT (${ }^{\text {n }}$)			
Decimal Number	Binary Number	Decimal Number	Binary Number
n	$2^{\text {n }}$	n	$2^{\text {n }}$
0	1		
1	2	26	67108864
2	4	27	134217728
3	8	28	268435456
4	16	29	536870912
5	32	30	1073741825
6	64	31	2147483648
7	128	32	4294967296
8	256	33	8589934592
9	512	34	17179869184
10	1024	35	34359738368
11	2048	36	68719476736
12	4096	37	137438953472
13	8192	38	274877906944
14	16384	39	549755813888
15	32768	40	1099511627776
16	65536	41	2199023255552
17	131072	42	4398046511104
18	262144	43	8796093022208
19	524288	44	17592186044416
20	1048576	45	35184372088832
21	2097152	46	70368744177664
22	4194304	47	140737488355328
23	8388608	48	281474976710656
24	16777216	49	562949953421312
25	33554432	50	1125899906842624

APPENDIX C

TIME CODE GENERATOR HARDWARE DESIGN CONSIDERATION

TIME CODE GENERATOR HARDWARE DESIGN CONSIDERATIONS

Code	Level (dc) Pulse Rise Time Between the 10 and 90\% Amplitude Points	Jitter Modulated at Carrier Frequency	Jitter Level (dc) Pulse-to-Pulse
Format A	$\leq 200 \mathrm{~ns}$	$\leq 1 \%$	$\leq 100 \mathrm{~ns}$
Format B	$\leq 1 \mu \mathrm{~s}$	$\leq 1 \%$	$\leq 200 \mathrm{~ns}$
Format D	$\leq 1 \mu \mathrm{~s}$	$\leq 1 \%$	$\leq 200 \mathrm{~ns}$
Format E	$\leq 1 \mu \mathrm{~s}$	$\leq 1 \%$	$\leq 200 \mathrm{~ns}$
Format G	$\leq 20 \mathrm{~ns}$	$\leq 1 \%$	$\leq 200 \mathrm{~ns}$
Format H	$\leq 1 \mu \mathrm{~s}$		

