D

### HRTL 96B

# Laser-Lichttaster mit Hintergrundausblendung





50 ... 6.500 mm





- Laser-Lichttaster basierend auf Lichtlaufzeitmessung – einfachste Bedienung durch teachbare Schaltpunkte
- Sensor-Performance ermöglicht sichere Detektion von glänzenden und gering reflektierenden Objekten unter extremen Winkeln
- Automatische Reserve und Hysterese gewährleisten sicheres Schaltverhalten
- Optimiert für Positionieraufgaben und zuverlässige Objekterkennung (z. B. Fachbelegtkontrolle, Riegelpositionierung, Durchschubüberwachung)
- Externer Teacheingang zur exakten Referenzierung (Erfassung und Speicherung des Abstandes zum Objekt)
- Teacheingang ermöglicht externe Auswahl der Sensor-Performance (z. B. Wechsel von Fachbelegt- auf Durchschubüberwachung)
- Deaktivierungseingang zur Überprüfung der Schaltfunktion und Rücksetzen in den Ausgangsmode (Zustand vor Teach)

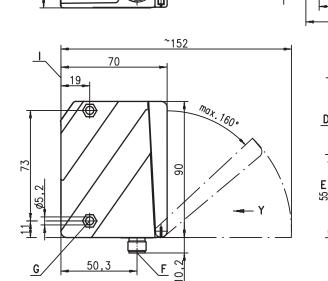




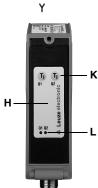








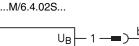

## Zubehör:

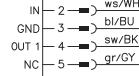

(separat erhältlich)

- Befestigungs-Systeme (BT 96, BT 96.1, UMS 96, BT 450.1-96)
- M12 Leitungsdosen (KD ...)
- Konfektionierte Leitungen (K-D ...)

## Maßzeichnung

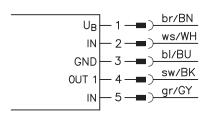



- Anzeigediode grün
- Anzeigediode gelb В
- С Sender
- D Empfänger
- Ε optische Achse
- Gerätestecker M12x1 F
- G Senkung für SK-Mutter M5, 4.2 tief
- Н Folientastatur
- ı Referenzkante für die Messung (Abdeckglas)
- Κ Tastweiteneinstellung OUT1
- Anzeigediode gelb für Schaltausgang OUT1




₽E

C


## **Elektrischer Anschluss**





Pin 2 = Teach-Eingang

...M/6.49.02S...



Pin 2 = Teach-Eingang

Pin 5 = Deaktivierungs-Eingang

### HRTL 96B

### **Technische Daten**

**Optische Daten** 

Typ. Grenztastweite (weiß 90%) 1) 50 ... 6500mm Betriebstastweite 2) 100 ... 6000mm 150 ... 6000mm / 6 ... 90 % Remission Einstellbereich/Teachbereich Lichtquelle Laser (Rotlicht), gepulst Lichtfleckdurchmesser 1m:6mm / 3m:5mm / 5m:4mm / 7m:4mm Wellenlänge 658 nm Max. Ausgangsleistung < 248mW

Pulsdauer Zeitverhalten

100 Hz Schaltfrequenz Ansprechzeit 5<sub>ms</sub> Bereitschaftsverzögerung ≤ 200 ms

**Elektrische Daten** 

Betriebsspannung U<sub>B</sub> Restwelligkeit 18 ... 30VDC (inkl. Restwelligkeit) ≤ 15% von U<sub>B</sub> Leerlaufstrom ≤ 120mA

1 Push-Pull (Gegentakt) Schaltausgang <sup>3)</sup> PNP hellschaltend, NPN dunkelschaltend Schaltausgang .../6...  $\geq$  (U<sub>B</sub>-2V)/ $\leq$  2V max. 100 mA

6,5ns

Signalspannung high/low Ausgangsstrom

Anzeigen

Sensor-Vorderseite LED grün

LED gelb Sensor-Rückseite

**Mechanische Daten** 

Gehäuse Optikabdeckung Gewicht Anschlussart

Umgebungsdaten

Umgebungstemperatur (Betrieb<sup>4</sup>)/Lager) Schutzbeschaltung <sup>5</sup> VDE-Schutzklasse

Schutzart Gültiges Normenwerk M12-Rundsteckverbindung 5-polig -40°C ... +50°C/-35°C ... +70°C 1, 2, 3, 4

II, schutzisoliert IP 67, IP 69K 7) IEC 60947-5-2

betriebsbereit Reflexion (Q1 = OUT1)

siehe Tabelle

Glas

Metallgehäuse

Zink-Druckguss

Typ. Grenztastweite: max. erzielbare Tastweite ohne Funktionsreserve

Betriebstastweite: empfohlene Tastweite mit Funktionsreserve

Die Push-Pull (Gegentakt) Schaltausgänge dürfen nicht parallel geschaltet werden

Bis -30°C: ohne Einschränkung, unter -30°C: Sensor an Spannungsversorgung belassen, nach Wiedereinschalten der Spannungsversorgung ist der Sensor nach ca. 3min voll funktionsfähig, ggf. Einschaltvorgang wiederholen

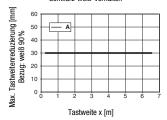
1=Transientenschutz, 2=Verpolschutz, 3=Kurzschluss-Schutz für alle Ausgänge, 4=Störaustastung

Bemessungsspannung 250VAC

IP 69K-Test nach DIN 40050 Teil 9 simuliert, Hochdruckreinigungsbedingungen ohne den Einsatz von Zusatzstoffen, Säuren und Laugen sind nicht Bestandteil der Prüfung

### Bestimmungsgemäßer Gebrauch:

Dieses Produkt ist nur von Fachpersonal in Betrieb zu nehmen und seinem bestimmungsgemäßen Gebrauch entsprechend einzusetzen.


Dieser Sensor ist kein Sicherheitssensor und dient nicht dem Personenschutz.

### **Tabellen**

| Schaltpunkte | keine<br>Reflexion | Objekt<br>erkannt |
|--------------|--------------------|-------------------|
| LED gelb Q 1 | aus                | an                |
| LED gelb Q 2 | -                  | I                 |

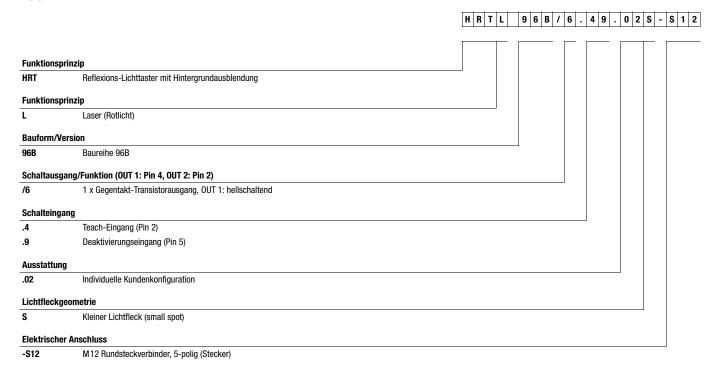
### **Diagramme**

Schwarz-weiß-Verhalten



A 6... 90% Remission

### **Hinweise**

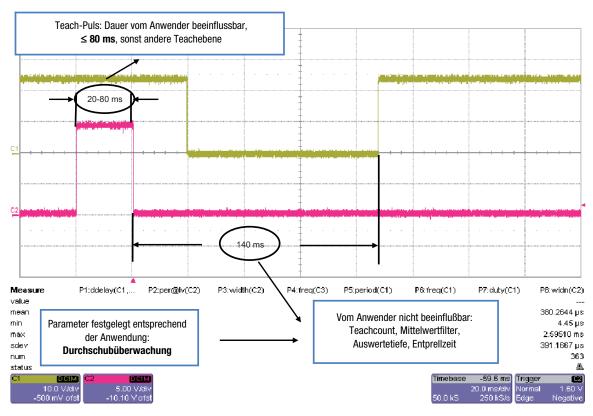

- Einstellung der Schaltpunkte: Sensor zu Objekt ausrichten. Q1: Teachtaste 1 ca. 2s drücken, nach Blinken der LED loslassen, Schaltpunkt ist geteacht. Objekt wird erkannt, wenn die Anzeige Q1 leuchtet.
- Reserve: zur sicheren Detektion gering reflektierender Obiekte wird während des Teachvorgangs automatisch eine Reserve hinzugefügt. Diese ist über den gesamten Teachbereich konstant. Öbjekt wird erkannt: Abstand zu Sensor ≤ Teachpunkt + Reserve
- Hysterese: Um im Schaltpunkt eine kontinuierliche Obiektdetektion zu gewährleisten, besitzt der Sensor eine Ausschalthysterese. Objekt wird nicht mehr erkannt wenn: Abstand zu Sensor > Teachpunkt + Reserve + Hysterese.
- Werksseitige Einstellung: Fachbelegt-Überwachung Reserve: ca. 50mm Hysterese: ca. 50mm Durchschub-Überwachung Reserve: ca. 25mm Hysterese: ca. 15mm
- Objekterkennung: Auflösung < 5 mm, Standardabweichung ±10mm bei ±3 Sigma
- Kantenerkennung/Riegelpositionierung: Wiederholgenauigkeit < 1 mm
- Beim eingestellten Tastbereich ist eine Toleranz der oberen Tastgrenze je nach Reflexionseigenschaft der Materialoberfläche möglich.
- Fensterfunktion: Objekt erkannt im Abstand Schaltpunkt ± Fensterbreite
- Tastweite Bezug:

| Objekt/<br>Remission |                    |
|----------------------|--------------------|
| 6 90%                | 0,15 6m (Standard) |

### HRTL 96B

## Laser-Lichttaster mit Hintergrundausblendung

## **Typenschlüssel**




#### **Bestellhinweise**

Die hier aufgeführten Sensoren sind Vorzugstypen, aktuelle Informationen unter www.leuze.com

| Bestellbezeichnung    | Artikel-Nr. | Merkmale                                                                              |
|-----------------------|-------------|---------------------------------------------------------------------------------------|
| HRTL 96B/6.4.02S-S12  | 50111815    | 1 x Push-Pull (Gegentakt) Schaltausgang, 1 x Teach-Eingang                            |
| HRTL 96B/6.49.02S-S12 | 50112803    | 1 x Push-Pull (Gegentakt) Schaltausgang, 1 x Teach-Eingang, 1 x Deaktivierungseingang |

## Fenster-Teach HRTL 96B/6.4.02S-S12 - Palettenbewegung des RBG stoppen



### HRTL 96B

## **Applikationsbeispiele**

#### Kombinierte Fachbelegtkontrolle und Durchschubüberwachung mit HRTL 96B M/6.49.02S-S12 (50112803)

#### Ablauf:

- Regalbediengerät (RBG) hat Zielposition (X/Y) erreicht.
- Der HRTL 96 befindet sich im Fachbelegt-Mode (Tastweite kann über Teachknopf festgelegt werden, z. B. Standardabstand zu Palette in Tiefe 2).
- Keine Erkennung der Palette bedeutet Gabel wird nicht ausgefahren. Mögliche Ursache:
  - Keine Palette vorhanden
  - Palette außerhalb des Toleranzbereichs (z. B. beim Bringen-Vorgang nicht korrekt abgesetzt)
    - -> Schaltausgang OUT1 (Pin 4) = inaktiv
- Palette wird erkannt:
  - Sensor von Fachbelegt-Mode auf Durchschub-Mode umschalten -> Externer Teach über Teach-Eingang (Pin 2) Der reale Abstand zur Palette wird gemessen und abgespeichert (> 20 ms Eingang setzen).
  - Fensterteach, d. h. um den Teachpunkt wird automatisch ein Fenster von ca. ± 30mm gelegt.
  - -> Teach okay: Ausgang OUT1 (Pin 4) = aktiv
- Gabelzyklus starten:
  - Bei einem Crash zwischen Gabel und Palette ändert sich der Abstand zum Sensor:
  - Distanz Sensor zu Palette > (Teachdistanz + Fenster)
    -> Schaltausgang OUT1 (Pin 4) inaktiv
    -> Gabel stoppen, Verhindern, dass Palette herabfällt
  - Distanz Sensor zu Palette verändert sich nicht
  - -> Gabelzyklus wird abgeschlossen und Palette auf RBG abgesetzt.
- Rücksetzen des Sensors:
  - -> Deaktivierungseingang setzen (Pin 5 = aktiv)
- Nächstes Ziel anfahren...



#### Durchschubüberwachung mit HRTL 96B M/6.4.02S-S12 (50111815) mittels externem Teach

### Ablauf:

- Regalbediengerät (RBG) hat Zielposition erreicht
- Teacheingang für > 20 ms setzen
  - -> Externer Teach über Teach-Eingang (Pin 2)

Der reale Abstand zur Palette wird gemessen und abgespeichert.

- Fensterteach, d.h um den Teachpunkt wird automatisch ein Fenster von
- ca. ± 30mm gelegt.

  -> Teach okay: Ausgang OUT1 (Pin 4) = aktiv
- Gabelzyklus starten:
  - Bei einem Crash zwischen Gabel und Palette ändert sich der Abstand zum Sensor:
    - Distanz Sensor zu Palette > (Teachdistanz + Fenster) -> Schaltausgang OUT1 (Pin 4) inaktiv

    - -> Gabel stoppen, Verhindern, dass Palette herabfällt
  - Distanz Sensor zu Palette verändert sich nicht
    - -> Gabelzyklus wird abgeschlossen und Palette auf RBG abgesetzt.

