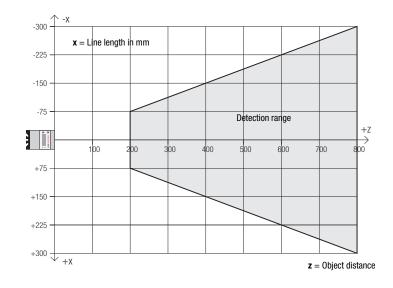
Light section sensor for object detection

200 ... 800 mm

- Light section sensor for object detection
- Response time 10ms
- Detection area: 200 ... 800mm
- Length of laser line: max. 600mm
- Integrated PROFIBUS interface or 4 switching outputs
- Configuration via Fast Ethernet
- OLED display with key pad for alignment aid and status display: "set inspection task"
- Measurement value display in mm on OLED display as an alignment aid
- Up to 16 detection fields with logic operation option
- Up to 16 inspection tasks
- Activation input, trigger input, cascading output
- PROFIBUS connection via Y adapter

Accessories:


(available separately)

- Mounting systems BT 56, BT 59
- Cable with M12 connector (K-D ...)

Dimensioned drawing 290 15 C +Z Transmitter В Receiver С Optical axis

- D X1: M12x1 connector, 8-pin, A coded Е
 - X2: M12x1 socket, 4-pin, D coded
- X3: M12x1 socket, 8-pin, A coded (only LRS 36/6)
- G X4: M12x1 socket, 5-pin, B coded (only LRS 36/PB)
- Н PE screw
- OLED display and key pad J
- Κ M4 thread, 4.5 deep
- Holder for mounting system BT 56 / BT 59
- Zero point and orientation of the coordinate system for measurement data

Detection range, typical

Specifications

Optical data

Detection range 1) Light source Wavelength Max. output power Pulse duration Laser line

Object detection

Minimum object size in x direction 2) Minimum object size in z direction 2)

Response time Delay before start-up

Electrical data

Operating voltage U_B 3) Residual ripple Open-circuit current Ethernet interface Switching outputs

Inputs

Signal voltage high/low

PROFIBUS (only LRS 36/PB)

Interface type **Protocols** Baud rate

Indicators

Green LED continuous light Yellow LED continuous light flashing

off

Mechanical data

Housing Optics cover Weight Connection type

Environmental data

Ambient temp. (operation/storage) Protective circuit 6) VDE safety class Protection class Laser class

Standards applied

200 ... 800mm (z direction) 658nm (visible red light)

< 8mW 3ms

600x3mm at 800mm

2 ... 3mm 2 ... 6mm

≥10ms (configurable) approx. 1.5s

18 ... 30 VDC (incl. residual ripple) \leq 15 % of U_B

 \leq 200 mA UDP

(ready) / 100mA / push-pull ⁴⁾ on X1 (cascading) / 100mA / push-pull ⁴⁾ on X1 / 100mA / push-pull ^{4) 5)} on X3 (only LRS 36/6)

(trigger) on X1 (activation) on X1

3 (inspection task selection) on X3 (only LRS 36/6)

≥ (U_B-2V)/≤ 2V

1x RS 485 on X4 (only LRS 36/PB) PROFIBUS DP/DPV1 slave 9.6kBaud ... 6MBaud

ready no voltage

Ethernet connection available Ethernet data transmission active no Ethernet connection available

aluminum frame with plastic cover

glass 620g

M12 connector

-30°C ... +50°C/-30°C ... +70°C

1, 2, 3 III, protective extra-low voltage

IP 67

"M' (according to EN 60825-1 and 21 CFR 1040.10 with Laser Notice No. 50)

IEC/EN 60947-5-2, ÚL 508

- Luminosity coefficient 6 % ... 90 %, entire detection range, at 20 °C after 30 minutes warmup time, medium range U_B
- Minimum value, depends on distance and object, requires testing under application conditions
- For UL applications: for use in class 2 circuits according to NEC only The push-pull switching outputs must not be connected in parallel
- Number of detection fields: up to 16 with the option of logic combination Number of inspection tasks: up to 16 (8 of these can be activated via inputs)
- 1=transient protection, 2=polarity reversal protection, 3=short circuit protection for all outputs, requires external protective circuit for inductive loads

Interface assignments

X1 - logic and power								
Pin No. Signal Color								
1	+24VDC	WH						
2	InAct (activation)	BN						
3	GND	GN						
4	OutReady (ready)	YE						
5	InTrig (trigger)	GY						
6	OutCas (cascading) PK							
7	Do not connect	BU						
8	Do not connect	RD						

8-pin M12 plug. A coded

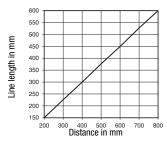
X2 - Ethernet						
Pin No.	Signal	Colour				
1	Tx+	YE				
2	Rx+	WH				
3	Tx-	0R				
4	Rx-	BU				

4-pin M12 socket, D coded

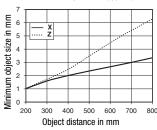
X4 - PROFIBUS (only LRS 36/PB)						
Pin No.	Signal	Explanation				
1	VP	+5VDC termin.				
2	Α	RxD/TxD-N, greer				
3	DGND	Reference potential				
4	В	RxD/TxD-P, red				
5	FE	Functional earth				

5-pin M12 socket, B coded

X3 - logic (only LRS 36/6)						
Pin No. Signal Color						
1	Out4	WH				
2	Out3	BN				
3	GND	GN				
4	Out2	YE				
5	Out1	GY				
6	InSel31)	PK				
7	InSel2 1)	BU				
8	InSel1 1)	RD				


8-pin M12 socket, A coded

Tables


LED	State	Display during measurement operation
green	continu-	Sensor ready
	ous light	
	off	Sensor not ready
yellow	continu-	Ethernet connec-
	ous light	tion established
	flashing	Ethernet data
		transmission active
	off	No Ethernet
		connection

Diagrams

Line length (typical)

Minimum object size (typical)

Remarks

Approved purpose

This product may only be used by qualified personnel and must only be used for the approved purpose. This sensor is not a safety sensor and is not to be used for the protection of persons.

Warmup time:

After a warmup time of 30 min., the light section sensor has reached the operating temperature required for an optimum object detection.

For UL:

CAUTION - Use of controls or adjustments or performance of procedures other than specified herein may result in hazardous light exposure.

The 3 switching inputs InSel1-3 are used to select the inspection task 0-7. In this context, "000" stands for Inspection Task 0, "001" for Inspection Task 1, etc. The switching time between 2 inspection tasks is < 100ms

Light section sensor for object detection

Order guide

Part no.	Designation	Line Range Sensor
50111330	LRS 36/6	with binary inputs/outputs

50111332 LRS 36/PB with PROFIBUS DP/DPV1 (the Y adapter is necessary for connecting the sensor, see accessories)

Configuration - Establish connection to PC

The LRS is configured via a PC using the LRSsoft program before it is integrated into the process control.

In order to be able to establish an UDP communication with the PC, the IP address of your PC and the IP address of the LRS must lie in the same address range. The LRS has no built-in DHCP client, so that you need to set the address manually. This is done the easiest way via the PC.

∧ Notice!

If you are using a desktop firewall, please ensure that the control can communicate with the LRS via the Ethernet interface on ports 9008 and 5634 using UDP. Furthermore, the firewall must allow ICMP echo messages to pass through for the connection test (ping).

If the PC is usually connected to a network using DHCP address allocation, the easiest way to access the LRS is by applying an alternative configuration in the TCP/IP settings of the PC and connecting the LRS directly to the PC.

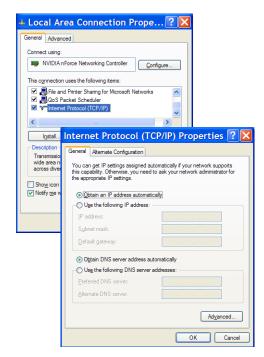
♦ Check the network address of the LRS by pressing the → button during normal operation of the LRS twice in succession, then by pressing ▼ twice and followed by pressing the → button again.

This will take you to the Ethernet submenu and enable you to read the current settings of the LRS consecutively when pressing ▼ repeatedly.

Make a note of the values for IP-Address and Net Mask Addr..

The value in Net Mask Addr. specifies which digits of the IP address of the PC and LRS must match so that they can communicate with each other.

Address of the LRS	Net mask	Address of the PC
192.168.060.003	255.255.255.0	192.168.060.xxx
192.168.060.003	255.255.0.0	192.168.xxx.xxx

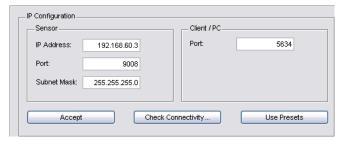

Instead of **xxx** you can now allocate any numbers between 000 and 255 to your PC, but NOT THE SAME numbers as contained in the address of the LRS.

For example 192.168.060.110 (but not 192.168.060.003!). If LRS and PC have the same IP address, they cannot communicate with each other.

Configuring the IP address for a PC

- ♦ Log in to your PC as an administrator.
- Using Start->System control go to the Network connections
 (Windows XP) menu or to the Network center and release center
 (Windows Vista) menu.
- There select the LAN connection and bring up the associated Features page by right clicking with the mouse.
- Select the Internet protocol (TCP/IP) (by scrolling down, if necessary) and click on Properties.
- In the Internet protocol (TCP/IP) Properties window select the
 Alternate configuration tab.
- Onfigure the IP address of the PC in the address range of the LRS. Attention: do not use the same as for the LRS!
- Set the Subnet mask of the PC to the same value as the one for the LRS.
- Solution Close the configuration dialog by confirming all windows using OK.
- Connect the interface X2 of the LRS directly to the LAN port of your PC. Use a KB ET-...-SA-RJ45 cable for the connection.

The PC will first try to establish a network connection via the automatic configuration. This will take a few seconds. Following that the alternative configuration, which you have just set up, is activated, and thus the PC can communicate with the LRS.


Information about configuring the LRS using LRSsoft software can be found in the Technical Description.

Commissioning

○ Notice!

The LRS 36/PB PROFIBUS device type is configured as all variants are, via Ethernet through the **LRSsoft** software. LRS 36/PB PROFIBUS device type commissioning notices can be found at the end of this document and in the technical description.

- 1. Configuring the LRS see chapter 8 of the Technical Description.
- 2. Programming process control see chapter 9 of the Technical Description.
- 3. Connecting the switching inputs and outputs accordingly see chapter 6 of the Technical Description.
- **4.** Adapt the IP configuration of the LRS such that it can communicate with the process control. This can be done either via the display of the LRS or in **LRSsoft** in the Configuration area. Here you can change network address and associated net mask as well as the ports via which the LRS communicates with process control.

- 5. Save the changed settings in the LRS using the Configuration->Transmit to sensor command.
- 6. Connect LRS to process control via the Ethernet interface.
- 7. Establish connections for activation, triggering and cascading, if necessary.

Installing the configuration software

System requirements

The PC used should meet the following requirements:

- Pentium® or faster Intel® processor > 1.5 GHz (Pentium 4, Celeron, Xeon) or compatible models by AMD® (Athlon 64, Opteron, Sempron). The processor must support the SSE2 instruction set
- At least 512 MB free main memory (RAM), 1024 MB recommended
- CD-ROM drive
- Hard disk with at least 1 GB available memory
- Ethernet port
- Microsoft® Windows XP SP2/3 / Vista SP1

Installation procedure

O Notice!

If present, uninstall Matlab Runtime before beginning with the installation of the LXSsoft Suite.

The LXSsoft Suite Setup.exe installation program is located on the supplied CD.

O Notice!

Copy this file from the CD to an appropriate folder on your hard drive.

Administrator rights are necessary for the next steps.

- To start the installation process, double-click on file LXSsoft Suite Setup.exe.
- In the first window, click on Next.

In the next window, you can select whether you would like to install **LRSsoft** only, or **LPSsoft** in addition.

You will need **LPSsoft** in addition, for configuring light section sensors of the LPS series with your PC.

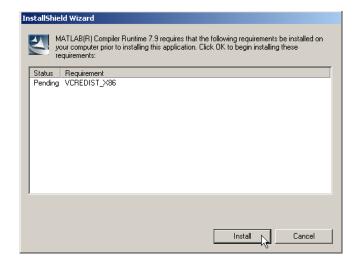
You cannot deselect the first option, MATLAB Compiler Runtime, since this component is needed in all cases.

Select the desired options and click on Next and, in the next window, click on Install.

The installation routine starts. After a few seconds, the window for selecting the installation language for the Matlab Compiler Runtime (MCR) appears. The MCR is used for 3D visualization in **LPSsoft**. It is only available in English or Japanese.

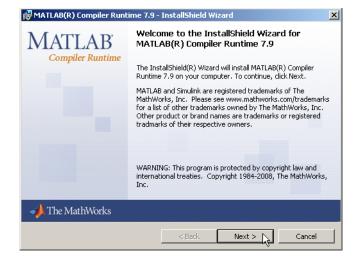
Therefore keep in the Choose Setup Language window the selection English and click on OK.

Depending on the configuration of your Windows system the adjacent dialog can also appear (missing component VCREDIST X86).


♥ Click on Install.

Two additional installation windows will appear, which do not require any further entry.

Light section sensor for object detection



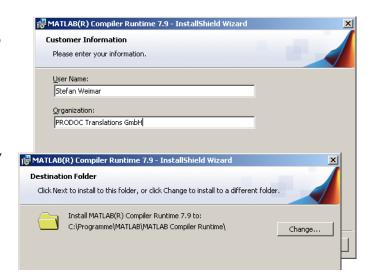
After some time (up to several minutes depending on the system configuration) the start screen of the MCR installer will appear.

Stick on Next.

The window for entering user data appears.

Enter your name and the company name and then click on Next.

It is essential that you retain the default folder in the window for the selection of the installation path (Destination Folder).


The standard path is

- C:\Programs\MATLAB\MATLAB Compiler Runtime\.
- Click on Next and in the next window click on Install.

The installation will start and the adjacent status window will be displayed. This can again take several minutes.

Following successful MCR installation, the InstallShield Wizard Completed window appears.

& Click on Finish to end the MCR-installation.

The window for selecting the installation path for **LRSsoft** now appears.

⋄ Keep the default folder and click on Next.

The installation of **LRSsoft** starts. If you also selected **LPSsoft** for installation, upon completion of the **LRSsoft** installation, the same window then reappears for entering the installation path for **LPSsoft**.

♦ Keep the default folder in this case as well and click on Next.

Light section sensor for object detection

Upon completion of the installation process, the adjacent window appears.

The installation routine added a new Leuze electronic program group in your Start menu that contains the installed programs LRSsoft and, if selected, LPSsoft.

Click on Finish and then start the desired program from the Start menu.

Possible error message

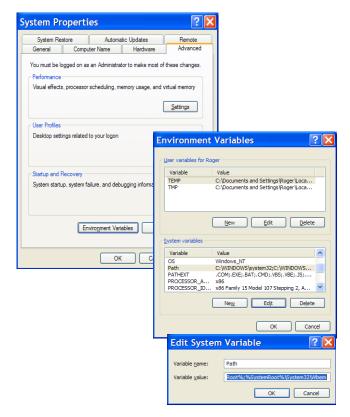
Depending on the system configuration the adjacent error message can appear at this point.

The cause of this error message is a bug in the MCR installation routine, which does not set the environment variable Pfad correctly in some systems.

That, however, can easily be corrected without reinstallation of the MCR.

- System control of Windows under System.
- So to the Advanced tab and click on Environment variables.

The Environment variables window opens.


- Scroll down in the System variables area until you find the Path entry.
- Sclick on Path and then on Edit.

The Edit system variable window opens.

There in the Variable value field you will find the ;C:\Programs\MATLAB\MATLAB Compiler Runtime\v79\runtime\win32 entry right at the end.

- If this entry is missing, copy the entry from this document and insert it together with the preceding semicolon.
- ♥ Then click on ok and close also all further windows using ok.
- Shut Windows down, restart Windows and then start **LRSsoft** by double-clicking on it.

Now the start screen of **LRSsoft** appears, as described in chapter 8 of the LRS technical description.

Light section sensor for object detection

LRS 36/PB PROFIBUS device type

General Information - Technical characteristics

The sensor is configured as all device variants are, via the LRSsoft configuration software.

The LRS 36/PB is designed as a PROFIBUS DP/DPV1 compatible slave. The input/output functionality of the sensor is defined by the corresponding GSD file. The baud rate of the data to be transmitted is max. 6MBit/s under production conditions.

Setting of the PROFIBUS address:

The LRS 36/PB supports the automatic detection of the baud rate and the automatic address assignment via the PROFIBUS. Alternatively, the PROFIBUS address can be set via the display and key pad or via the **LRSsoft** configuration software.

PROFIBUS connection

Connection to the PROFIBUS is done via the **X4** 5-pin M12 socket with an **external Y plug adapter**. The assignment corresponds to the PROFIBUS standard. The Y plug adapter makes possible the exchange of the LRS 36/PB without interrupting the PROFIBUS cable. The external Y plug adapter is also needed when the LRS 36/PB is the last network device. Then the external bus terminating resistor (termination) is connected to it. The 5V supply of the active termination is applied to **X4** (pin 1). **This is then further looped only via the outgoing side** of the Y plug adapter.

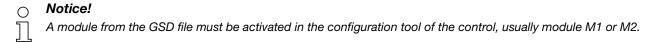
Simultaneous operation on Ethernet and PROFIBUS

- Ethernet and PROFIBUS can be used in measure mode as fully-fledged interfaces.
- If the sensor is configured with LRSsoft and simultaneously operated on PROFIBUS, queries from the control are processed
 and the process data is updated with a delay (indicated by slowly increasing scan numbers). Process data is updated every
 200 ms.

During configuration of the LRS 36/PB with **LRSsoft**, it must be determined whether the PROFIBUS or **LRSsoft** may perform the changeover of the inspection task. This is set with the **Enable external inspection task selection** checkbox.

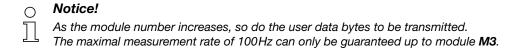
O Notice!

When **LRSsoft** has established a connection to LRS 36/PB, the software switches the sensor into configuration mode. The update rate is max. 5Hz. If the sensor is in free running mode, the flashing of the laser beam indicates this.


If the sensor is in menu mode or command mode, communication via PROFIBUS is possible.
 Queries from the control are not processed and the process data is frozen (indicated by the constant scan number).

General information about the GSD file

The functionality of sensor inputs/outputs for the control is defined via a module. The necessary module is integrated via a user-specific configuration tool during PLC program creation and configured corresponding to the application.


The short form of the module description is included in this data sheet. Please refer to the technical documentation for the detailed description.

Parameters can be changed via the display for test purposes on a LRS 36/PB operating on the PROFIBUS. At this time, object detection on PROFIBUS is not possible.

Notice!
All input and output modules described in the documentation are described from the viewpoint of the control:
Inputs (I) described are inputs of the control.
Ouputs (O) described are ouputs of the control.
Parameters (P) described are parameters of the GSD file in the control.

The LRS 36/PB has a module slot. With the selection of the corresponding module from the GSD, the process data of the LRS 36/PB to be transmitted is set. A selection of several modules is available. Beginning with **M1**, the simplest input module, new inputs are added to subsequent modules. All available output data is already included in module **M1**. The modules with higher numbers each contain the modules with lower numbers (example: **M2** contains **M1** and the extensions of **M2**).

Therefore, only modules which contain the data actually required should be selected, i.e. the smallest possible module number should be selected.

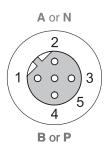
Light section sensor for object detection

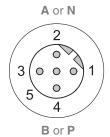
Overview of the modules in the GSD file

Ouptut data (from viewing position of control)

Position	Name				Bits i	n byte				Value range	Meaning
i usitiuii	Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	value lalige	Weating
0	uTrigger	Trig_7	Trig_6	Trig_5	Trig_4	Trig_3	Trig_2	Trig_1	Trig_0	0 255	Triggering via PROFIBUS (in the case of changes)
1	uActivation	-	-	-	-	-	-	-	Act_0 n	0 1	Activation (=1) or deactivation (=0) of the sensor
2	ulnspTask		-	•	-	IT_b3	IT_b2	IT_b1	IT_b0	0 15	Inspection task of PROFIBUS master and save flag (B7)

Input data (from viewing position of control)


GSE	Position	N	Bits in byte						Value	Magning			
Module	(bytes)	Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	range	Meaning	
	0	wScanNum (HighByte)	SN_b15	SN_b14	SN_b13	SN_b12	SN_b11	SN_b10	SN_b9	SN_b8	0 255	Scan number (Highbyte)	
M1	1	wScanNum (LowByte)	SN_b7	SN_b6	SN_b5	SN_b4	SN_b3	SN_b2	SN_b1	SN_b0	0 255	Scan number (Lowbyte)	
4 byte	2	uSensorInfo	Out4	Out3	Out2	Out1	IT_b3	IT_b2	IT_b1	IT_b0	0 255	SensorInfo (inspection task no., output state)	
	3	uSensorState	ErrM	Cmd	Menu	Meas	ErrF	WarnF	active	connect	0 255	Sensor state	
M2	4	wResultAWs (HighByte)	AW16	AW15	AW14	AW13	AW12	AW11	AW10	AW9	0 255	State of AWs (Highbyte)	
6 byte	5	wResultAWs (LowByte)	AW8	AW7	AW6	AW5	AW4	AW3	AW2	AW1	0 255	State of AWs (Lowbyte)	
	6	wActObjPtsAW1 (HighByte)	-	-	-	-	-	-	-	0P_b8	0 1	Current number of hit points in analysis window 1	
	7	wActObjPtsAW1 (LowByte)	0P_b7	0P_b6	OP_b5	0P_b4	0P_b3	0P_b2	0P_b1	OP_b0	0 255	Current number of filt points in analysis window i	
	8	wActObjPtsAW2 (HighByte)	-	-	-	-	-	-	-	0P_b8	0 1	Current number of hit points in analysis window 2	
	9	wActObjPtsAW2 (LowByte)	0P_b7	0P_b6	OP_b5	0P_b4	0P_b3	0P_b2	0P_b1	0P_b0	0 255	our crit humber of file points in analysis window 2	
М3	10	wActObjPtsAW3 (HighByte)	-	-	-	-	-	-	-	0P_b8	0 1	Current number of hit points in analysis window 3	
16 byte	11	wActObjPtsAW3 (LowByte)	0P_b7	OP_b6	OP_b5	OP_b4	0P_b3	0P_b2	0P_b1	0P_b0	0 255	our crit humber of the points in analysis window 3	
	12	wActObjPtsAW4 (HighByte)	-	-	-	-	-	-	-	0P_b8	0 1	Current number of hit points in analysis window 4	
	13	wActObjPtsAW4 (LowByte)	0P_b7	0P_b6	OP_b5	0P_b4	0P_b3	0P_b2	0P_b1	0P_b0	0 255	our crit humber of the points in analysis window 4	
	14	wActObjPtsAW5 (HighByte)	-		-	,	-	-	-	0P_b8	0 1	Current number of hit points in analysis window 5	
	15	wActObjPtsAW5 (LowByte)	0P_b7	0P_b6	OP_b5	0P_b4	0P_b3	0P_b2	0P_b1	0P_b0	0 255	our chit humber of the points in analysis window 3	
	16	wActObjPtsAW6 (HighByte)	-	-	-	-	-	-	-	0P_b8	0 1	Current number of hit points in analysis window 6	
	17	wActObjPtsAW6 (LowByte)	0P_b7	OP_b6	OP_b5	OP_b4	0P_b3	0P_b2	0P_b1	0P_b0	0 255	our crit humber of the points in analysis window o	
	18	wActObjPtsAW7 (HighByte)	-	-	-	•	-	-	-	0P_b8	0 1	Current number of hit points in analysis window 7	
M4	19	wActObjPtsAW7 (LowByte)	0P_b7	OP_b6	OP_b5	0P_b4	0P_b3	0P_b2	0P_b1	0P_b0	0 255	our che number of the points in unarysis window 7	
24 byte	20	wActObjPtsAW8 (HighByte)	-	-	-	-	-	-	-	0P_b8	0 1	Current number of hit points in analysis window 8	
	21	wActObjPtsAW8 (LowByte)	0P_b7	OP_b6	OP_b5	0P_b4	0P_b3	0P_b2	0P_b1	0P_b0	0 255	our one rights of the points in analysis window o	
	22	wActObjPtsAW9 (HighByte)	-	-	-	-	-	-	-	0P_b8	0 1	Current number of hit points in analysis window 9	
	23	wActObjPtsAW9 (LowByte)	0P_b7	OP_b6	OP_b5	0P_b4	0P_b3	0P_b2	0P_b1	0P_b0	0 255	our one rights of the points in analysis window o	
	24	wActObjPtsAW10 (HighByte)	-	-	-	-	-	-	-	0P_b8	0 1	Current number of hit points in analysis window 10	
	25	wActObjPtsAW10 (LowByte)	0P_b7	OP_b6	OP_b5	0P_b4	0P_b3	0P_b2	0P_b1	0P_b0	0 255	our one number of the points in analysis window 10	
	26	wActObjPtsAW11 (HighByte)	-	-	-	-	-	-	-	0P_b8	0 1	Current number of hit points in analysis window 11	
	27	wActObjPtsAW11 (LowByte)	0P_b7	OP_b6	OP_b5	0P_b4	0P_b3	0P_b2	0P_b1	0P_b0	0 255	our one name of the points in analysis timas.	
	28	wActObjPtsAW12 (HighByte)	-	-	-	-	-	-	-	0P_b8	0 1	Current number of hit points in analysis window 12	
	29	wActObjPtsAW12 (LowByte)	0P_b7	OP_b6	OP_b5	0P_b4	0P_b3	0P_b2	0P_b1	0P_b0	0 255	our one number of the points in analysis throat 12	
M5	30	wActObjPtsAW13 (HighByte)	-	-	-	-	-	-	-	0P_b8	0 1	Current number of hit points in analysis window 13	
38 byte 31	-	wActObjPtsAW13 (LowByte)	0P_b7	OP_b6	OP_b5	0P_b4	0P_b3	0P_b2	0P_b1	0P_b0	0 255	our one name of the points in analysis timash to	
	32	wActObjPtsAW14 (HighByte)	-	-	-	-	-	-	-	0P_b8	0 1	Current number of hit points in analysis window 14	
	33	wActObjPtsAW14 (LowByte)	OP_b7	OP_b6	OP_b5	OP_b4	0P_b3	0P_b2	0P_b1	0P_b0	0 255	2	
	34	wActObjPtsAW15 (HighByte)	-	-	-	-	-	-	-	0P_b8	0 1	Current number of hit points in analysis window 15	
	35	wActObjPtsAW15 (LowByte)	0P_b7	0P_b6	0P_b5	0P_b4	0P_b3	0P_b2	0P_b1	OP_b0	0 255	2	
	36	wActObjPtsAW16 (HighByte)	-	-	-	-	-	-	-	0P_b8	0 1	Current number of hit points in analysis window 16	
	37	wActObjPtsAW16 (LowByte)	0P_b7	OP_b6	OP_b5	0P_b4	0P_b3	0P_b2	0P_b1	0P_b0	0 255	out one frame of the points in analysis willdow 10	


You can find detailed information in the technical description of the LRS 36.

PROFIBUS accessories

Ready-made cables with M12 connector and open end

M12 socket (B coded) M12 connector (B coded)

Contact M12 connector M12 socket	Signal	Colour
1	n.c.	
2	A/N	green
3	n.c.	
4	B/P	red
5	n.c.	
Screw connection	Shield	bright

Part no.	Type designation	Description
50104181	KB PB-2000-BA	M12 socket for BUS IN, axial connector, open cable end, cable length 2m
50104180	KB PB-5000-BA	M12 socket for BUS IN, axial connector, open cable end, cable length 5m
50104179	KB PB-10000-BA	M12 socket for BUS IN, axial connector, open cable end, cable length 10m
50104188	KB PB-2000-SA	M12 connector for BUS OUT, axial connector, open cable end, cable length 2m
50104187	KB PB-5000-SA	M12 connector for BUS OUT, axial connector, open cable end, cable length 5m
50104186	KB PB-10000-SA	M12 connector for BUS OUT, axial connector, open cable end, cable length 10m
50104097	KB PB-2000-SBA	M12 connector + M12 socket for Profibus, axial connector, cable length 2m
50104098	KB PB-5000-SBA	M12 connector + M12 socket for Profibus, axial connector, cable length 5m
50104099	KB PB-10000-SBA	M12 connector + M12 socket for Profibus, axial connector, cable length 10m

PROFIBUS terminating resistor

Part no.	Type designation	Description
50038539	TS 02-4-SA M12	M12 connector with integrated terminating resistor for BUS OUT

PROFIBUS Y plug adapter

Part no.	Type designation	Description
50109834	KDS BUS OUT M12-T-5P	M12 T-connector for BUS OUT

PROFIBUS GSD file

∧ Notice!

The current version of the GSD file **LEUZE401.GSD** for the LRS 36/PB can be found on the Leuze website at **Download -> detect -> Measuring sensors**.