## Sensore a sezione ottica per il riconoscimento di oggetti

# Disegno quotato





- С
- Asse ottico
- D X1: spina M12x1, a 8 poli, codifica A
- Е X2: presa M12x1, a 4 poli, codifica D
- F X3: presa M12x1, a 8 poli, codifica A (solo LRS 36/6)
- G X4: presa M12x1, a 5 poli, codifica B (solo LRS 36/PB)
- н Vite PE
- Display OLED e tastiera a membrana J
- κ Filettatura M4, profondità 4,5
- Supporto per sistema di fissaggio BT 56 / BT 59 L
- Punto zero ed orientamento del sistema di coordinate per i dati di misura М

## Campo di rilevamento, tipico





hunhun

14 18 - 30 V PRQĘĮ 古 白 DC BUŚL ETHERNET

- Sensore a sezione ottica per il riconoscimento di oggetti •
- Tempo di reazione 10ms
- Campo di riconoscimento: 200 ... 800mm
- Lunghezza della linea laser: max. 600mm
- Interfaccia integrata PROFIBUS o 4 uscite di commutazione
- Parametrizzazione mediante Fast Ethernet
- Display OLED con tastiera a membrana come elemento ausiliario di posizionamento e per l'indicazione dello stato: «funzione di ispezione impostata»
- Visualizzazione dei valori misurati in mm su display OLED come ausiliario di posizionamento
- Fino a 16 campi di riconoscimento con possibilità di operazioni logiche
- Fino a 16 compiti di ispezione
- Ingresso di attivazione, ingresso di trigger, uscita in cascata
- Collegamento PROFIBUS mediante • adattatore a Y

Con



## Accessori:

- (da ordinare a parte)
- Sistema di fissaggio BT 56, BT 59
- Cavi con connettore M12 (K-D ...)

# ▲ Leuze electronic

## **LRS 36**

| LED    | Stato   | Indicazione nel<br>servizio di misura |
|--------|---------|---------------------------------------|
| Verde  | Costan- | Sensore pronto                        |
|        | temente |                                       |
|        | acceso  |                                       |
|        | Spento  | Sensore non pronto                    |
| Giallo | Costan- | Collegamento                          |
|        | temente | Ethernet attivo                       |
|        | acceso  |                                       |
|        | Lampeg- | Trasmissione dati                     |
|        | giante  | Ethernet attiva                       |
|        | Spento  | Nessun collega-                       |
|        |         | mento Ethernet                        |

## Diagrammi



## E Grandezza minima dell'oggetto(tipi-



## Note

- Uso conforme: Questo prodotto deve essere messo in servizio solo da personale specializzato ed utilizzato conformemente all'uso previsto. Questo sensore non è un sensore di sicurezza e non serve alla protezione di persone
- Tempo di riscaldamento: Il Sensore a sezione ottica raggiunge la temperatura operativa necessaria per il riconoscimento ottimale di oggetti dopo un tempo di riscaldamento di 30 minuti.

Per UL: CAUTION - Use of controls or adjustments or performance of procedures other than spe-cified herein may result in hazardous light exposure.

## Dati tecnici

## Dati ottici

#### Campo di rilevamento 1) Sorgente luminosa Lunghezza d'onda Max. potenza in uscita Durata dell'impulso Linea laser

Riconoscimento di oggetti Grandezza minima dell'oggetto in direzione  $\mathbf{x}^{(2)} = 2 \dots 3$ mm Grandezza minima dell'oggetto in direzione  $\mathbf{z}^{(2)} = 2 \dots 6$ mm

#### Comportamento temporale Tempo di reazione

Tempo di inizializzazione Dati elettrici Tensione di esercizio U<sub>B</sub> <sup>3)</sup> **Ripple residuo** 

Corrente a vuoto Interfaccia Ethernet Uscite di commutazione

Ingressi

Tensione di segnale high/low

#### PROFIBUS (solo LRS 36/PB)

Tipo di interfaccia Protocolli Velocità di trasmissione

#### Indicatori

#### Dati meccanici

Alloggiamento Copertura ottica Peso Tipo di collegamento

#### Dati ambientali

Temp. ambiente (esercizio/magazzino) Circuito di protezione 6) Classe di protezione VDE Grado di protezione Classe laser

#### Norme di riferimento

- Fattore di remissione 6 % ... 90 %, campo di rilevamento totale, a 20 °C dopo 30 min di tempo di riscaldamento, campo medio U<sub>B</sub>
- Valore minimo, in funzione della distanza e dell'oggetto, è necessaria una prova nelle condizioni dell'applicazione Per applicazioni UL: solo per l'utilizzo in circuiti «Class 2» secondo NEC 2)
- 3)
- Le uscite di commutazione push-pull non devono essere collegate in parallelo 4)
- Numero di campi di riconoscimento: fino a 16 con possibilità di operazioni logiche 5)
- Numero di compiti di ispezione: fino a 16 (di cui 8 attivabili tramite ingressi)

1=protezione contro i transienti rapidi, 2=protezione contro l'inversione di polarità, 3=protezione contro i cortocircuiti per tutte le uscite, circuito di protezione esterno necessario per carichi induttivi

200 ... 800mm (direzione z)

658nm (luce rossa visibile)

600x3mm per 800mm

≥10ms (configurabile)

18 ... 30VCC (con ripple residuo)  $\leq$  15 % di  $U_B$ 

1 x RS 485 su X4 (solo LRS 36/PB)

collegamento Ethernet presente trasmissione dati Ethernet attiva collegamento Ethernet assente

-30°C ... +50°C/-30°C ... +70°C

1, 2, 3 III, bassa tensione di protezione

con Laser Notice No. 50)

IEC/EN 60947-5-2, UL 508

telaio di alluminio con coperchio di plastica

2M (a norma EN 60825-1 e 21 CFR 1040.10

2

PROFIBUS DP/DPV1 slave

9,6kBaud ... 6MBaud

1 (pronto) / 100 mA / push-pull <sup>4)</sup> su X1

1 (collegamento in cascata) / 100 mA / push-pull <sup>4)</sup> su X1 4 / 100mA / push-pull <sup>4) 5)</sup> su X3 (solo LRS 36/6)

3 (selezione compito di ispezione) su X3 (solo LRS 36/6)

laser

3ms

< 8mW

circa 1,5s

≤ 200 mA UDP

(trigger) su X1

≥ (U<sub>B</sub>-2V)/≤ 2V

stand-by nessuna tensione

vetro

620g

IP 67

connettore M12

(attivazione) su X1

## Occupazione interfacce

| X1 - logica e Power                         |                                  |        |  |  |  |  |  |
|---------------------------------------------|----------------------------------|--------|--|--|--|--|--|
| N. pin                                      | Segnale                          | Colore |  |  |  |  |  |
| 1                                           | +24VCC                           | bi     |  |  |  |  |  |
| 2                                           | InAct (attivazione)              | ma     |  |  |  |  |  |
| 3                                           | GND                              | ve     |  |  |  |  |  |
| 4                                           | OutReady (pronto)                | gi     |  |  |  |  |  |
| 5                                           | InTrig (trigger)                 | gr     |  |  |  |  |  |
| 6                                           | OutCas (collegamento in cascata) | rs     |  |  |  |  |  |
| 7                                           | Non collegare                    | bl     |  |  |  |  |  |
| 8                                           | Non collegare                    | ro     |  |  |  |  |  |
| Connettore a spina M12 a 8 poli, codifica A |                                  |        |  |  |  |  |  |



X3 - logica (solo LRS 36/6) N. pin Segnale Colore Out4 bi Out3 ma 3 GND ve 4 Out2 gi 5 Out1 gr 6 InSel3<sup>1)</sup> rs InSel2<sup>1)</sup> bl 7 InSel1 1) 8 ro Presa M12 a 8 poli, codifica A

1) I 3 ingressi di commutazione InSel1-3 servono a selezionare il compito di ispezione (Inspection Task) 0-7. «000» significa Inspection task 0, «001» Inspection task 1, ecc. Il tempo di commutazione tra 2 Inspection Task è < 100ms

Presa M12 a 5 poli, codifica B

Grandezza

### Sensore a sezione ottica per il riconoscimento di oggetti

#### Per ordinare gli articoli

| Codice articolo      | Designazione          | Line Range Sensor                                                                                                                           |
|----------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 50111330<br>50111332 | LRS 36/6<br>LBS 36/PB | con ingressi/uscite binari<br>con il PROFIBUS DP/DP/1 (ner il collegamento del sensore è necessario l'adattatore a V. vedere gli accessori) |
| 30111332             | LI10 30/1 D           | con in monibos bi /bi vi (per in conegamento dei sensore e necessario i adattatore a 1, vedere gii accessori)                               |

## Parametrizzazione - Realizzazione del collegamento con il PC

L'LRS viene configurato mediante un PC con il programma LRSsoft prima di essere integrato nel controllo del processo.

Per poter attivare una comunicazione UDP con il PC, l'indirizzo IP del PC e l'indirizzo IP dell'LRS devono essere all'interno dello stesso campo di indirizzo. Poiché l'LRS non possiede un client DHCP incorporato, l'indirizzo deve essere impostato manualmente. Il modo più semplice di farlo è sul PC.

#### Avviso!

ן ן

Se si utilizza un Desktop Firewall, assicurarsi che il PC comunichi con l'LRS mediante l'interfaccia Ethernet via UPD sulle porte 9008 e 5634. Il firewall non deve inoltre bloccare i messaggi ICMP Echo per il test di collegamento (Ping).

Collegando il PC con assegnazione di indirizzo DHCP ad una rete, il modo più semplice per accedere all'LRS consiste nel creare una configurazione alternativa nelle impostazioni TCP/IP del PC e nel collegare l'LRS direttamente con il PC.

Sontrollare l'indirizzo di rete dell'LRS premendo, con LRS nel servizio normale, due volte di seguito → poi due volte V e quindi di nuovo →.

In questo modo si accede al sottomenu Ethernet e si possono leggere in sequenza le impostazioni attuali dell'LRS premendo ripetutamente ▼.

🕏 Annotarsi i valori di IP-Address e Net Mask Addr.

Il valore in Net Mask Addr. indica quali cifre dell'indirizzo IP del PC e dell'LRS devono essere uguali, in modo che possano comunicare l'uno con l'altro.

| Indirizzo dell'LRS | Maschera di rete | Indirizzo del PC |
|--------------------|------------------|------------------|
| 192.168.060.003    | 255.255.255.0    | 192.168.060.xxx  |
| 192.168.060.003    | 255.255.0.0      | 192.168.xxx.xxx  |

Al posto di xxx si può ora assegnare al PC un numero qualsiasi compreso tra 000 e 255, tuttavia NON LO STESSO dell'LRS.

Ad esempio 192.168.060.110 (ma non 192.168.060.003). Se l'LRS ed il PC hanno lo stesso indirizzo IP, essi non possono comunicare tra loro.

#### Impostazione dell'indirizzo IP sul PC

- & Eseguire il login nel PC come amministratore.
- Ø Mediante Start -> Pannello di controllo accedere al menu Connessioni di rete (Windows XP) o Centro connessioni di rete e condivisione (Windows Vista).
- ♦ In esso selezionare Connessione alla rete locale (LAN) e con il tasto destro del mouse selezionare la voce di menu Proprietà.
- Selezionare Protocollo Internet (TCP/IP) (se necessario far scorrere l'elenco verso il basso) e fare clic su Proprietà.
- Impostare l'indirizzo IP del PC nel campo di indirizzo dell'LRS. Attenzione: non lo stesso dell'LRS!
- Simpostare la Subnet mask del PC sullo stesso valore di quella dell'LRS.
- ♦ Chiudere il dialogo delle impostazioni confermando tutte le finestre con 0K.
- ♦ Collegare l'interfaccia X2 dell'LRS direttamente con la porta LAN del PC. Per il collegamento usare un cavo KB ET-...-SA-RJ45.

Il PC tenta innanzitutto di collegarsi alla rete mediante la configurazione automatica. Ciò richiede qualche secondo dopodiché viene attivata la configurazione alternativa impostata, con la quale il PC può comunicare con l'LRS. Per le avvertenze sulla configurazione dell'LRS con il software **LRSsoft** consultare la descrizione tecnica.



#### Messa in servizio

#### ∩ Avviso!

La parametrizzazione della variante LRS 36/PB dell'apparecchio PROFIBUS avviene come per tutte le varianti via Ethernet tramite il software **LRSsoft**. Per informazioni sulla messa in servizio della variante LRS 36/PB dell'apparecchio PROFIBUS vedere alla fine di questo documento e nella descrizione tecnica.

- 1. Configurare l'LRS vedere la descrizione tecnica nel capitolo 8.
- 2. Programmare il controllo di processo vedere il capitolo 9 della descrizione tecnica. Oppure
- 3. Collegare opportunamente gli ingressi e le uscite di commutazione vedere il capitolo 6 della descrizione tecnica.
- 4. Adattare la configurazione IP dell'LRS in modo che possa comunicare con il controllo di processo. Ciò può essere eseguito mediante il display dell'LRS o con LRSsoft nell'area Configuration. Qui si possono modificare sia l'indirizzo di rete e la relativa maschera di rete sia le porte attraverso le quali l'LRS comunica con il controllo di processo.

| IP Configuration       | Client / PC                |       |
|------------------------|----------------------------|-------|
| IP Address: 192.168    | 8.60.3 Port: 563           | 4     |
| Port:                  | 9008                       |       |
| Subnet Mask: 255.255.2 | 255.0                      |       |
|                        |                            |       |
| Accept                 | Check Connectivity Use Pre | esets |

5. Salvare le nuove impostazioni nell'LRS con il comando Configuration->Transmit to sensor.

6. Collegare l'LRS al controllo di processo mediante l'interfaccia Ethernet.

7. Se necessario realizzare i collegamenti per l'attivazione, il triggering ed il collegamento in cascata.

## Installazione del software di parametrizzazione

#### Requisiti del sistema

II PC utilizzato deve soddisfare i seguenti requisiti:

- Processore Pentium<sup>®</sup> o Intel più veloce<sup>®</sup> > 1,5 GHz (Pentium 4, Celeron, Xeon) o modelli compatibili di AMD<sup>®</sup> (Athlon 64,
- Opteron, Sempron). Il processore deve supportare l'insieme di comandi SSE2 Memoria di lavoro (RAM) di almeno 512 MB, si raccomandano 1024 MB
- Lettore CD
- Hard disk con almeno 1 GB di capacità libera
- Porta Ethernet
- Microsoft® Windows XP SP2/3 / Vista SP1

#### Installazione

٦

#### O Avviso!

Disinstallare un eventuale Matlab Runtime prima di iniziare l'installazione di LXSsoft-Suite.

Il programma di installazione LXSsoft\_Suite\_Setup.exe si trova sul CD in dotazione.

Γ

## Sensore a sezione ottica per il riconoscimento di oggetti

#### O Avviso!

Copiare questo file dal CD ad un'apposita cartella sull'hard disk.

# Per i prossimi passi sono necessari i **diritti di** amministratore.

- Avviare l'installazione con un doppio clic sul file LXSsoft\_Suite\_Setup.exe.
- ♦ Nella prima finestra fare clic su Next.

Nella finestra successiva si può scegliere se installare solo **LRSsoft** o anche **LPSsoft**.

**LPSsoft** è necessario per configurare con il computer anche sensori a sezione ottica della serie LPS.

La prima opzione MATLAB Compiler Runtime non può essere deselezionata, in quanto questo componente è indispensabile.

Selezionare le opzioni desiderate e fare clic su Next; nella finestra successiva fare clic su Install.

Si avvia la routine di installazione. Dopo qualche secondo si apre la finestra di selezione della lingua per l'installazione di Matlab Compiler Runtime (MCR), il quale serve per la visualizzazione 3D in **LPSsoft** ed è disponibile solo in inglese o in giapponese.

Vella finestra Choose Setup Language si consiglia pertanto di mantenere l'opzione English. Fare clic su OK.

A seconda della configurazione di Windows può comparire anche il dialogo a fianco (componente mancante VCREDIST X86).

♦ Fare clic su Install.

Si aprono altre due finestre di installazione, nelle quali non si devono eseguire operazioni.



# <u>Leuze electronic</u>

## **LRS 36**

Dopo qualche tempo (anche diversi minuti, a seconda della configurazione del sistema) compare la schermata iniziale del programma di installazione di MCR.

& Fare clic su Next.



- Si apre la finestra di immissione dei dati dell'utente.
- Immettere il nome dell'utente ed il nome dell'azienda e quindi fare clic su Next.
- Vella finestra di selezione del percorso di installazione (Destination Folder) è indispensabile mantenere la cartella preassegnata.
- Il percorso standard è
- C:\Programmi\MATLAB\MATLAB Compiler Runtime\.
- & Fare clic su Next e, nella finestra successiva, su Install.

L'installazione ha inizio e si apre la finestra di stato a fianco. L'installazione può richiedere qualche minuto.

Al termine dell'installazione di MCR si apre la finestra InstallShield Wizard Completed.

& Fare clic su Finish per concludere l'installazione di MCR.



| 🕼 MATLAB(R) Compiler Runtime 7.9 - InstallShield Wizard |                                                                                                                         |   |  |  |  |  |  |
|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---|--|--|--|--|--|
| Installing MATLAB(R) Compiler Runtime 7.9               |                                                                                                                         |   |  |  |  |  |  |
| The program features you selected are being installed.  |                                                                                                                         |   |  |  |  |  |  |
| Please wait wh<br>Runtime 7.9. 1                        | nile the InstallShield Wizard installs MATLAB(R) Compiler<br>This may take several minutes.                             |   |  |  |  |  |  |
| 🙀 MATLAB(R) Compiler Runt                               | ime 7.9 - InstallShield Wizard                                                                                          | × |  |  |  |  |  |
| MATLAB<br>Compiler Runtime                              | InstallShield Wizard Completed                                                                                          |   |  |  |  |  |  |
|                                                         | The InstallShield Wizard has successfully installed MATLAB(R)<br>Compiler Runtime 7.9. Click Finish to exit the wizard. |   |  |  |  |  |  |
|                                                         |                                                                                                                         |   |  |  |  |  |  |
|                                                         |                                                                                                                         |   |  |  |  |  |  |
| 📣 The MathWorks                                         |                                                                                                                         |   |  |  |  |  |  |
|                                                         | < Back Finish Cancel                                                                                                    |   |  |  |  |  |  |

## Sensore a sezione ottica per il riconoscimento di oggetti

Ora si apre la finestra di selezione del percorso di installazione di **LRSsoft**.

♦ Non modificare la cartella preassegnata e fare clic su Next.

L'installazione di **LRSsoft** ha inizio. Se per l'installazione è stato selezionato anche **LPSsoft**, al termine dell'installazione di **LRSsoft** si riapre la stessa finestra di immissione del percorso di installazione di **LPSsoft**.

Son modificare nemmeno qui la cartella preassegnata e fare clic su Next.



Al termine dell'installazione si apre la finestra a fianco.

La routine di installazione ha generato nel menu Start un nuovo gruppo di programmi Leuze electronic contenente i programmi LRSsoft ed eventualmente LPSsoft.

Fare clic su Finish ed avviare il programma desiderato selezionandolo nel menu Start.



## Possibili messaggi di errore

A seconda della configurazione del sistema si può ora presentare il messaggio di errore a fianco. La sua causa è un bug nella routine di installazione di MCR, la quale in alcuni sistemi non setta correttamente la variabile di ambiente Percorso.

Ciò può essere tuttavia corretto facilmente senza dover reinstallare MCR.

- Ø Aprire la finestra Proprietà del sistema che si trova nel Pannello di controllo di Windows in Sistema.
- Selezionare il registro Avanzate e fare clic su Variabili d'ambiente.
- Si apre la finestra Variabili d'ambiente.
- Vell'area Variabili di sistema far scorrere l'elenco verso il basso fino ad individuare la voce Path.
- & Fare clic su Path e quindi su Modifica
- Si apre la finestra Modifica variabile di sistema.

Alla fine del campo Valore di questa finestra si deve trovare la voce;C:\Programmi\MATLAB\MATLAB Compiler Runtime\v79\runtime\win32.

- Se questa voce manca, copiarla dal presente documento ed incollarla alla fine del campo insieme ad un punto e virgola anteposto ad essa.
- Poi fare clic su ок е chiudere tutte le altre finestre con ок.
- Chiudere e riavviare Windows ed avviare poi LRSsoft mediante un doppio clic.

Si apre quindi la schermata iniziale di **LRSsoft**, come presentato nel capitolo 8 della descrizione tecnica LRS.



# LPS\_Visualization.exe - Komponente nicht gefunden X Die Anwendung konnte nicht gestartet werden, weil mcImcrrt79.dl nicht gefunden wurde. Neuinstallation der Anwendung könnte das Problem beheben.

**LRS 36** 

## Variante LRS 36/PB dell'apparecchio PROFIBUS

#### Informazioni generali - Caratteristiche tecniche

La parametrizzazione del sensore si effettua, come per tutte le varianti dell'apparecchio, mediante il software di parametrizzazione LRSsoft.

L'LRS 36/PB è concepito come slave compatibile PROFIBUS DP/DPV1. La funzione di ingresso/uscita del sensore è definita tramite il relativo file GSD. La velocità di trasmissione dei dati da trasmettere ammonta a max. 6Mbit/s in condizioni di produzione.

#### Impostazione dell'indirizzo PROFIBUS:

L'LRS 36/PB supporta il riconoscimento automatico della velocità di trasmissione e l'assegnazione di indirizzo automatica mediante il PROFIBUS. In alternativa si può impostare l'indirizzo PROFIBUS mediante il display e la tastiera a membrana o mediante il software di parametrizzazione **LRSsoft**.

#### **Collegamento PROFIBUS**

Il collegamento al PROFIBUS si effettua mediante la presa M12 a 5 poli X4 con un adattatore a Y per spina esterno. L'assegnazione corrisponde allo standard PROFIBUS. L'adattatore a Y per spina permette la sostituzione dell'LRS 36/PB senza interruzione della linea PROFIBUS. L'adattatore a Y per spina esterno è anche necessario quando l'LRS 36/PB è l'ultimo nodo del bus. In questo caso vi verrà collegata la resistenza terminale del bus esterna (terminazione). All'X4 è applicata l'alimentazione a 5V della terminazione attiva (pin 1). Questa viene trascinata avanti solo attraverso il lato di uscita dell'adattatore a Y per spina.

#### Funzionamento simultaneo su Ethernet e PROFIBUS

- Nella modalità di misura, Ethernet e PROFIBUS possono essere utilizzati contemporaneamente come interfacce a pieno valore.
- Se il sensore viene parametrizzato con LRSsoft e contemporaneamente messo in funzionamento sul PROFIBUS, le richieste provenienti dal dispositivo di comando vengono elaborate con ritardo e i dati di processo vengono attualizzati con ritardo (riconoscibile dai numeri di scansione in lento aumento). L'aggiornamento dei dati di processo avviene ogni 200ms. Per la parametrizzazione dell'LRS 36/PB con LRSsoft è necessario stabilire se la commutazione della funzione di ispezione (inspection task) può essere effetuata dal PROFIBUS o dall'LRSsoft. Questa viene impostata tramite la casella di controllo Enable External Inspection Task Selection.

# ○ Avviso! ☐ Quando

Quando l'**LRSsoft** ha effettuato un collegamento con l'LRS 36/PB, il software attiva il sensore in modalità di parametrizzazione. L'indice di attualizzazione ammonta a massimo 5Hz. Il lampeggio del raggio laser permette di riconoscere se il sensore si trova in modalità Free Running.

 Se il sensore si trova in modalità menu o di comando, è possibile una comunicazione tramite PROFIBUS. Le richieste del dispositivo di comando non vengono elaborate e i dati di processo sono congelati (riconoscibile dal numero di scansione costante).

#### Informazioni generali sul file GSD

La funzionalità degli ingressi/delle uscite del sensore per il dispositivo di comando viene definita mediante un modulo. Con un tool di progettazione specifico per l'utente il modulo necessario viene integrato durante la creazione del programma PLC e parametrizzato conformemente all'applicazione.

La descrizione dei moduli è contenuta in forma breve in questa scheda dati. Per la descrizione dettagliata vedere la documentazione tecnica.



#### Avviso!

È necessario attivare un modulo dal file GSD nel tool di progettazione del dispositivo di comando, di norma il modulo M1 o M2.

A scopo di test, si possono modificare i parametri tramite il display su un LRS 36/PB funzionante sul PROFIBUS. Durante questo tempo non è possibile il riconoscimento di oggetti sul PROFIBUS.

#### O Avviso!

Tutti i moduli di ingresso ed uscita descritti nella documentazione sono **descritti dal punto di vista del dispositivo di comando**: Gli ingressi descritti (I) sono ingressi del dispositivo di comando. Le uscite descritte (O) sono uscite del dispositivo di comando. I parametri descritti (P) sono parametri del file GSD nel dispositivo di comando.

L'LRS 36/PB ha uno slot di modulo. Con la selezione del modulo corrispondente dal GSD vengono impostati i dati di processo dell'LRS 36/PB da trasmettere. È possibile scegliere tra più moduli. A cominciare dal modulo di ingresso più semplice **M1**, si aggiungono rispettivamente nei moduli seguenti nuovi ingressi. Tutti i dati di uscita disponibili sono già contenuti nel modulo **M1**. I moduli con numeri più alti contengono rispettivamente i moduli con numeri più bassi (esempio: l'**M2** contiene l'**M1** e le estensioni dell'**M2**).

#### O Avviso!

ן

Con numero di modulo in incremento aumentano anche i byte di dati utili da trasmettere.

La frequenza di misura massima di 100Hz può essere garantita solo fino al modulo M3.

Pertanto si devono scegliere solo i moduli che contengono i dati effettivamente necessari, ossia deve essere scelto il numero di modulo più piccolo possibile.

## Sensore a sezione ottica per il riconoscimento di oggetti

## Panoramica sui moduli del file GSD

#### Dati di uscita (dal punto di vista del dispositivo di comando)

| Dociziono  | osizione Name |        | Bit nel byte |        |        |        |        |        |            | Campo di valori | Cignificato                                          |  |
|------------|---------------|--------|--------------|--------|--------|--------|--------|--------|------------|-----------------|------------------------------------------------------|--|
| FUSIZIUIIC | Name          | Bit7   | Bit6         | Bit5   | Bit4   | Bit3   | Bit2   | Bit1   | Bit0       | Gampo ur valori | Significato                                          |  |
| 0          | uTrigger      | Trig_7 | Trig_6       | Trig_5 | Trig_4 | Trig_3 | Trig_2 | Trig_1 | Trig_0     | 0 255           | Trigger via PROFIBUS (in caso di modifica)           |  |
| 1          | uActivation   | -      | -            | -      | -      | -      | -      | -      | Act_0<br>n | 0 1             | Attivazione (=1) o disattivazione (=0) del sensore   |  |
| 2          | ulnspTask     |        | -            | -      | -      | IT_b3  | IT_b2  | IT_b1  | IT_b0      | 0 15            | Inspection Task del master PROFIBUS e Save-Flag (B7) |  |

#### Dati di ingresso (dal punto di vista del dispositivo di comando)

| Modulo   | Posizione | Nomo                      | Bit nel byte |        |        |        |        |        | Campo | Cignificato |           |                                                           |
|----------|-----------|---------------------------|--------------|--------|--------|--------|--------|--------|-------|-------------|-----------|-----------------------------------------------------------|
| GSI      | (byte)    | Name                      | Bit7         | Bit6   | Bit5   | Bit4   | Bit3   | Bit2   | Bit1  | Bit0        | di valori | Signinicato                                               |
|          | 0         | wScanNum (HighByte)       | SN_b15       | SN_b14 | SN_b13 | SN_b12 | SN_b11 | SN_b10 | SN_b9 | SN_b8       | 0 255     | Numero di scansione (Highbyte)                            |
| M1       | 1         | wScanNum (LowByte)        | SN_b7        | SN_b6  | SN_b5  | SN_b4  | SN_b3  | SN_b2  | SN_b1 | SN_b0       | 0 255     | Numero di scansione (Lowbyte)                             |
| 4 byte   | 2         | uSensorInfo               | Out4         | Out3   | Out2   | Out1   | IT_b3  | IT_b2  | IT_b1 | IT_b0       | 0 255     | SensorInfo (n. funzione di ispezione, stato delle uscite) |
|          | 3         | uSensorState              | ErrM         | Cmd    | Menu   | Meas   | ErrF   | WarnF  | activ | connect     | 0 255     | Stato del sensore                                         |
| M2       | 4         | wResultAWs (HighByte)     | AW16         | AW15   | AW14   | AW13   | AW12   | AW11   | AW10  | AW9         | 0 255     | Stato dell'AWs (Highbyte)                                 |
| 6 byte   | 5         | wResultAWs (LowByte)      | AW8          | AW7    | AW6    | AW5    | AW4    | AW3    | AW2   | AW1         | 0 255     | Stato dell'AWs (Lowbyte)                                  |
|          | 6         | wActObjPtsAW1 (HighByte)  | -            | -      | -      | -      | -      | -      | -     | 0P_b8       | 0 1       | Numero attuale dei punti dell'oggetto nella finestra di   |
|          | 7         | wActObjPtsAW1 (LowByte)   | 0P_b7        | OP_b6  | 0P_b5  | 0P_b4  | OP_b3  | 0P_b2  | 0P_b1 | 0P_b0       | 0 255     | analisi 1                                                 |
|          | 8         | wActObjPtsAW2 (HighByte)  | -            | -      | -      | -      | -      | -      | -     | 0P_b8       | 0 1       | Numero attuale dei punti dell'oggetto nella finestra di   |
|          | 9         | wActObjPtsAW2 (LowByte)   | 0P_b7        | OP_b6  | 0P_b5  | 0P_b4  | OP_b3  | 0P_b2  | 0P_b1 | 0P_b0       | 0 255     | analisi 2                                                 |
| M3       | 10        | wActObjPtsAW3 (HighByte)  | -            | -      | -      | -      | -      | -      | -     | 0P_b8       | 0 1       | Numero attuale dei punti dell'oggetto nella finestra di   |
| 16 byte  | 11        | wActObjPtsAW3 (LowByte)   | 0P_b7        | 0P_b6  | 0P_b5  | 0P_b4  | 0P_b3  | 0P_b2  | 0P_b1 | 0P_b0       | 0 255     | analisi 3                                                 |
|          | 12        | wActObjPtsAW4 (HighByte)  | -            | -      | -      | -      | -      | -      | -     | 0P_b8       | 0 1       | Numero attuale dei punti dell'oggetto nella finestra di   |
|          | 13        | wActObjPtsAW4 (LowByte)   | 0P_b7        | OP_b6  | 0P_b5  | OP_b4  | 0P_b3  | 0P_b2  | 0P_b1 | 0P_b0       | 0 255     | analisi 4                                                 |
|          | 14        | wActObjPtsAW5 (HighByte)  | -            | -      | -      | -      | -      | -      | -     | 0P_b8       | 0 1       | Numero attuale dei punti dell'oggetto nella finestra di   |
|          | 15        | wActObjPtsAW5 (LowByte)   | 0P_b7        | OP_b6  | 0P_b5  | 0P_b4  | 0P_b3  | 0P_b2  | 0P_b1 | 0P_b0       | 0 255     | analisi 5                                                 |
|          | 16        | wActObjPtsAW6 (HighByte)  | -            | -      | -      | -      | -      | -      | -     | 0P_b8       | 0 1       | Numero attuale dei punti dell'oggetto nella finestra di   |
|          | 17        | wActObjPtsAW6 (LowByte)   | 0P_b7        | OP_b6  | 0P_b5  | OP_b4  | 0P_b3  | 0P_b2  | 0P_b1 | 0P_b0       | 0 255     | analisi 6                                                 |
|          | 18        | wActObjPtsAW7 (HighByte)  | -            | -      | -      | -      | -      | -      | -     | 0P_b8       | 0 1       | Numero attuale dei punti dell'oggetto nella finestra di   |
| M4       | 19        | wActObjPtsAW7 (LowByte)   | 0P_b7        | OP_b6  | 0P_b5  | 0P_b4  | 0P_b3  | 0P_b2  | 0P_b1 | 0P_b0       | 0 255     | analisi 7                                                 |
| 24 bytes | 20        | wActObjPtsAW8 (HighByte)  | -            | -      | -      | -      | -      | -      | -     | 0P_b8       | 0 1       | Numero attuale dei punti dell'oggetto nella finestra di   |
|          | 21        | wActObjPtsAW8 (LowByte)   | 0P_b7        | OP_b6  | 0P_b5  | 0P_b4  | OP_b3  | 0P_b2  | 0P_b1 | 0P_b0       | 0 255     | analisi 8                                                 |
|          | 22        | wActObjPtsAW9 (HighByte)  | -            | -      | -      | -      | -      | -      | -     | 0P_b8       | 0 1       | Numero attuale dei punti dell'oggetto nella finestra di   |
|          | 23        | wActObjPtsAW9 (LowByte)   | 0P_b7        | OP_b6  | 0P_b5  | 0P_b4  | 0P_b3  | 0P_b2  | 0P_b1 | 0P_b0       | 0 255     | analisi 9                                                 |
|          | 24        | wActObjPtsAW10 (HighByte) | -            | -      | -      | -      | -      | -      | -     | 0P_b8       | 0 1       | Numero attuale dei punti dell'oggetto nella finestra di   |
|          | 25        | wActObjPtsAW10 (LowByte)  | 0P_b7        | OP_b6  | 0P_b5  | OP_b4  | 0P_b3  | 0P_b2  | 0P_b1 | 0P_b0       | 0 255     | analisi 10                                                |
|          | 26        | wActObjPtsAW11 (HighByte) | -            | -      | -      | -      | -      | -      | -     | 0P_b8       | 0 1       | Numero attuale dei punti dell'oggetto nella finestra di   |
|          | 27        | wActObjPtsAW11 (LowByte)  | 0P_b7        | OP_b6  | 0P_b5  | OP_b4  | 0P_b3  | 0P_b2  | 0P_b1 | 0P_b0       | 0 255     | analisi 11                                                |
|          | 28        | wActObjPtsAW12 (HighByte) | -            | -      | -      | -      | -      | -      | -     | 0P_b8       | 0 1       | Numero attuale dei punti dell'oggetto nella finestra di   |
|          | 29        | wActObjPtsAW12 (LowByte)  | 0P_b7        | OP_b6  | 0P_b5  | 0P_b4  | 0P_b3  | 0P_b2  | 0P_b1 | 0P_b0       | 0 255     | analisi 12                                                |
| M5       | 30        | wActObjPtsAW13 (HighByte) | -            | -      | -      | -      | -      | -      | -     | 0P_b8       | 0 1       | Numero attuale dei punti dell'oggetto nella finestra di   |
| 38 byte  | 31        | wActObjPtsAW13 (LowByte)  | 0P_b7        | OP_b6  | 0P_b5  | 0P_b4  | 0P_b3  | 0P_b2  | 0P_b1 | 0P_b0       | 0 255     | analisi 13                                                |
|          | 32        | wActObjPtsAW14 (HighByte) | -            | -      | -      | -      | -      | -      | -     | 0P_b8       | 0 1       | Numero attuale dei punti dell'oggetto nella finestra di   |
|          | 33        | wActObjPtsAW14 (LowByte)  | OP_b7        | OP_b6  | 0P_b5  | OP_b4  | OP_b3  | OP_b2  | 0P_b1 | OP_b0       | 0 255     | analisi 14                                                |
|          | 34        | wActObjPtsAW15 (HighByte) | -            | -      | -      | -      | -      | -      | -     | OP_b8       | 01        | Numero attuale dei punti dell'oggetto nella finestra di   |
|          | 35        | wActObjPtsAW15 (LowByte)  | OP_b7        | OP_b6  | 0P_b5  | 0P_b4  | 0P_b3  | OP_b2  | 0P_b1 | OP_b0       | 0 255     | analisi 15                                                |
|          | 36        | wActObjPtsAW16 (HighByte) | -            | -      | -      | -      | -      | -      | -     | OP_b8       | 0 1       | Numero attuale dei punti dell'oggetto nella finestra di   |
|          | 37        | wActObjPtsAW16 (LowByte)  | OP_b7        | OP_b6  | 0P_b5  | 0P_b4  | 0P_b3  | OP_b2  | 0P_b1 | OP_b0       | 0 255     | analisi 16                                                |

Per informazioni dettagliate vedere la descrizione tecnica dell'LRS 36.

## Accessori PROFIBUS

#### Cavi preconfezionati con connettori M12 ed estremità aperta



| Contatto<br>Connettore a spina M12<br>Presa M12 | Segnale | Colore |
|-------------------------------------------------|---------|--------|
| 1                                               | n.c.    |        |
| 2                                               | A/N     | Verde  |
| 3                                               | n.c.    |        |
| 4                                               | B/P     | Rosso  |
| 5                                               | n.c.    |        |
| Collegamento a vite                             | Schermo | Lucido |

| Cod. art | Codice di designazione | Descrizione                                                                                                    |
|----------|------------------------|----------------------------------------------------------------------------------------------------------------|
| 50104181 | KB PB-2000-BA          | Presa M12 per BUS IN, uscita assiale del cavo, estremità del cavo aperta, lunghezza del cavo 2m                |
| 50104180 | KB PB-5000-BA          | Presa M12 per BUS IN, uscita assiale del cavo, estremità del cavo aperta, lunghezza del cavo 5m                |
| 50104179 | KB PB-10000-BA         | Presa M12 per BUS IN, uscita assiale del cavo, estremità del cavo aperta, lunghezza del cavo 10m               |
| 5010/199 | KB DB 2000 SA          | Connettore a spine M12 per PUS OUT, useita assiale del cave, estremità del cave aporta, lunchezza del cave 2m  |
| 30104100 | KD F D-2000-3A         | connectore a spina wirz per bos oor, uscha assiale der cavo, estremita der cavo aperta, lunghezza der cavo zin |
| 50104187 | KB PB-5000-SA          | Connettore a spina M12 per BUS OUT, uscita assiale del cavo, estremità del cavo aperta, lunghezza del cavo 5m  |
| 50104186 | KB PB-10000-SA         | Connettore a spina M12 per BUS OUT, uscita assiale del cavo, estremità del cavo aperta, lunghezza del cavo 10m |
|          |                        |                                                                                                                |
| 50104097 | KB PB-2000-SBA         | Connettore a spina M12 + presa M12 per PROFIBUS, uscite assiali del cavo, lunghezza del cavo 2m                |
| 50104098 | KB PB-5000-SBA         | Connettore a spina M12 + presa M12 per PROFIBUS, uscite assiali del cavo, lunghezza del cavo 5m                |
| 50104099 | KB PB-10000-SBA        | Connettore a spina M12 + presa M12 per PROFIBUS, uscite assiali del cavo, lunghezza del cavo 10m               |

#### **Resistenza terminale PROFIBUS**

| Cod. art | Codice di designazione | Descrizione                                                   |
|----------|------------------------|---------------------------------------------------------------|
| 50038539 | TS 02-4-SA M12         | Connettore M12 con resistenza terminale integrata per BUS OUT |

#### Adattatore a Y per spina PROFIBUS

| Cod. art | Codice di designazione | Descrizione               |
|----------|------------------------|---------------------------|
| 50109834 | KDS BUS OUT M12-T-5P   | Pezzo a T M12 per BUS OUT |

#### File GSD PROFIBUS

Per la versione attuale del file GSD LEUZE401.GSD per l'LRS 36/PB vedere sul sito web Leuze sotto:

Per la versione attuale del file GSD LEUZE401 Download -> detect -> Measuring sensors.

<sup>⊖</sup> Avviso!