

- Two, large, easy-to-read displays for the simultaneous display of the signal value and the switching threshold
- Simple operation and easy-to-understand menu functions for optimum configuration
- Internal multiplex operation of up to six units
- Line teach or external transmitter activation
- Three different teach modes for fast sensor adjustment
- Switch for changing between light and dark switching
- One PNP or NPN switching output
- Indicator diode for operation and switching output

Dimensioned drawing

Mounting accessories

BTU LV463

$$
\text { Part no. } 50120869
$$

A Clamping lever for fiber optic cable (unlock in direction of arrow)
B Connection for fiber optics receiver
C Connection for fiber optics transmitter

Electrical connection

3-pin plug

Specifications

Optical data
Operating range/scanning range ${ }^{1)}$
Light source
Wavelength

Timing

Delay before start-up

	Signal range
Response time	
Switching frequency 2)	
Display area (digits)	
Electrical data	
Operating voltage U_{B}	
Residual ripple	
Open-circuit current	
Switching output	$\ldots / 4$.
Function	$\ldots / 2$.
Switching output time functions	
Adjustable times (time functions)	
Signal voltage high/low	
Output current	
Sensitivity	
Indicators	
Yellow LED	
Display	

Mechanical data
 Housing

Weight

Connection type

Fiber optic connection

Environmental data

Ambient temp. (operation/storage)
Protective circuit ${ }^{3}$)
Protection class
Standards applied

Options

Sensor adjustment

Throughbeam principle

up to 1050 mm
LED (modulated light)
660 nm (visible red light)
$\leq 500 \mathrm{~ms}$
$\begin{array}{ll}\text { High Speed (HS) } & \text { Standard (STD) } \\ 200 \mu \mathrm{~s} & 500 \mu \mathrm{~s} \\ 2500 \mathrm{~Hz} & 1000 \mathrm{~Hz} \\ 0 \ldots 4000 & 0 \ldots 4000\end{array}$

Scanning principle up to 270 mm
$12 \ldots 24 \mathrm{VDC} \pm 10 \%$
$\leq 10 \%$ of U_{B}
$\leq 40 \mathrm{~mA}$ @ 24 VDC
pin 4/black: PNP
pin 4/black: NPN
light/dark switching, adjustable by means of a switch switch-on/-off delay,
passing contact (on actuation or fall-back),
(combinations are limited
\rightarrow Combinations of timing functions)
0 ... 9999 ms
$\geq\left(\mathrm{U}_{\mathrm{B}}-2.5 \mathrm{~V}\right) / \leq 2.5 \mathrm{~V}$
$\leq 100 \mathrm{~mA}$
adjustable using the teach function or +/- buttons
switching output active
2×7-segment LED, 4-digit,
red: signal strength,
green: switching threshold
ABS/PC black/red, transparent PC cover
50 g with M8 connector
63 g with 2000 mm cable
70 g with 150 mm cable and M8/M12 connector
M8 connector, 4-pin, or
2000 mm cable, $4 \times 0.25 \mathrm{~mm}^{2}$, or
150 mm cable with M8 connector, 3-pin, or
150 mm cable with M8 connector, 4 -pin, or
150 mm cable with M12 connector, 4-pin
clamp-mounting, $2 \times \varnothing 2.2 \mathrm{~mm}$
$-10^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C} /-20^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
2, 3
IP 50, NEMA 1
EN 60947-5-2
menu-driven by means of display and rocker push button

1) Range/scanning range depending on the fiber optics used
2) With a duty cycle of $1: 1$
3) $2=$ polarity reversal protection, 3=short circuit protection for all outputs

Order guide

PNP types

Connection: M8 connector, 4-pin
Connection: cable $2000 \mathrm{~mm}, 4 \times 0.25 \mathrm{~mm}^{2}$
Connection: cable 150 mm with M8 connector, 4-pin Connection: cable 150 mm with M8 connector, 3-pin Connection: cable 150 mm with M12 connector, 4-pin

NPN types

Connection: M8 connector, 4-pin
Connection: cable $2000 \mathrm{~mm}, 4 \times 0.25 \mathrm{~mm}^{2}$
Connection: cable 150 mm with M8 connector, 4 -pin Connection: cable 150 mm with M8 connector, 3-pin Connection: cable 150 mm with M12 connector, 4-pin

Designation	Part no.
LV463.7/4T-M8	50118405
LV463.7/4T	50118404
LV463.7/4T-150-M8	50118406
LV463.7/4-150-M8.3	50119070
LV463.7/4T-150-M12	50118407

LV463.7/2T-M8	50118409
LV463.7/2T	50118408
LV463.7/2T-150-M8	50118410
LV463.7/2-150-M8.3	50119071
LV463.7/2T-150-M12	50118411

Remarks

\bigcirc Notice!

Detailed specifications on the range/scanning range are enclosed in the data sheets of our fiber optics type KF or KFX.

Explanation of the signal areas

High Speed (HS):
shortest response time; shortest operating range

Standard (STD):
response time and operating range suitable for many standard applications

Long Range (LR):
long operating range;
high-resolution display format; response time somewhat shorter

Extra Long Range (XLR):
longest operating range; high-resolution display format; short response time

- Approved purpose:

This product may only be used by qualified personnel and must only be used for the approved purpose. This sensor is not a safety sensor and is not to be used for the protection of persons.

LV463

Amplifier for fiber optics

Mounting the amplifier

Alternatively, the amplifier can also be mounted without a DIN rail using the mounting accessory and M3 screws.

Installing the fiber optics

(2)

(1) Open the transparent protective cover.
(2) Push down the lever of the fiber optic clamp to open.
(3) Lead the KF/KFX type fiber optics in completely as far as they will go (ca. 12 mm deep) into the fiber optic intake. When doing so, observe the transmitter/receiver assignment on the amplifier (transmitter at bottom / receiver on top).
(4) Pull up the lever of the fiber optic clamp to close. Check if the clamp is secure by pulling lightly on the fiber optics.
(5) Close the transparent protective cover.

Controls and indicators

RUN PRG ADJ	Selector switch Operating mode	RUN: ADJ: PRG:	Normal mode - no settings possible. Press rocker push button: the set teach is executed. Rock to left - right: change the switching threshold, left $=\boldsymbol{+}$ and right $=\boldsymbol{-}$. Menu-driven device setting via display and rocker push button.					
$\begin{aligned} & \text { LO DO } \\ & \hline 10 \end{aligned}$	Selector switch Switching output	LO: DO:	Switching output light switching: If throughbeam fiber optics are installed, the switching output is active when the light path is free; if a scanning system is installed, the switching output is active when an object is detected. The status LED illuminates when the switching output is active. Switching output dark switching: The switching behavior is the inversion of the light switching setting.					
$+ \text { \|\|\|\\|\|\\|\\|\\|\\| - }$	Rocker push button - Set switching threshold - Navigation in menu	Rock +, -: Button:	The rocker push button can be rocked to the right and to the left and pressed in the middle position. In the ADJ operating mode, the switching threshold can be increased (+) or decreased $(-)$ by rocking. In the PRG operating mode, rock to navigate in the menu. Press the rocker push button in the middle position to accept a setting made in the PRG operating mode.					
$\begin{array}{\|c\|} \hline 590519 \\ 150500 \\ \hline \end{array}$	Indicator Signal strength		In the RUN and ADJ operating modes, the display shows the current signal value. In the PRG operating mode, information on menu navigation appears on the display.					
505010	Indicator Switching threshold		In the RUN and ADJ operating modes, the display shows the currently set switching threshold. In the PRG operating mode, information on menu navigation appears on the display.					
©	Status LED (yellow) Switching output state	$\begin{aligned} & \text { LED ON } \\ & \text { LED OFF } \end{aligned}$	Switching output active. Switching output inactive.					

RUN operating mode - normal operation

The RUN operating mode is the standard operating mode in which the sensor detects objects; it signals this according to the set functions. If the selector switch for the operating mode is in the RUN position, no changes can be made on the device. This setting is thus suitable for protection against unintended operation and changes to device settings.

PRG operating mode - sensor adjustment

The LV463 can be adjusted to meet customer requirements with a simple menu-driven system. To do this, set the selector switch for the operating mode to position PRG.
The menu consists of 13 successive subfunctions. Rock to right or left to freely navigate through the subfunctions.

LV463

Selecting a subfunction and changing the setting

1. Rock to left or right to select the desired subfunction.
2. Press rocker push button in middle position. The currently set value is displayed statically.
3. Rock to right or left to display the selectable adjustment values - these flash slowly.
4. Accept the new value by pressing the rocker push button in the middle position.

Fast flashing indicates that the new value is accepted.
5. Automatic return to the heading for the subfunction.
6. Press again to statically display the previously selected value.

Description of the subfunctions

Subfunction	Possible settings / value range	Factory setting (default)	Explanation
rESP SPd Select response time	$\mathrm{t}_{\text {rESP }}=$200 (signal range $H S$) $\mathbf{5 0 0}$ signal range STD) (signal range LR) $\mathbf{5 0 0 0}$	$500 \mu \mathrm{~s}$	The response time is the max. time required by the switching output to switch to the active state following a signal change at the input. From this, the switching frequency can be calculated as follows: $f=\frac{1}{2 \cdot t_{\mathrm{rESP}}}[H z]$ Notice: A change to the response time is equivalent to a change to the signal range.
GAIn SEL Select gain	Gain stage Gn 1 ... Gn 8; Auto GAIn	Auto GAIIn	The gain stage can be set either by manually presetting a value between Gn $1 \ldots$ Gn 8 or automatically by selecting Auto GAIn. The left, red display shows the current signal value. The gain stage should be selected so that the signal value is approximately in the middle of the display area. If Auto GAIn is selected, the device automatically determines the optimum gain setting during teaching.
tch SEL Select teach mode	Teach modes 1 Pt tch (static), 2 Pt tch (static), dYn tch (dynamic)	1 Pt teh	Presetting a suitable teach process. To trigger the teach event, see Teaching operating mode. 1-point teach, static: during teaching, the current signal value is accepted as the new switching threshold. Actuate the rocker push button to make fine adjustments to the threshold. 2-point teach, static: the switching threshold is calculated at approximately midway between two signal values, e.g., teach to two different objects or teach to the same object at two different distances from the probe. Example: signal value $1=100$ digits, signal value $2=400$ digits \rightarrow Switching threshold $=280$ digits. Actuate the rocker push button to + or - to make fine adjustments to the threshold. Dynamic teach: suitable for processes that cannot be stopped for teaching. When the teach event is started, the sensor begins to scan the signal values. On the left, red display, the signal values are constantly displayed. At the end of the teach event, the switching threshold is calculated at approximately midway between the smallest and largest signal value.
Auto thr Threshold tracking	Tracking the switching threshold oFF, On	oFF	The function is only available during dynamic teaching. If the function is switched on, the switching threshold is automatically and continuously optimized by the sensor in such a way that maximum functional reliability is ensured. This can be used to compensate for, e.g., soiling or process changes. Warning message: thr ALrt: The limit of threshold tracking is reached - the sensor continues to operate. Cleaning and, if necessary, alignment of the fiber optics recommended. Error message: thr Err: The limit of threshold tracking is exceeded - the sensor stops operating. Cleaning and, if necessary, alignment of the fiber optics urgently necessary.
OFF dLY Switch-off delay	0 (off), 1 . . $9999 \mathrm{~ms} \mathrm{(milliseconds)}$	0	Switch-off delay (OFF Delay): Individually adjustable from $1 . . .9999 \mathrm{~ms}$. Combination options \rightarrow Combining timing functions
OFF ISho Passing contact OFF	0 (off), 1 . . $9999 \mathrm{~ms} \mathrm{(milliseconds)}$	0	Passing contact on fall-back (OFF 1-Shot): Individually adjustable from 1 ... 9999 ms . Combination options \rightarrow Combining timing functions
On dLIY Switch-on delay	0 (off), 1 . . $9999 \mathrm{~ms} \mathrm{(milliseconds)}$	0	Switch-on delay (ON Delay): Individually adjustable from 1 ... 9999 ms . Combination options \rightarrow Combining timing functions
On ISho Passing contact ON	0 (off), 1 . . $9999 \mathrm{~ms} \mathrm{(milliseconds)}$	0	Passing contact on actuation (ON 1-Shot): Individually adjustable from $1 . . .9999 \mathrm{~ms}$. Combination options \rightarrow Combining timing functions

Subfunction	Possible settings / value range	Factory setting (default)	Explanation
dISP rEAd Turn read direction 180°	dISPrEAdpV'tuSIP	dISP rEAd (same read direction as other texts)	Changes the read direction of the two 7 -segment displays by 180°.
InP SEL multi funct input	$\begin{aligned} & \text { oFF, } \\ & \text { tch InP, } \\ & \text { SYnc IPLe, } \\ & \text { SYnc Int } \end{aligned}$	oFF	Use this setting to define the function of the multi funct multifunction input (pin 2/ws-WH). 0FF: \quad Pin/cable has no function tch InP: Pin/cable can be used as teach input for line teach. For further information \rightarrow Line teach / remote teach. SYnc PLc: Pin/ cable can be used as activation input. For further information \rightarrow Synchronous operation of multiple amplifiers. SYnc Int: Setting for multiplex operation of up to six fiber optic amplifiers. For this purpose, all multi funct multifunction inputs (pin 2/ws-WH) are connected to one another. The master unit (defined with the next subfunction) generates a timing signal that is received by the slave units (defined with the next subfunction) via the parallel connection. In a fixed time frame, each slave successively activates its transmitter for a brief time and supplies a signal value. To avoid mutual interference, the transmitter is then again deactivated. For further information \rightarrow Multiplex operation of multiple amplifiers.
Func SEL Master-slave assignment	$\begin{aligned} & \text { SL 1, } \\ & \text { SL 2, } \\ & \text { SL 3, } \\ & \text { SL 4, } \\ & \text { SL 5, } \\ & \text { mA } 2, \\ & \text { mA 3, } \\ & \text { mA 4, } \\ & \text { mA 5, } \\ & \text { mA 6 } \end{aligned}$	SL 1	These settings must only be made if multiplex operation (master-slave operation) of multiple sensors is desired. Up to six sensors can be synchronized with one another in multiplex operation. In this case, exactly one master and $\mathbf{1 . .} \mathbf{5}$ slaves are always required. Master settings: mA n (number): Defines that this unit operates as master and a total of \mathbf{n} sensors were wired in parallel. $\text { Value range } n=2 \ldots 6$ Example: mA 4 means: Unit is the master, a total of four sensors are connected to one another via the multi funct multifunction input. Slave settings: SL n (number):Defines that this unit operates as a slave and has the individual address \mathbf{n}. Example: $\text { Value range for address } \mathrm{n}=1 \ldots 5 \text {. }$ SL 3 means: Unit is a slave with the individual address 3. For further information \rightarrow Multiplex operation of multiple amplifiers.
ZEro OFSt Offset calibration	$\stackrel{\text { no, }}{Y E S}$	no	This subfunction is used for suppressing an offset signal that can result, e.g., from crosstalk between transmitter and receiver at the fiber optic head. To activate this function, select YES and confirm the selection by pressing the rocker push button. The current signal value is now set to 0 . To perform another offset calibration, the previous calibration must first be reset. To do this, select no and confirm by pressing the rocker push button. Now again perform the offset calibration as previously described. Notice: Resolution is lost when using offset suppression! Example: display area $=4000$ digits, offset value $=550$ digits \rightarrow Remaining resolution $=3450$ digits.
FctY der Factory setting	no,	no	Attention! Resets all sensor settings to factory settings. If desired, select YES and execute by pressing the rocker push button.

Tip!
The maximum operating range can be achieved as follows:

- Set rESP SPd to $5000 \mu \mathrm{~s}$ (signal range XLR).
- Set GAIn SEL to Gn 8 (gain stage 8).
- The switching threshold can be set to minimum 32 digits, the amplifier detects objects up to display value $\mathbf{0}$.

A Leuze electronic

LV463

Amplifier for fiber optics
Time functions

Combining timing functions

Timing functions can only be combined to a limited extent. Impermissible combinations are suppressed from the subfunctions menu. Here is an overview of the permissible combinations (\bullet):

	OFF dLY Switch-off delay	OFF ISho Passing contact OFF	On dLI Y Switch-on delay	On ISho Passing contact ON
OFF dLY Switch-off delay		\bullet	\bullet	
OFF ISho Passing contact OFF	\bullet			
On dILY Switch-on delay	\bullet			
On ISho Passing contact ON				

Teaching operating mode

Set the selector switch for the operating mode to the ADJ position.
Depending on the setting of the Select teach mode subfunction (tch SEL), one of the following teach modes appears:

- Static 1-point teach

- Static 2-point teach
- Dynamic teach

Teach process

Step	Static 1-point teach	Static 2-point teach	Dynamic teach

Tip!
For reliable function, the difference between the signal value while an object is present and the signal value with no object should be at least $10-20 \%$. In general: the larger the difference, the more reliable the detection.

LV463
Amplifier for fiber optics
Table with minimum teach values as a function of the setting

	Static 1-point teach: MINIMUM VALUES for ing the switching threshold				Static 2-point teach Dynamic teach: DIFFERENCE between teach values 1 and 2			
Signal range	HS	STD	LR	XLR	HS	STD	LR	XLR
Display area (digits)	$0 \ldots 4000$	$0 \ldots 4000$	$0 \ldots 9999$	$0 \ldots 9999$	0... 4000	$0 \ldots 4000$	$0 \ldots 9999$	0... 9999
Response time [$\mu \mathrm{s}$]	200	500	2000	5000	200	500	2000	5000
Gain Gn 1	27	27	17	11	36	36	22	14
Gain Gn 2	27	27	17	11	36	36	22	14
Gain Gn 3	27	27	17	11	36	36	22	14
Gain Gn 4	41	41	27	17	54	54	36	22
Gain Gn 5	41	41	27	17	54	54	36	22
Gain Gn 6	41	41	27	17	54	54	36	22
Gain Gn 7	53	53	32	21	70	70	42	28
Gain Gn 8	78	78	48	32	104	104	64	42

= values for the following examples.

Example 1:

- 1-point teach, static
- Standard signal range (STD) = response time $\mathbf{5 0 0} \boldsymbol{\mu s}$
- Gain Gn 3

The signal value during teaching must be $\geq \mathbf{2 7}$ digits.

Example 2:

- 2-point teach, static
- Standard signal range (STD) $=$ response time $\mathbf{5 0 0} \boldsymbol{\mu s}$
- Gain Gn 5
- Teach value $1=150$ digits

The signal value for teach point 2 must be \geq 204digits or ≤ 96 digits.

Multiplex operation of multiple amplifiers

If multiple light axes are arranged close to each other, mutual interference - made evident by a widely varying display - may occur.
To avoid this undesirable behavior, up to six devices can be operated in multiplex operation. To do this, it is only necessary to connect the multi funct multifunction inputs (pin 2/ws-WH) of all participating amplifiers - in addition to connecting the voltage supply and the switching signal.

All multi funct multifunction inputs (pin 2/ws-WH) are connected in parallel

- For settings, see subfunctions:

InP SEL multit funct innut	Func SEL Master-slave assignment

- Maximum 6 / minimum 2 units: $1 \times$ master $+1 \ldots 5$ slaves.
- Each unit can be either a master or a slave.
- The master also requires information about the number of units wired in parallel (number of slaves).
- Each slave is also assigned an individual address $1 \ldots 5$.
- The master generates a timing signal on pin 2 or on cable ws/WH.
- Each slave switches on its transmitter for 1 ms depending on its address.
- In multiplex mode, the cycle time is based on the total number of units: Cycle time $=$ number of units $\boldsymbol{\bullet} \mathbf{1 . 5} \mathrm{ms}+\mathbf{0 . 5 m s}$.

Synchronous operation of multiple amplifiers / operation with activation input

In some cases, one may also wish to query multiple light axes simultaneously (synchronously). Two options are available for this purpose:

Variant 1:

Wire and set according to section Multiplex operation of multiple amplifiers but assign all slaves an identical address between 1 and 5 . Result: master and slaves have a time offset of 1.5 ms , slaves with the same address operate synchronously.

Variant 2:

Synchronous operation by means of an external activation signal at multi funct input (pin 2/ws-WH). Setting for subfunction:

InP SEL multi funct input	\rightarrowSYnc PLc activation input

Function:

Activation input multi funct (pin 2/ws-WH)	Transmitter ON	Transmitter OFF	Transmitter ON

The transmitter is deactivated with low signal. If not actuated or in the case of a high signal, the transmitter is activated.

Line teach (remote teach)

Setting for subfunction:

InP SEL multi funct input	\rightarrowtch InP Teach input

Signal level on multi funct teach input:

$\mathrm{U}_{\text {Teach }}$	Signal level	Function
$\leq 2 \mathrm{~V}$	LOW	The operating mode selector switch is locked - switch position has no effect on the sensor.
$\geq\left(\mathrm{U}_{\mathrm{B}}-2 \mathrm{~V}\right)$	HIGH	The operating mode selector switch is unlocked - function acc. to current switch position.
Not connected (n.c.)	HIGH (pull-up resistor)	Current setting is retained without change.
$2 \mathrm{~V}<\mathrm{U}_{\text {Teach }}<\left(\mathrm{U}_{\mathrm{B}}-2 \mathrm{~V}\right)$	Undefined - not permitted	

Timing for line teach

The line teach that is executed is determined in the Select teach mode subfunction tch SELL.
Depending on the setting, this may be a static 1-point teach, static 2-point teach or dynamic teach.

