PRKL 3B Laser retro-reflective photoelectric sensor with polarization filter

- Polarized retro-reflective photoelectric sensor with autocollimation principle
- Small and compact construction with robust plastic housing, protection class IP 67 for industrial application
- Push-pull output with light/dark switching via teach-in button
- High switching frequency for detection of fast events and small parts
- Easy adjustment via lockable teach button or teach input
- Laser class 1

Dimensioned drawing

A Green indicator diode
B Yellow indicator diode
C Optical axis
D Teach button
E Mounting sleeve

Electrical connection

Specifications (not valid for RKL 3B/6.22 !)

Optical data

Typ. op. range limit (MTKS 50×50) ${ }^{1)} 0 \ldots 3 \mathrm{~m}$
Operating range ${ }^{2)}$
Light beam characteristic
Light spot diameter
Light source ${ }^{3}$)
Wavelength
Max. output power
Pulse duration

Timing

Switching frequency
Response time
Delay before start-up

Electrical data

Operating voltage $U_{B}{ }^{4)}$
Residual ripple
Open-circuit current
Switching output ${ }^{5}$)

Indicators

Operating range
Green LED
Yellow LED
Yellow LED, flashing

Mechanical data

Housing ${ }^{7)}$
Optics cover
Weight

Connection type

Environmental data

Ambient temp. (operation/storage)
Protective circuit ${ }^{9}$
VDE safety class
Protection class
Laser class
Standards applied
Certifications

Options

Teach-in input/activation input
Transmitter active/not active
Activation/disable delay
Input resistance
.../6.22 $\begin{array}{ll} & \leq 15 \mathrm{~mA} \\ 1 \text { push-pull switching output }\end{array}$
pin 4: PNP light switching, NPN dark switching
pin 2: teach input
.../6.2...-S8.3 1 push-pull switching output
pin 4: PNP light switching, NPN dark switching
.../4.28 1 PNP switching output, light switching,
pin 2: activation input
light/dark reversible
$\geq\left(U_{B}-2 V\right) / \leq 2 V$
max. 100 mA
setting via teach-in
see tables
collimated, $\leq 3 \mathrm{mrad}$
approx. 2 mm at light beam gate
laser (pulsed)
655 nm (visible red light, polarized)
0.29 mW
$\leq 5.5 \mu \mathrm{~s}$
$2,000 \mathrm{~Hz}$
0.25 ms
$\leq 300 \mathrm{~ms}$
$10 \ldots 30 \mathrm{VDC}$ (incl. residual ripple)
$\leq 15 \%$ of U_{B}
$\leq 15 \%$ of U_{B}
$\leq 15 \mathrm{~mA}$

ready

light path free
light path free, no performance reserve ${ }^{6)}$
plastic (PC-ABS); 1 attachment sleeve, nickel-plated steel
plastic (PMMA)
with connector: 10 g
with 200 mm cable and connector: 20 g
with 2 m cable: 50 g
2 m cable (cross section $4 \times 0.20 \mathrm{~mm}^{2}$),
connector M8 metal,
0.2 m cable with connector M8 or M12

```
-10}\mp@subsup{}{}{\circ}\textrm{C}\ldots+5\mp@subsup{5}{}{\circ}\textrm{C}\mp@subsup{}{}{8/}/-3\mp@subsup{0}{}{\circ}\textrm{C}\ldots+7\mp@subsup{0}{}{\circ}\textrm{C
2, 3
III
IP 67
1 (in accordance with EN 60825-1)
IEC 60947-5-2
CDRH 21 CFR 1040, UL \(508{ }^{4}\)
```

$\geq 8 \mathrm{~V} / \leq 2 \mathrm{~V}$
$\leq 1 \mathrm{~ms}$
$30 \mathrm{k} \Omega$

1) Typ. operating range limit: max. attainable range without performance reserve
2) Operating range: recommended range with performance reserve
3) Average life expectancy $50,000 \mathrm{~h}$ at an ambient temperature of $25^{\circ} \mathrm{C}$
4) For UL applications: for use in class 2 circuits according to NEC only
5) The push-pull switching outputs must not be connected in parallel
6) Display "no performance reserve" as yellow flashing LED is only available in standard teach setting
7) Patent Pending Publ. No. US $7,476,848$ B2
8) Without mounting max. $+50^{\circ} \mathrm{C}$, with screw mounting on metal part up to $+55^{\circ} \mathrm{C}$ permissible
9) 2=polarity reversal protection, 3=short circuit protection for all transistor outputs

Remarks

Adapter plate:
BT 3.2 (part no. 50103844) for alternate mounting on 25.4 mm hole spacing (Omron E3Z, Sick W100...)

Tables

Reflectors		Operating range					
1	MTKS	50×50.1	$0 \ldots 2.0 \mathrm{~m}$				
2	MTKS	20×30	$0 \ldots 1.6 \mathrm{~m}$				
3	MTKS	20×40.1	$0 \ldots$	1.0 m			
4	Tape 6	50×50	$0 \ldots$	1.0 m			
1	0	2.0				3.0	
2	0	1.6					
3	0	1.0	1.5				
4	0	1.0	1.4				

Operating range [m]

Typ. operating range limit [m]
MTKS ... = micro triple, screw type

Remarks

- Approved purpose:

This product may only be used by qualified personnel and must only be used for the approved purpose. This sensor is not a safety sensor and is not to be used for the protection of persons.

Mounting system:

> (1) $=\mathrm{BT} 3$ (part no. 50060511)
> (2) + (3)
> $=\mathrm{BT} 3.1^{1)}$ (part no. 50105585)
> (1) + (2) + (3) $=\mathrm{BT} 3 \mathrm{~B}$
> (part no. 50105546)

1) Packaging unit: $\mathrm{PU}=10 \mathrm{pcs}$.

PRKL 3B Laser retro-reflective photoelectric sensor with polarization filter

Order guide

Selection table												
Output 1 (OUT 1)	push-pull switching output,		light switching \bigcirc	-2)	-2)	\bullet	-2)	-2)	-2)	-2)		-2)
	configurable		dark switching	\bullet	\bullet	-2)	\bullet	\bullet	\bullet	-		\bullet
	PNP transistor output		light switching \bigcirc								-	
	PNP transistor output		dark switching									
Input (IN)	teach input			-	-	-	-	-				-
	activation input										-	
Connection	cable $2,000 \mathrm{~mm}$		4-wire	\bullet								\bullet
	M8 connector, metal		3-pin						\bullet			
	M8 connector, metal		4-pin		\bullet	\bullet					-	
	200mm cable with M8 connector		3-pin							-		
	200mm cable with M8 connector		4-pin				\bullet					
	200 mm cable with M12 connector		4-pin					\bullet				
Configuration	Teach-in via button (lockable) and teach input			\bullet	\bullet	\bullet	\bullet	\bullet				\bullet
	Teach-in via button								\bullet	-	-	

1) Special type, prior to use, consult with the head office!
2) Presetting

General information

- The laser retro-reflective photoelectric sensors PRKL 3B/... have an optimized light beam propagation in the typical range of application of $0 \ldots 1 \mathrm{~m}$ (not to be confused with the operating range, which is $0 \ldots 3 \mathrm{~m}$ in combination with a reflector MTKS 50×50.1). This permits the reliable recognition of the smallest of parts or the positioning of objects with maximum precision across the entire area.
- For foil 6 , the sensor's side edge must be aligned parallel to the side edge of the reflective tape.
- The sensor is constructed on the basis of the autocollimation principle, i.e., light being transmitted and light being received propagate along the same light axis. This permits the photoelectric sensor to be installed directly behind small holes or diaphragms. The smallest permissible diaphragm diameter for secure functioning is 3 mm .

- The achievable resolution depends significantly on the unit's configuration. Depending on the teach mode, the following values are possible:

Setting	Detection from object size ${ }^{\text {1) }}$	Sensor switches at a light occlusion of
max. operating range (factory setting)	1.5 mm	50%
normal sensor sensitivity (standard teaching)	1 mm	25%
maximum sensor sensitivity (dynamic teaching)	$0.1 \ldots 0.2 \mathrm{~mm}$	5%

[^0]- For safety reasons, the laser transmitter is equipped with a monitor, which automatically switches off the transmitter in case of a component defect. In case of failure, the yellow LED flashes rapidly and the green LED is off. The state is irreversible and the sensor must be exchanged.

Sensor adjustment (teach) via teach button

- Prior to teaching:

Clear the light path to the reflector!
The device setting is stored in a fail-safe way. A reconfiguration following voltage interruption or switch-off is thus not required.

Standard teaching for average sensor sensitivity

- Press teach button until both LEDs flash simultaneously.
- Release teach button.
- Ready.

After standard teaching, the sensor switches for objects with a minimum size of 1 mm (see table under "General Information").
If both LEDs flash rapidly after the teaching event, a teaching error has happened. Please check the alignment of the light beam onto the reflector and carry out another teaching event.

Teaching for maximal sensor sensitivity (dynamic teaching)

- Press teach button until both LEDs flash alternatingly. Sensor remains in teaching mode even after the teach button has been released.
- Move some objects through the light path or swing a single object slowly back and forth through the light path.
- Briefly press the teach button to terminate the teach event.
- Ready.

After teaching for maximum sensor sensitivity, the sensor switches for objects with a minimum size of $0.1 \ldots 0.2 \mathrm{~mm}$ (see table under "General Information").
If both LEDs flash rapidly after the teaching event, a teaching error has happened. Please check the alignment of the light beam onto the reflector and carry out another teaching event.

A Leuze electronic

PRKL 3B

Teaching for maximum operating range (factory setting at delivery)

- Prior to teaching:

Cover the light path to the reflector!

- Procedure as for standard teaching.

Adjusting the switching behavior of the switching output - light/dark switching

- Press teach button until the green LED flashes. The yellow LED displays the current setting of the switching output: ON $\quad=$ output switches on light OFF $\quad=$ output switches on dark
- Continue to press the teach button in order to change the switching behavior.
- Release teach button.
- Ready.

Locking the teach button via the teach input

A static high signal ($\geq 4 \mathrm{~ms}$) at the teach
 input locks the teach button on the device if required, such that no manual operation is possible (e.g., protection from erroneous operation or manipulation).
If the teach input is not connected or if there is a static low signal, the button is unlocked and can be operated freely.

Sensor adjustment (teach) via teach input

The following description applies to PNP switching logic!

$\mathbf{U}_{\text {Teach low }} \leq \mathbf{2 V}$
$\mathrm{U}_{\text {Teach high }} \geq\left(\mathrm{U}_{\mathrm{B}} \mathbf{- 2 V}\right)$
Prior to teaching: Clear the light path to the reflector!
The device setting is stored in a fail-safe way. A reconfiguration following voltage interruption or switch-off is thus not required.

Standard teaching for average sensor sensitivity

Quick standard teach

After standard teaching, the sensor switches for objects with a minimum size of 1 mm (see table under "General Information").

PRKL 3B Laser retro-reflective photoelectric sensor with polarization filter

Teaching for maximal sensor sensitivity (dynamic teaching)

After teaching for maximum sensor sensitivity, the sensor switches for objects with a minimum size of $0.1 \ldots 0.2 \mathrm{~mm}$ (see table under "General Information").

Adjusting the switching behavior of the switching output - light/dark switching

After the delay before start-up
$(\leq 300 \mathrm{~ms}$ has elapsed, the teach
button on the device can be oper-
ated.
The teach button is disabled after
the 1st edge.
Setting the switching behavior of
the switching output:
$\mathbf{t}_{\text {Teach output }}=\mathbf{2 , 0 0 0} \ldots \mathbf{3 , 0 0 0} \mathbf{m s}$

Switching output switches on
light:
\mathbf{t}_{p} light $=\mathbf{4} \ldots \mathbf{1 , 0 0 0} \mathbf{m s}$
Switching output switches on
dark:
$\mathbf{t}_{\mathrm{p} \text { dark }}=\mathbf{1 , 0 0 0} \ldots \mathbf{2 , 0 0 0}$ ms
The button remains disabled until
the next signal change.

[^0]: 1) All specifications are typical values and may vary by a small amount for each unit.
