△ Leuze electronic

the sensor people

LRS - Line Range Sensor Lichtschnittsensoren

de 04–2013/07 50112363 Technische Änderungen vorbehalten

© 2013

Leuze electronic GmbH + Co. KG

In der Braike 1

D-73277 Owen / Germany Phone: +49 7021 573-0 Fax: +49 7021 573-199 http://www.leuze.com

info@leuze.de

	Abbildungs- und Tabellenverzeichnis	. 7
1	Allgemeines	. 9
1.1	Zeichenerklärung	. 9
1.2	Konformitätserklärung	. 9
2	Sicherheitshinweise	10
2.1	Allgemeine Sicherheitshinweise	. 10 . 10
2.2	Sicherheitsstandard	10
2.3	Bestimmungsgemäßer Gebrauch	
2.4	Sicherheitsbewusst arbeiten	11
3	Funktionsprinzip	14
3.1	Generierung von 2D-Profilen	14
3.2 3.2.1 3.2.2	Grenzen der Lichtschnittsensorik Abschattung Mögliche Maßnahme gegen Laserabschattung Mögliche Maßnahmen gegen Empfängerabschattung Mindestobjektgröße	15 16
4	Gerätebeschreibung	18
4.1 4.1.1 4.1.2 4.1.3	Lichtschnittsensoren im Überblick Mechanischer Aufbau Generelle Leistungsmerkmale Line Range Sensor - LRS Spezifische Leistungsmerkmale Typische Einsatzgebiete.	18 18 19
4.2	Betrieb des Sensors	20
4.2.1 4.2.2	Anbindung an PC / Prozess-Steuerung Parametrierung. Erkennungsbetrieb. Aktivierung - Laser ein/aus.	. 20 . 20
4.2.3	Triggerung - Free Running	21
4.2.4	Kaskadierung Triggereinstellungen. Kaskadierungseinstellungen.	22 22 22
4.3	Erkennungsfunktionen LRS	
4.3.1	Inspection Task	23

Inhaltsverzeichnis

4.3.2	Analysis Window (AW)	
4.3.3	Definition von AWs und Auswerteergebnisse	25
4.3.4	Applikationsbeispiele	
	Leerkontrolle von Behältern	26
4.3.5	Ein- oder mehrspurige An- und Abwesenheitskontrolle auf Förderstrecken	
4.0.0		
5	Installation und Montage	28
5.1	Lagern, transportieren	28
	Auspacken	
5.2	Montage des LRS	29
5.2.1	Befestigungsteil BT 56.	
5.2.2	Befestigungsteil BT 59	
5.3	Geräteanordnung	
5.3.1	Wahl des Montageortes.	
5.3.2	Ausrichtung des Sensors.	
5.4	Laserwarnschild anbringen	
5.5	Reinigen	33
6	Elektrischer Anschluss	34
6.1	Sicherheitshinweise	35
6.2	Schirmung und Leitungslängen	36
	Schirmung:	
	Allgemeine Schirmhinweise:	37
	Auflegen des Erdpotenzials an die Lichtschnittsensoren	
	Auflegen des Kabelschirms an der SPS	
6.3	Anschließen	40
6.3.1	Anschluss X1 - Logik und Power	40
	Stromversorgung	
	Aktivierungseingang InAct	
	Kaskadierungsausgang OutCas	41
	Ausgang "betriebsbereit" OutReady	
6.3.2	Anschluss X2 - Ethernet	
6.3.3	Ethernet-Leitungsbelegung	
0.3.3	Schaltausgänge des X3-Anschlusses	
	Schalteingänge des X3-Anschlusses	42
6.3.4	Anschluss X4 - PROFIBUS DP (nur LRS 36/PB)	43
7	Display und Bedienfeld	44
7.1	Anzeige- und Bedienelemente	44
7.1.1	LED-Statusanzeigen	

7.1.2 7.1.3	Anzeigen im Display	
7.1.0	Ausrichthilfe	. 45
	Statusanzeige. Befehlsmodus	
7.2	Menübeschreibung	
7.2.1	Aufbau/Struktur.	
7.2.1 7.2.2	Bedienung/Navigation	
1.2.2	Menü-Navigation	
	Werte- oder Auswahlparameter zum Editieren auswählen	. 50
	Werteparameter editieren Auswahlparameter editieren	
7.3	Rücksetzen auf Werkseinstellungen	
7.0	Rücksetzen abbrechen.	
	Rücksetzen ausführen	
8	Inbetriebnahme und Parametrierung	52
_	_	
8.1	Einschalten	
8.2	Verbindung zum PC herstellen	
	Einstellen einer alternativen IP-Adresse am PC	
8.3	Inbetriebnahme	. 54
9	Parametriersoftware LRSsoft	55
9.1	Systemanforderungen	. 55
9.1 9.2	, c	
	Systemanforderungen	. 55
9.2	Installation	. 5 5 . 61
9.2 9.2.1	Installation	. 55 . 61 . 6 2
9.2 9.2.1	Installation	. 55 . 61 . 62
9.2 9.2.1 9.3	Installation . Mögliche Fehlermeldung . Start von LRSsoft/Reiter Communication . PROFIBUS Einstellungen (nur LRS 36/PB) . Parametereinstellungen/Reiter Parameters . Bereich Task Parameters .	. 55 . 61 . 62 . 63 . 65
9.2 9.2.1 9.3 9.4	Installation Mögliche Fehlermeldung Start von LRSsoft/Reiter Communication PROFIBUS Einstellungen (nur LRS 36/PB) Parametereinstellungen/Reiter Parameters Bereich Task Parameters Inspection Task Selection	. 55 . 61 . 62 . 63 . 65
9.2 9.2.1 9.3 9.4	Installation . Mögliche Fehlermeldung . Start von LRSsoft/Reiter Communication . PROFIBUS Einstellungen (nur LRS 36/PB) . Parametereinstellungen/Reiter Parameters . Bereich Task Parameters .	. 55 . 61 . 62 . 63 . 65 . 65
9.2 9.2.1 9.3 9.4	Installation Mögliche Fehlermeldung Start von LRSsoft/Reiter Communication PROFIBUS Einstellungen (nur LRS 36/PB) Parametereinstellungen/Reiter Parameters Bereich Task Parameters Inspection Task Selection Operation Mode Activation Trigger Output Mode	. 55 . 61 . 62 . 63 . 65 . 65 . 66
9.2 9.2.1 9.3 9.4	Installation Mögliche Fehlermeldung Start von LRSsoft/Reiter Communication PROFIBUS Einstellungen (nur LRS 36/PB) Parametereinstellungen/Reiter Parameters Bereich Task Parameters Inspection Task Selection Operation Mode Activation Trigger Output Mode Light Exposure	. 55 . 61 . 62 . 65 . 65 . 66 . 66
9.2 9.2.1 9.3 9.4 9.4.1	Installation Mögliche Fehlermeldung Start von LRSsoft/Reiter Communication PROFIBUS Einstellungen (nur LRS 36/PB) Parametereinstellungen/Reiter Parameters Bereich Task Parameters Inspection Task Selection Operation Mode Activation Trigger Output Mode Light Exposure Field of View. Apply Settings	. 55 . 61 . 62 . 63 . 65 . 65 . 66 . 66 . 66 . 67
9.2 9.2.1 9.3 9.4	Installation Mögliche Fehlermeldung Start von LRSsoft/Reiter Communication PROFIBUS Einstellungen (nur LRS 36/PB) Parametereinstellungen/Reiter Parameters Bereich Task Parameters Inspection Task Selection Operation Mode Activation Trigger Output Mode Light Exposure Field of View Apply Settings Bereich Analysis Functions	. 55 . 61 . 62 . 63 . 65 . 65 . 66 . 66 . 66 . 67 . 67
9.2 9.2.1 9.3 9.4 9.4.1	Installation Mögliche Fehlermeldung Start von LRSsoft/Reiter Communication PROFIBUS Einstellungen (nur LRS 36/PB) Parametereinstellungen/Reiter Parameters Bereich Task Parameters Inspection Task Selection Operation Mode Activation Trigger Output Mode Light Exposure Field of View. Apply Settings Bereich Analysis Functions Edit Logical Combinations	. 555 . 611 . 622 . 633 . 655 . 656 . 666 . 667 . 677 . 688 . 688
9.2 9.2.1 9.3 9.4 9.4.1	Installation Mögliche Fehlermeldung Start von LRSsoft/Reiter Communication PROFIBUS Einstellungen (nur LRS 36/PB) Parametereinstellungen/Reiter Parameters Bereich Task Parameters Inspection Task Selection Operation Mode Activation Trigger Output Mode Light Exposure Field of View Apply Settings Bereich Analysis Functions	. 555 . 611 . 622 . 655 . 655 . 656 . 666 . 667 . 688 . 700
9.2 9.2.1 9.3 9.4 9.4.1	Installation Mögliche Fehlermeldung Start von LRSsoft/Reiter Communication PROFIBUS Einstellungen (nur LRS 36/PB) Parametereinstellungen/Reiter Parameters Bereich Task Parameters Inspection Task Selection Operation Mode Activation Trigger Output Mode Light Exposure Field of View. Apply Settings Bereich Analysis Functions Edit Logical Combinations Edit Logical Combinations	. 55 . 61 . 62 . 63 . 65 . 65 . 66 . 66 . 67 . 68 . 70
9.2 9.2.1 9.3 9.4 9.4.1	Installation Mögliche Fehlermeldung Start von LRSsoft/Reiter Communication PROFIBUS Einstellungen (nur LRS 36/PB) Parametereinstellungen/Reiter Parameters Bereich Task Parameters Inspection Task Selection Operation Mode Activation Trigger Output Mode Light Exposure Field of View Apply Settings Bereich Analysis Functions Edit Logical Combinations Edit Logical Combinations Edit Logical Combinations Bereich Single Shot Mode Bereich Global Parameters	. 55 . 61 . 62 . 63 . 65 . 65 . 66 . 66 . 67 . 68 . 70 . 72
9.2 9.2.1 9.3 9.4 9.4.1 9.4.2 9.4.3 9.4.4	Installation Mögliche Fehlermeldung Start von LRSsoft/Reiter Communication PROFIBUS Einstellungen (nur LRS 36/PB) Parametereinstellungen/Reiter Parameters Bereich Task Parameters Inspection Task Selection Operation Mode Activation Trigger Output Mode Light Exposure Field of View. Apply Settings Bereich Analysis Functions Edit Logical Combinations Edit Logical Combinations Edit Logical Combinations Bereich Single Shot Mode	. 55 . 61 . 62 . 63 . 65 . 65 . 66 . 66 . 67 . 68 . 68 . 70 . 72 . 72
9.2 9.2.1 9.3 9.4 9.4.1 9.4.2 9.4.3 9.4.4 9.5	Installation Mögliche Fehlermeldung Start von LRSsoft/Reiter Communication PROFIBUS Einstellungen (nur LRS 36/PB) Parametereinstellungen/Reiter Parameters Bereich Task Parameters Inspection Task Selection Operation Mode Activation Trigger Output Mode Light Exposure Field of View. Apply Settings Bereich Analysis Functions Edit Logical Combinations Edit Logical Combinations Edit Logical Combinations Bereich Global Parameters Erkennungsfunktion/Reiter Visualisierung	. 55 . 61 . 62 . 65 . 65 . 66 . 66 . 66 . 67 . 72 . 72 . 73

Inhaltsverzeichnis

9.6.1 9.6.2 9.6.3 9.6.4	Parametereinstellungen speichern/Menü File	74 75
9.7	Definition von Inspektionsaufgaben	
10	Einbindung des LRS in die Prozess-Steuerung (Ethernet)	. 77
10.1	Allgemeines	77
10.2	Protokollaufbau Ethernet	78
10.2.1 10.2.2 10.2.3	Befehlsnummer Paketnummer. Transaktionsnummer.	78
10.2.4 10.2.5	Status. Encoder High / Low. Scannummer	79 79
10.2.6 10.2.7 10.2.8 10.2.9	Typ	80
10.2.3 10.3 10.3.1 10.3.2	Ethernet-Befehle	81 82
10.3.3	Nutzdaten im Befehlsmodus (Befehlsparameter) Set Laser Gate Set Actual Inspection Task. Get Actual Inspection Task Set Scan Number. Set Single Inspection Task Parameter (ab Firmware V01.40 l). Get Single Inspection Task Parameter (ab Firmware V01.40 l).	84 84 84 85 85
10.3.4	Befehle im Erkennungsmodus	
10.4	Arbeiten mit dem Protokoll (Ethernet) Befehl ohne Nutzdaten Befehl mit Nutzdaten	89
10.5	Betrieb mit LxS_Lib.dll	
10.6	Weitergehende Unterstützung bei der Sensoreinbindung	

11	Einbindung des LRS 36/PB in den PROFIBUS	92
11.1	Allgemeines	92
	Eigenschaften LRS 36/PB	
11.2	PROFIBUS Adressvergabe	93
	Automatische Adressvergabe	
	Adressvergabe mit LRSsoft	
11.3	Allgemeine Infos zur GSD-Datei	
11.4	Übersicht der GSD Module	
11.4	Ausgangsdaten (aus Sicht der Steuerung)	
	Eingangsdaten (aus Sicht der Steuerung)	90
11.5	Beschreibung der Ausgangsdaten	97
	PROFIBUS-Trigger	
	Activation - Aktivierung des Sensors	
11.6	Beschreibung der Eingangsdaten	
11.6.1	Modul M1	
	Scannummer	
	Sensorinfo	
11.6.2	Modul M2	
11.0.2	Auswerteergebnisse der Auswertefenster	
11.6.3	Modul M3	
	Anzahl Objektpunkte (Current Hits) im Auswertefenster 1	
		100
4404	Anzahl Objektpunkte (Current Hits) im Auswertefenster 5	
11.6.4	Modul M4	
		10
44.0.5	Anzahl Objektpunkte (Current Hits) im Auswertefenster 9	
11.6.5	Modul M5	10
		10
	Anzahl Objektpunkte (Current Hits) im Auswertefenster 16	10
12	Diagnose und Fehlerbehebung	. 102
12.1	Allgemeine Fehlerursachen	102
12.2	Schnittstellenfehler	103
12.3	Fehlermeldungen im Display (ab Firmware V01.40)	104
13	Wartung	. 106
13.1	Allgemeine Wartungshinweise	
-	Reinigen	
13.2	Reparatur, Instandhaltung	106

13.3	Abbauen, Verpacken, Entsorgen	
14	Technische Daten	107
14.1	Allgemeine technische Daten	107
14.2	Typischer Erfassungsbereich	109
14.3	Maßzeichnung	110
15	Typenübersicht und Zubehör	111
15.1	Typenübersicht	111
15.1.1	LPS	111
15.1.2	LRS	111
15.1.3	LES	111
15.2	Zubehör	112
15.2.1	Befestigung	
	Befestigungsteile	
15.2.2	Zubehör vorkonfektionierte Leitungen zur Spannungsversorgung X1	
	Kontaktbelegung X1-Anschlussleitung	
15.2.3	Zubehör für die Ethernet-Schnittstelle X2	
	Vorkonfektionierte Leitungen mit M12-Stecker/offenem Leitungsende	113
	Vorkonfektionierte Leitungen mit M12-Stecker/RJ-45-Stecker Vorkonfektionierte Leitungen mit M12-Stecker/M12-Stecker	114
	Steckverbinder	115
15.2.4	Zubehör vorkonfektionierte Leitungen für X3 (nur LRS 36/6)	115
	Kontaktbelegung X3-Anschlussleitungen	115
15.2.5	Bestellbezeichnungen der Anschlussleitungen für X3	
13.2.3	Kontaktbelegung X4-Anschlussleitungen	
	Bestellbezeichnungen des Anschlusszubehörs für X4	116
15.2.6	Bestellbezeichnungen der PROFIBUS Anschlussleitungen für X4	
15.2.6	Parametriersoftware	
16	Anhang	
6.1	Glossar	119
16.2	Revision History / Feature list	121
16.2.1	Firmware	
16.2.2	Parametriersoftware	122
	Index	123

Abbildungs- und Tabellenverzeichnis

Bild 2.1:	Typenschild und Warnhinweise	. 12
Bild 3.1:	Aufbau von Lichtschnittsensoren	
Bild 3.2:	Abschattung	. 15
Bild 3.3:	Typische Mindestobjektgröße LRS 36	. 17
Bild 4.1:	Mechanischer Aufbau der Leuze-Lichtschnittsensoren	
Bild 4.2:	Signalfolge Aktivierungseingang	. 20
Bild 4.3:	Signalfolge Triggereingang	. 21
Bild 4.4:	Signalfolge bei Kaskadierung	. 22
Bild 4.5:	Applikationsbeispiel Kaskadierung	. 22
Bild 4.6:	Prinzip der Objekterkennung - Bereiche mit Laserabschattung sind orange	
	dargestellt	
Bild 4.7:	Leerkontrolle von Behältern	
Bild 4.8:	Ein- oder mehrspurige An- und Abwesenheitskontrolle auf Förderstrecken	
Bild 5.1:	Gerätetypenschild LRS	
Bild 5.2:	Befestigungsmöglichkeiten	
Bild 5.3:	Befestigungsbeispiel LRS	
Bild 5.4:	Befestigungsteil BT 56	
Bild 5.5:	Befestigungsteil BT 59	
Bild 5.6:	Ausrichtung zur Messebene	
Bild 6.1:	Lage der elektrischen Anschlüsse	
Bild 6.2:	Anschlüsse des LRS	
Tabelle 6.1:	Schnittstellenausführung von X3 und X4	
Tabelle 6.2:	Leitungslängen und Schirmung	
Bild 6.3:	Auflegen des Erdpotenzials am Lichtschnittsensor	
Bild 6.4:	Auflegen des Kabelschirms im Schaltschrank	
Bild 6.5:	Auflegen des Kabelschirms an der SPS	
Tabelle 6.3:	Anschlussbelegung X1	
Bild 6.6:	Interne Beschaltung an X1	
Tabelle 6.4:	Anschlussbelegung X2	
Bild 6.7:	Leitungsbelegung HOST / BUS IN auf RJ-45	
Tabelle 6.5:	Anschlussbelegung X3	
Tabelle 6.6:	Anschlussbelegung X3	
Bild 7.1:	Anzeige- und Bedienelemente LRS	
Tabelle 7.1:	LED Funktionsanzeige	
Tabelle 7.2:	Menüstruktur	
Tabelle 8.1:	Adressvergabe im Ethernet	
Bild 9.1:	Startbildschirm LRSsoft	
Bild 9.2:	PROFIBUS Einstellungen	
Bild 9.3:	Parametereinstellungen LRSsoft	
Bild 9.4:	Fenster "Analysis Window Definitions"	
Bild 9.5:	Definition von Auswertefenstern (AW)	
Bild 9.6:	Fenster "Analysis Window Combination Tables"	
Tabelle 9.1:	Parametereinstellungen zur Ansteuerung der Schaltausgänge	
Bild 9.7:	Definition von logischen Verknüpfungen mehrerer AWs	
Bild 9.8:	Visualisierung LRSsoft	
Bild 9.9:	Zoom-Funktion	. 75

Abbildungs- und Tabellenverzeichnis

Tabelle 10.1:	Verbindungsbefehle
Tabelle 10.2:	Befehlsmodus-Steuerungsbefehle83
Tabelle 10.3:	Sensorsteuerungsbefehle83
Tabelle 10.4:	Befehle im Erkennungsmodus
Bild 11.1:	PROFIBUS Adressvergabe mit LRSsoft93
Tabelle 11.1:	PROFIBUS - Übersicht der Ausgangsdaten (aus Sicht der Steuerung)
Tabelle 11.2:	PROFIBUS - Übersicht der Eingangsdaten (aus Sicht der Steuerung)
Tabelle 11.3:	Eingangsdaten-Byte uSensorInfo98
Tabelle 11.4:	Eingangsdaten-Byte uSensorState99
Tabelle 11.5:	Eingangsdaten-Bytes wResultAWs (High- und Low-Byte)99
Tabelle 12.1:	Allgemeine Fehlerursachen
Tabelle 12.2:	Schnittstellenfehler103
Tabelle 12.3:	Fehlermeldungen im Display
Bild 14.1:	Typischer Erfassungsbereich LRS
Bild 14.2:	Maßzeichnung LRS110
Tabelle 15.1:	Typenübersicht LPS111
Tabelle 15.2:	Typenübersicht LRS111
Tabelle 15.3:	Typenübersicht LES111
Tabelle 15.4:	Befestigungsteile für den LRS
Tabelle 15.5:	Leitungsbelegung K-D M12A-8P112
Tabelle 15.6:	X1-Leitungen für den LRS113
Tabelle 15.7:	Leitungsbelegung KB ETSA113
Tabelle 15.8:	Ethernet-Anschlussleitungen M12-Stecker/offenes Leitungsende
Tabelle 15.9:	Leitungsbelegung KB ETSA-RJ45114
Tabelle 15.10:	Ethernet-Anschlussleitungen M12-Stecker/RJ-45114
Tabelle 15.11:	Leitungsbelegung KB ETSSA
Tabelle 15.12:	Ethernet-Anschlussleitungen M12-Stecker/M12-Stecker114
Tabelle 15.13:	Steckverbinder für den LRS115
Tabelle 15.14:	Leitungsbelegung KB M12/8SA
Tabelle 15.15:	X3-Leitungen für den LRS 36/6
Tabelle 15.16:	Anschlussbelegung X4116
Bild 15.1:	Leitungsaufbau PROFIBUS-Anschlusskabel
Tabelle 15.17:	PROFIBUS Anschlusszubehör für den LRS 36/PB
Tabelle 15.18:	PROFIBUS-Leitungen für den LRS 36/PB117
Tabelle 15.19:	Parametriersoftware für den LRS117
Tabelle 16.1:	Revision History - Firmware
Tabelle 16.2:	Revision History - Parametriersoftware

1 Allgemeines

1.1 Zeichenerklärung

Nachfolgend finden Sie die Erklärung der in dieser technischen Beschreibung verwendeten Symbole.

Achtung!

Dieses Symbol steht vor Textstellen, die unbedingt zu beachten sind. Nichtbeachtung führt zu Verletzungen von Personen oder zu Sachbeschädigungen.

Achtung Laser!

Dieses Symbol warnt vor Gefahren durch gesundheitsschädliche Laserstrahlung. Die Lichtschnittsensoren der Baureihe LRS verwenden einen Laser der Klasse 2M: Das Betrachten des Laserausgangs mit bestimmten optischen Instrumenten wie z.B. Lupen, Mikroskopen oder Ferngläsern kann zu Augengefährdungen führen.

Hinweis!

Dieses Symbol kennzeichnet Textstellen, die wichtige Informationen enthalten.

1.2 Konformitätserklärung

Die Laserlichtschnittsensoren der Baureihen 36 und 36HI wurden unter Beachtung geltender europäischer Normen und Richtlinien entwickelt und gefertigt. Sie entsprechen den Sicherheitsstandards UL508 und CSA C22.2 No. 14 (Industrial Control Equipment).

Hinweis!

Die CE-Konformitätserklärung der Geräte können Sie beim Hersteller anfordern.

Der Hersteller der Produkte, die Leuze electronic GmbH & Co KG in D-73277 Owen, besitzt ein zertifiziertes Qualitätssicherungssystem gemäß ISO 9001.

2 Sicherheitshinweise

2.1 Allgemeine Sicherheitshinweise

Dokumentation

Alle Angaben dieser Technischen Beschreibung, insbesondere das vorliegende Kapitel "Sicherheitshinweise", müssen unbedingt beachtet werden. Bewahren Sie diese Technische Beschreibung sorgfältig auf. Sie sollte immer verfügbar sein.

Sicherheitsvorschriften

Beachten Sie die örtlich geltenden Bestimmungen und die Vorschriften der Berufsgenossenschaften.

Reparatur

Reparaturen dürfen nur vom Hersteller oder einer vom Hersteller autorisierten Stelle vorgenommen werden.

2.2 Sicherheitsstandard

Die Lichtschnittsensoren der Baureihe LRS sind unter Beachtung der geltenden Sicherheitsnormen entwickelt, gefertigt und geprüft worden. Sie entsprechen dem Stand der Technik.

2.3 Bestimmungsgemäßer Gebrauch

Achtung!

Der Schutz von Betriebspersonal und Gerät ist nicht gewährleistet, wenn das Gerät nicht entsprechend seinem bestimmungsgemäßen Gebrauch eingesetzt wird.

Die Lichtschnittsensoren der Baureihe LRS sind Laser-Sensoren zur Ermittlung der Anwesenheit von Objekten in definierten Bereichen.

Unzulässig sind insbesondere die Verwendung

- in Räumen mit explosibler Atmosphäre
- zu medizinischen Zwecken

Einsatzgebiete

Die Lichtschnittsensoren der Baureihe LRS sind insbesondere für folgende Einsatzgebiete konzipiert:

- · Leerkontrolle von Behältern
- Ein- oder mehrspurige An- und Abwesenheitskontrolle auf Förderstrecken
- Kontrolle ob Objekt oder Deckel vorhanden

2.4 Sicherheitsbewusst arbeiten

Achtung!

Eingriffe und Veränderungen an den Geräten, außer den in dieser Anleitung ausdrücklich beschriebenen, sind nicht zulässig.

Sicherheitsvorschriften

Beachten Sie die örtlich geltenden gesetzlichen Bestimmungen und die Vorschriften der Berufsgenossenschaften.

Qualifiziertes Personal

Die Montage, Inbetriebnahme und Wartung der Geräte darf nur von qualifiziertem Fachpersonal durchgeführt werden. Elektrische Arbeiten dürfen nur von elektrotechnischen Fachkräften durchgeführt werden.

Achtung Laserstrahlung!

Bei länger andauerndem Blick in den Strahlengang kann die Netzhaut im Auge beschädigt werden!

Blicken Sie nie direkt in den Strahlengang!

Richten Sie den Laserstrahl der Lichtschnittsensoren nicht auf Personen!

Vermeiden Sie bei der Montage und Ausrichtung der Lichtschnittsensoren Reflexionen des Laserstrahls durch spiegelnde Oberflächen!

Das Betrachten des Laserausgangs mit bestimmten optischen Instrumenten wie z.B. Lupen, Mikroskopen oder Ferngläsern kann zu Augengefährdungen führen!

Die Lichtschnittsensoren entsprechen der Sicherheitsnorm EN 60825-1:2007 für ein Produkt der Laserklasse 2M und der US-Regulierung 21 CFR 1040.10 mit den Abweichungen der "Laser Notice No. 50" vom 24. Juni 2007.

Strahlungsleistung: Die Lichtschnittsensoren verwenden eine Laserdiode. Die emittierte Wellenlänge beträgt 658 nm. Die maximale Laserleistung, die mit Messbedingung 3 nach EN 60825-1: 2007 (7mm Messblende in 100mm Abstand von der virtuellen Quelle) bestimmt wird, beträgt 8,7mW.

Einstellungen: Versuchen Sie nicht, Eingriffe und Veränderungen am Gerät vorzunehmen. Öffnen Sie nicht das Gehäuse des Lichtschnittsensors. Es enthält keine durch den Benutzer einzustellenden oder zu wartenden Teile.

Die gläserne Optikabdeckung ist die einzige Austrittsöffnung, durch die Laserstrahlung aus dem Gerät entweichen kann.

VORSICHT: Wenn andere Justiereinrichtungen benutzt werden, oder wenn andere Verfahrensweisen als die hier beschriebenen ausgeführt werden, kann dies zu gefährlicher Strahlungsexposition führen!

Die Verwendung optischer Instrumente oder Einrichtungen zusammen mit dem Lichtschnittsensor erhöht die Gefahr von Augenschäden!

Anwendungshinweis gemäß UL-Zertifizierung:

CAUTION – Use of controls or adjustments or performance of procedures other than specified herein may result in hazardous light exposure.

Die Lichtschnittsensoren sind am Gehäuse und unter dem Lesefenster mit Warnhinweisen gemäß folgender Abbildung versehen:

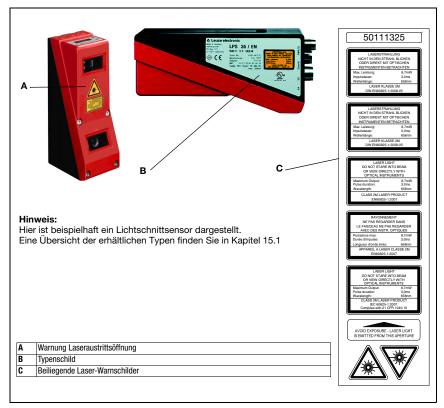


Bild 2.1: Typenschild und Warnhinweise

○ Hinweis!

Bringen Sie die dem Gerät beigefügten Aufkleber (C in Bild 2.1) unbedingt am Gerät an! Sollten die Schilder aufgrund der Einbausituation des Gerätes verdeckt werden, so bringen Sie die Schilder statt dessen in der Nähe des Lichtschnittsensors so an, dass beim Lesen der Hinweise nicht in den Laserstrahl geblickt werden kann.

3 Funktionsprinzip

3.1 Generierung von 2D-Profilen

Lichtschnittsensoren arbeiten nach dem Triangulationsprinzip. Ein Laserstrahl wird mit einer Sendeoptik zu einer Linie aufgeweitet und auf ein Objekt gerichtet. Das vom Objekt remittierte Licht wird von einer Kamera, besteht aus einer Empfangsoptik und dem CMOS-Flächendetektor, empfangen.

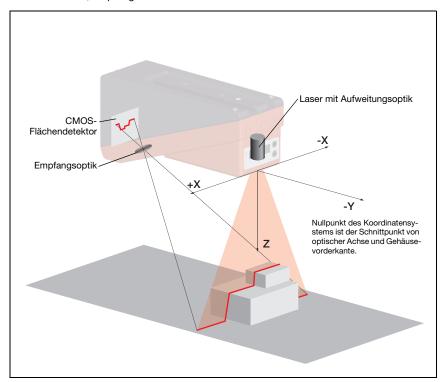


Bild 3.1: Aufbau von Lichtschnittsensoren

Je nach Abstand des Objekts wird die Laserlinie an einer anderen Position auf dem CMOS-Flächendetektor abgebildet, wie in Bild 3.1 zu sehen ist. Anhand dieser Position kann man den Abstand des Objekts berechnen.

3.2 Grenzen der Lichtschnittsensorik

3.2.1 Abschattung

Die Erfassung von hohen und ausgedehnten Objekten von nur einem Punkt aus bringt prinzipiell das Problem mit sich, dass je nach Objektkontur Teile des Objekts von anderen verdeckt werden können. Diesen Effekt nennt man Abschattung.

Das Bild 3.2 verdeutlicht die Problematik:

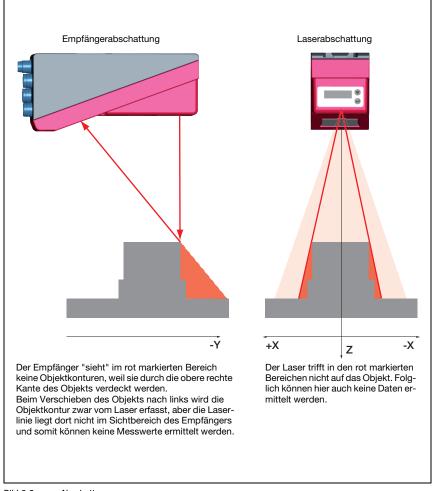
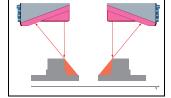


Bild 3.2: Abschattung


Mögliche Maßnahme gegen Laserabschattung

 Verwendung mehrerer Lichtschnittsensoren mit gedrehter Blickrichtung. Im Applikationsbeispiel rechts kann man gut erkennen, dass die Blickfelder der drei Sensoren sich ergänzen und ineinander übergehen. Der erste der Sensoren wird als Master betrieben, die beiden anderen werden kaskadiert angesteuert (siehe "Kaskadierung" auf Seite 22). Damit wird die gegenseitige Beeinflussung der Sensoren sicher ausgeschlossen.

Mögliche Maßnahmen gegen Empfängerabschattung

- Ausrichtung der Objekte, so dass alle Profildaten die erkannt werden sollen, vom Empfänger gesehen werden.
 Oder:
- Anbringen eines zweiten Sensors mit um 180° um die Z-Achse gedrehter Blickrichtung, so dass die Objekte von 2 Seiten aus gesehen werden.
 Der linke Sensor erkennt im Beispiel rechts die Profildaten auf der linken Seite des Produkts und der rechte Sensor die Profildaten auf der rechten Seite.
 Der zweite Sensor wird dann kaskadiert angesteuert. Siehe "Kaskadierung" auf Seite 22.

3.2.2 Mindestobjektgröße

Die Länge der Laserlinie in X-Richtung ist variabel und hängt vom Abstand in Z-Richtung ab. Es wird aber immer die gleiche Anzahl an Messpunkten gemessen. Entscheidend für die Objekterkennung sind die Messpunkte auf dem Objekt im Erkennungsfeld.

Daraus folgt, dass die Mindestobjektgröße (also das kleinste erkennbare Objekt) in X-Richtung mit zunehmendem Abstand in Z-Richtung zunimmt.

Kleine Objekte können im Nahbereich besser erkannt werden.

Aufgrund des Messprinzips der Triangulation fällt der reflektierte Laserstrahl je nach Objektabstand in unterschiedlichen Winkeln auf den CMOS-Empfänger. Das führt dazu, dass auch die Mindestobjektgröße in Z-Richtung mit zunehmendem Abstand zunimmt.

Das Bild 3.3 zeigt diesen Zusammenhang:

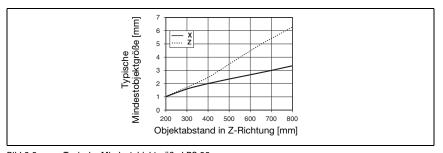


Bild 3.3: Typische Mindestobjektgröße LRS 36...

4 Gerätebeschreibung

4.1 Lichtschnittsensoren im Überblick

4.1.1 Mechanischer Aufbau

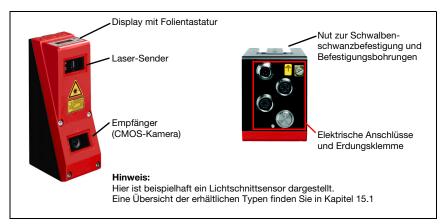
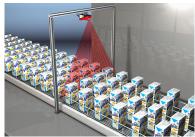


Bild 4.1: Mechanischer Aufbau der Leuze-Lichtschnittsensoren

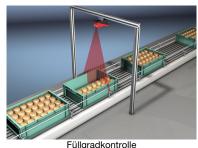
4.1.2 Generelle Leistungsmerkmale

- · Lichtschnittsensor für die Objekterkennung
- Messzeit/Ansprechzeit: 10ms
- Messbereich/Erkennungsbereich: 200 ... 800mm
- · Länge der Laserlinie: max. 600mm
- Parametrierung und Übertragung von Prozessdaten über Fast Ethernet
- OLED-Display mit Folientastatur
- · Messwertanzeige in mm auf OLED-Display als Ausrichthilfe
- Bis zu 16 Inspektionsaufgaben
- Kompakte Baugröße
- · Robuste Bauweise und einfache Bedienung
- Aktivierungseingang, Triggereingang, Kaskadierausgang

4.1.3 Line Range Sensor - LRS


Line Range Sensoren dienen der tastenden Objekterkennung entlang der Laserlinie. Vergleichbar zu einem Lichtgitter oder Laserscanner erkennt der Sensor tastend das Vorhandensein von Objekten. Mit einem Sensor können über individuelle Parametrierung Einzelobjekte oder mehrere Objekte erkannt werden.

Spezifische Leistungsmerkmale


- Parametriersoftware LRSsoft
- Datenberechnung und -verarbeitung direkt im Sensor
- Integrierte PROFIBUS-Schnittstelle oder 4 Schaltausgänge
- Bis zu 16 Erkennungsfelder mit logischer Verknüpfungsmöglichkeit
- detaillierte Informationen über Auswertefenster, Schaltzustand und Sensorstatus per Ethernet und PROFIBUS

Typische Einsatzgebiete

- Lage- und Postionskontrolle
- An- und Abwesenheitskontrolle von Objekten in festgelegten Bereichen
- · Höhen- und Breitenkontrolle
- Ein- oder mehrspurige An- und Abwesenheitskontrolle auf Förderstrecken
- Leerkontrolle von Behältern

Ein oder mehrspurige An- und Abwesenheits kontrolle auf Fördermedien

Fullgraukontrolle

4.2 Betrieb des Sensors

4.2.1 Anbindung an PC / Prozess-Steuerung

Parametrierung

Zur Inbetriebnahme werden die Lichtschnittsensoren über die Ethernetschnittstelle (siehe "Anschluss X2 - Ethernet" auf Seite 41) an einen PC angeschlossen und über die mitgelieferte Parametriersoftware LRSsoft eingestellt.

Erkennungsbetrieb

Im Erkennungsbetrieb wird der LRS 36/6 über seine 4 Schaltausgänge, der LRS 36/PB über PROFIBUS mit der Prozess-Steuerung verbunden. Alternativ kann der LRS über die Ethernet-Schnittstelle an X2 betrieben werden, siehe Kapitel 10 "Einbindung des LRS in die Prozess-Steuerung (Ethernet)". Es stehen dann zusätzliche Sensorinformationen zur Verfügung.

4.2.2 Aktivierung - Laser ein/aus

Über den Aktivierungseingang InAct (Pin 2 an X1), über PROFIBUS (Masterausgang 'uActivation' = 1) oder den Befehl 'Ethernet Trigger' kann der Laser und die Datenübertragung gezielt ein- und ausgeschaltet werden. Damit kann eine mögliche Blendung durch Laserstrahlung in den Zeiten verhindert werden, in denen nicht gemessen wird.

Hinweis!

Ab Werk wird der Sensor in der Einstellung Activation Input Disregard ausgeliefert. Die möglichen Aktivierungsquellen (Aktivierungseingang, PROFIBUS-Aktivierung und Ethernet-Aktivierung) werden ignoriert - die Messfunktion des Sensors ist freigegeben.

Über die Parametriersoftware kann die Aktivierungsfunktion eingeschaltet werden. Dazu muss der Parameter Activation Input auf Regard gestellt werden. Der Sensor misst dann nur, wenn eine der Aktivierungsquellen aktiviert ist. Wartet der Sensor auf die Aktivierung, so zeigt er im Display !Act an.

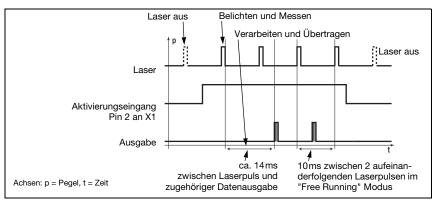


Bild 4.2: Signalfolge Aktivierungseingang

Das Bild 4.2 zeigt die Auswirkung der Aktivierung auf Laser und Messwertausgabe im "Free Running" Modus.

4.2.3 Triggerung - Free Running

Die Lichtschnittsensoren können in zwei Modi messen:

- Im "Free Running"-Betrieb ermittelt der Lichtschnittsensor Messergebnisse mit einer Frequenz von 100Hz und gibt diese kontinuierlich über die Schnittstelle X2 aus.
- Alternativ dazu können auch Einzelmessungen durchgeführt werden. Dazu benötigt der Lichtschnittsensor entweder ein Triggersignal am Triggereingang (Pin 5 an X1), einen PROFIBUS-Trigger oder den Befehl Ethernet Trigger im Erkennungsmodus (siehe Kapitel 10.3.4 "Befehle im Erkennungsmodus" auf Seite 89).

Bei der Triggerung über Pin 5 an X1 ist zu beachten:

- es wird auf die steigende Flanke getriggert.
- der Triggerimpuls muss mindestens 100 µs lang sein.
- vor dem n\u00e4chsten Trigger muss die Triggerleitung mindestens 1ms auf low-Pegel sein.
- Aktivierung muss mindestens 100 µs vor der Triggerflanke erfolgen.
- Der kürzestmögliche zeitliche Abstand zwischen zwei aufeinanderfolgenden Triggerflanken beträgt 10ms.

Hinweis!

Ab Werk ist der LRS auf Free Running eingestellt (Anzeige am Display: fRur). Damit er auf Signale am Triggereingang reagiert muss die Betriebsart über die Parametriersoftware LRSsoft auf Input Triggered eingestellt werden (Anzeige am Display: Tris).

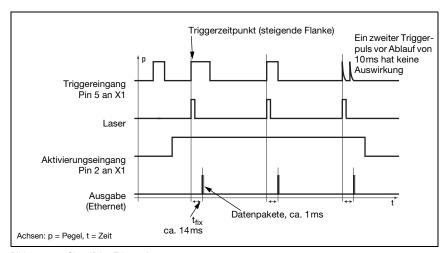


Bild 4.3: Signalfolge Triggereingang

PROFIBUS-Trigger

Damit je PROFIBUS-Zyklus eine Messung getriggert werden kann, reagiert der PROFIBUS-Trigger des LRS auf eine Änderung des Master-Ausgangsbytes **uTrigger**. Die Steuerung muss lediglich den Triggerwert inkrementieren, um eine neue Messung auszulösen.

Die maximale Triggerfrequenz liegt bei 100Hz. Erfolgt die Triggerung während einer Messung, so wird das Triggersignal, ebenso wie in der Betriebsart Free Running, ignoriert.

4.2.4 Kaskadierung

Bild 4.5: Applikationsbeispiel Kaskadierung

Beim Betrieb mehrerer Lichtschnittsensoren besteht die Gefahr der gegenseitigen Beeinflussung, wenn der reflektierte Laserstrahl eines Sensors vom Empfänger eines weiteren Sensors zum Lesezeitpunkt empfangen werden kann.

Das ist in Bild 4.5 gut zu erkennen. Hier werden drei Lichtschnittsensoren eingesetzt, um die Stammdicke von allen Seiten zuverlässig zu ermitteln.

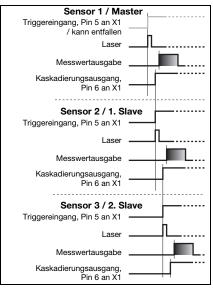


Bild 4.4: Signalfolge bei Kaskadierung

Um die gegenseitige Beeinflussung zu verhindern, können die Lichtschnittsensoren kaskadiert betrieben werden: Die Belichtung des zweiten Sensors wird nach Abschluss der Belichtung des ersten Sensors gestartet. Dazu muss der Kaskadierungsausgang des ersten Sensors mit dem Triggereingang des zweiten Sensors verbunden werden. Bis zu 6 Sensoren können so kaskadiert betrieben werden.

Triagereinstellungen

Der Sensor 1, bzw. der Master, kann dabei sowohl getriggert als auch freilaufend betrieben werden. Alle anderen Sensoren müssen getriggert betrieben werden.

Kaskadierungseinstellungen

Bei allen Sensoren bis auf den letzten Slave muss der Kaskadierungsausgang per Parametriersoftware freigeschaltet werden: Cascading Output: Enable.

n

Hinweis!

Im PROFIBUS-Betrieb funktioniert die Kaskadierung nur wie oben beschrieben über die Ein-/Ausgänge InTrig und OutCas an X1. In diesem Fall wird die maximale Erkennungsrate von 100Hz erreicht. Es ist jedoch darauf zu achten, dass die Eingangsdaten der PROFIBUS-Lichtschnittsensoren noch im gleichen Buszyklus übertragen werden, ggf. sind die Scannummern zu überwachen.

Alternativ können Lichtschnittsensoren mit PROFIBUS gezielt nacheinander getriggert werden. Pro SPS-Zyklus wird der Master-Output 'uTrigger' des zu triggernden Sensors hochgezählt, die Master-Outputs der anderen Sensoren bleiben unverändert. Mit diesem Verfahren wird die maximale Erkennungsrate von 100Hz nicht erreicht.

Werden mehrere Sensoren in einem PROFIBUS-Zyklus getriggert, kann es zu gegenseitigen Beeinflussungen der Sensoren kommen, wenn diese den gleichen Sichtbereich haben und die Zeit zwischen der Aktualiserung der 'uTrigger'-Bytes kleiner der maximalen Belichtungszeit (Exposure Time) von 1,3ms ist.

4.3 Erkennungsfunktionen LRS

Mit dem LRS können Sie An-/Abwesenheits- und Bereichskontrollen bei stabilem Schaltverhalten und einfacher Parametrierung durchführen. Gemäß den Anforderungen unterschiedlicher Applikationen wird in der Parametriersoftware LRSsoft die entsprechende Sensorparametrierung in einzelnen Inspektionsaufgaben (Inspections Tasks) gespeichert.

4.3.1 Inspection Task

Der LRS erlaubt das Arbeiten mit bis zu 16 einzelnen Inspektionsaufgaben, die jeweils bis zu 16 voneinander unabhängig parametrierbare und sich beliebig überlappende rechteckige Auswertefenster (Analysis Windows, AWs) enthalten können.

Pro Inspektion Task können 1-16 AWs definiert werden. Die Ergebnisse der einzelnen AWs können logisch miteinander verknüpft werden (UND, ODER, NICHT). Für jeden der 4 Schaltausgänge Out1 bis Out4 können unterschiedliche logische Verknüpfungen definiert werden.

Die Auswahl der Inspection Tasks erfolgt:

- über die Schalteingänge des X3 Anschlusses (hier lassen sich nur die Inspection Tasks 0-7 auswählen)
- über PROFIBUS
- über LRSsoft (an einem über X2 angeschlossenen PC)
- über Ethernet (an einer über X2 angeschlossenen Prozesssteuerung)
- ab Firmware V01.40 über das Bedienfeld am Sensor.

4.3.2 Analysis Window (AW)

Die Definition der AWs erfolgt in der Parametriersoftware LRSsoft (siehe Kapitel 9.4 "Parametereinstellungen/Reiter Parameters"). Hier werden pro AW die räumliche Lage, Größe und die Anzahl der zu erkennenden Objektpunkte definiert.

Eine Auswertung wird nur innerhalb der aktiven AW vorgenommen. Bereiche außerhalb des Sensorsichtfelds werden ebenso nicht ausgewertet. Erkannt wird ein Objekt, wenn die Anzahl der Objektpunkte (Hit Points) im AW einen frei definierbaren Mindestwert erreicht oder übersteigt.

ĭ

Hinweis!

Die Anzahl der Objektpunkte korrespondiert nicht zwingend mit der Objektgröße, da die Anzahl der Objektpunkte abhängig von der Distanz z ist. Ein in x-Richtung ausgedehntes Objekt weist bei geringer Distanz zum Sensor (z. B. 300mm) fast doppelt so viele Objektpunkte wie bei größerer Distanz (z. B. 600mm) auf. Bei identischer Objektdistanz bleibt die Anzahl der Objektpunkte nahezu konstant.

Auswertungsergebnisse

Die Auswertungsergebnisse einzelner AWs können über die Parametriersoftware LRSsoft logisch miteinander kombiniert werden. Das Ergebnis dieser logischen Verknüpfung wird über die Schaltzustände der vier Schaltausgänge Out1-Out4 an X3 oder über PROFIBUS ausgegeben.

Detaillierte Auswerteergebnisse, wie z. B. der Status aller AWs, die Anzahl der Objektpunkte sowie der Zustand der Schaltausgänge werden über Ethernet übertragen und können über PROFIBUS abgefragt werden. Näheres dazu finden Sie in Kapitel 10.

4.3.3 Definition von AWs und Auswerteergebnisse

In Bild 4.6 sind 5 AWs definiert (die blauen Rechtecke). Für jedes AW gilt, dass mindestens 5 Objektpunkte erkannt werden müssen, um als Auswerteergebnis "1" zu erhalten, werden weniger Objektpunkte erkannt, ist das Auswerteergebnis "0".

Im dargestellten Beispiel ergibt sich dann folgendes

• AW1:	8 Objektpunkte (auf O1)	Ergebnis =1
• AW2:	4 Objektpunkte (auf O2)	Ergebnis =0
• AW3:	1 Objektpunkt (auf O2)	Ergebnis =0
• AW4:	3 Objektpunkte (auf O2)	Ergebnis =0
• AW5:	11 Objektpunkte (auf O4)	Ergebnis =1

Warum wird O2 nicht erkannt?

O2 wird in AW2 nicht erkannt, weil fehlende Objektpunkte abgeschattet sind. Für AW3 liegt O2 zu weit links. Für AW4 müsste die Anzahl der zu erkennenden Objektpunkte auf 3 gesenkt werden.

Warum wird O3 nicht erkannt?

O3 liegt zwar in AW3, aber die obere Objektkante wird von AW3 nicht erfasst und damit erfolgt keine Erkennung. In AW5 wird O3 wegen des aus Sicht des Sensors davorliegenden O4 nicht erkannt.

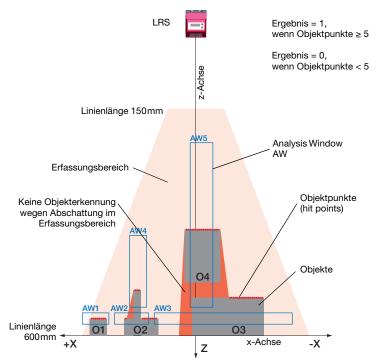


Bild 4.6: Prinzip der Objekterkennung - Bereiche mit Laserabschattung sind orange dargestellt

4.3.4 Applikationsbeispiele

Leerkontrolle von Behältern

In Bild 4.7 wird mit AW1 und AW2 geprüft, ob sich ein Behälter bestimmter Höhe und Breite an einer vordefinierten Position im Erfassungsbereich befindet.

Mit AW3 wird geprüft, ob der Behälter leer ist. Er ist nicht leer, wenn Objektpunkte in AW3 erkannt werden.

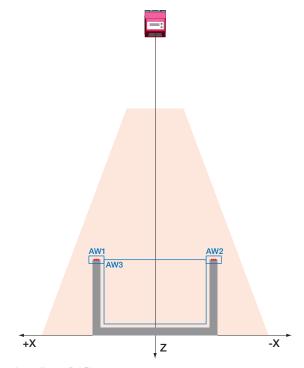


Bild 4.7: Leerkontrolle von Behältern

Ein- oder mehrspurige An- und Abwesenheitskontrolle auf Förderstrecken

In Bild 4.8 wird wie in Bild 4.7 mit AW1 und AW2 geprüft, ob sich ein Behälter bestimmter Höhe und Breite an einer vordefinierten Position im Erfassungsbereich befindet.

Mit AW3 bis AW8 wird geprüft, ob und wo sich Objekte im Behälter befinden und wie hoch diese sind.

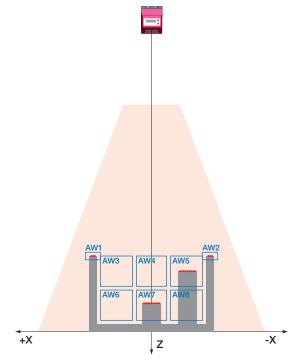


Bild 4.8: Ein- oder mehrspurige An- und Abwesenheitskontrolle auf Förderstrecken

4.3.5 Erstellen von Inspektionsaufgaben

Die zur Parametrierung der AWs erforderlichen Einstellungen, die Zuordnung der AW-Stati zu den Schaltausgängen, sowie die Einstellung allgemeiner Parameter wie Betriebsmodus, Aktivierung, Kaskadierung, Erfassungsbereich (FOV) u.a. erfolgen in **LRSsoft**, siehe Kapitel 9.4 "Parametereinstellungen/Reiter Parameters" und Kapitel 9.7.

5 Installation und Montage

5.1 Lagern, transportieren

Achtung!

Verpacken Sie den Lichtschnittsensor für Transport und Lagerung stoßsicher und geschützt gegen Feuchtigkeit. Optimalen Schutz bietet die Originalverpackung. Achten Sie auf die Einhaltung der in den technischen Daten spezifizierten zulässigen Umgebungsbedingungen.

Auspacken

- Achten Sie auf unbeschädigten Packungsinhalt. Benachrichtigen Sie im Fall einer Beschädigung den Postdienst bzw. den Spediteur und verständigen Sie den Lieferanten.
- Überprüfen Sie den Lieferumfang anhand Ihrer Bestellung und der Lieferpapiere auf:
 - Liefermenge
 - Gerätetyp und Ausführung laut Typenschild
 - Laser-Warnschilder
 - Kurzanleitung

Das Typenschild gibt Auskunft, um welchen Lichtschnittsensor-Typ es sich bei Ihrem Gerät handelt. Genaue Informationen hierzu entnehmen Sie bitte dem Kapitel 15.

Bild 5.1: Gerätetypenschild LRS

Bewahren Sie die Originalverpackung für den Fall einer späteren Einlagerung oder Verschickung auf.

Bei auftretenden Fragen wenden Sie sich bitte an Ihren Lieferanten bzw. das für Sie zuständige Leuze electronic Vertriebsbüro.

Beachten Sie bei der Entsorgung von Verpackungsmaterial die örtlich geltenden Vorschriften.

5.2 Montage des LRS

Die Lichtschnittsensoren können auf unterschiedliche Arten montiert werden:

- Über zwei M4x6 Schrauben auf der Geräterückseite
- Über ein Befestigungsteil BT 56 an den beiden Befestigungsnuten.
- Über ein Befestigungsteil BT 59 an den beiden Befestigungsnuten.

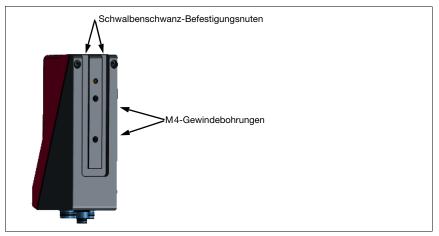


Bild 5.2: Befestigungsmöglichkeiten

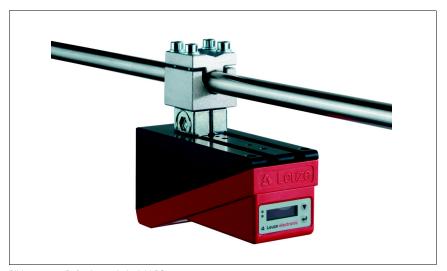


Bild 5.3: Befestigungsbeispiel LRS

5.2.1 Befestigungsteil BT 56

Zur Befestigung des LRS über die Befestigungsnuten steht Ihnen das Befestigungsteil BT 56 zur Verfügung. Es ist für eine Stangenbefestigung (Ø 16mm bis 20mm) vorgesehen. Bestellhinweise entnehmen Sie bitte dem Kapitel "Typenübersicht und Zubehör" auf Seite 111.

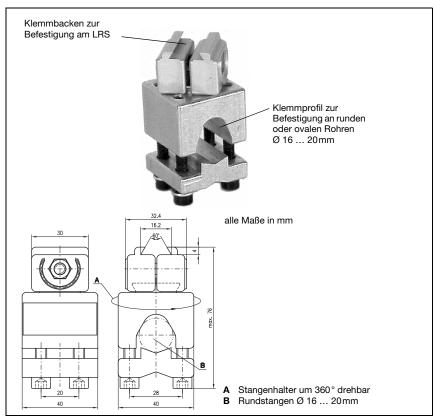


Bild 5.4: Befestigungsteil BT 56

5.2.2 Befestigungsteil BT 59

Zur Befestigung des LRS über die Befestigungsnuten an ITEM-Profilen steht Ihnen das Befestigungsteil BT 59 zur Verfügung. Bestellhinweise entnehmen Sie bitte dem Kapitel "Typenübersicht und Zubehör" auf Seite 111.

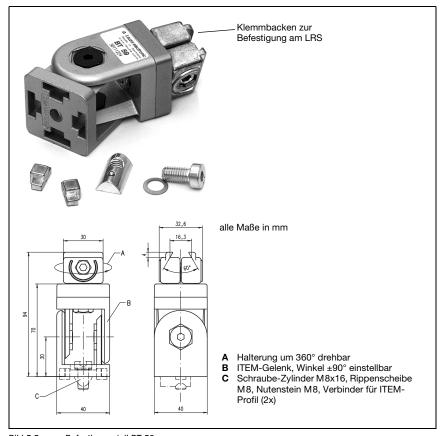


Bild 5.5: Befestigungsteil BT 59

5.3 Geräteanordnung

5.3.1 Wahl des Montageortes

Für die Auswahl des richtigen Montageortes müssen Sie eine Reihe von Faktoren berücksichtigen:

- Die gewünschte Auflösung. Diese ergibt sich aus dem Abstand und der daraus resultierenden Linienlänge.
- Die zulässigen Leitungslängen zwischen LRS und dem Host-System je nach verwendeter Schnittstelle.
- Das Display und Bedienfeld sollte gut sichtbar und zugänglich sein.
- Achten Sie bei der Wahl des Montageortes weiterhin auf:
 - Die Einhaltung der zulässigen Umgebungsbedingungen (Feuchte, Temperatur).
 - Mögliche Verschmutzung der Optikabdeckungen von Sender und Empfänger durch austretende Flüssigkeiten, Abrieb von Kartonagen oder Rückstände von Verpackungsmaterial.
 - Geringstmögliche Gefährdung des LRS durch mechanische Zusammenstöße oder sich verklemmende Teile.
 - Möglichen Fremdlichteinfluss (kein direktes bzw. über das Messobjekt reflektiertes Sonnenlicht).
 - Die optimale Perspektive zur Erkennung der relevanten Objektkonturen, siehe Kapitel 3.2.1 "Abschattung".

Achtung Laserstrahlung!

Vermeiden Sie bei der Montage und Ausrichtung des LRS Reflexionen des Laserstrahls durch spiegelnde Oberflächen!

Hinweis!

Die Vermeidung von Fremdlicht durch z.B. Abschirmung des Sensors sorgt für stabile und genaue Messwerte. Sekundärreflexionen der Laserlinie an spiegelnden Gegenständen sind zu vermeiden, da diese zu Fehlmessungen führen können.

Sie erzielen die besten Messergebnisse wenn:

- Sie den Betriebsmodus (hell/dunkel) auf die Applikation anpassen
- Sie keine hochglänzenden Objekte detektieren.
- Keine direkte Sonneneinstrahlung vorliegt.

5.3.2 Ausrichtung des Sensors

Nullpunkt des Sensor-Koordinatensystems ist der Schnittpunkt von optischer Achse und Gehäusevorderkante. Generell gilt, dass der Lichtschnittsensor so ausgerichtet sein sollte, dass die Sensorrückseite parallel zum Förderband bzw. zur Messebene ausgerichtet ist. Eine Verdrehung um die Y-Achse ist unerwünscht.

Das Bild 5.6 verdeutlicht die Problematik:

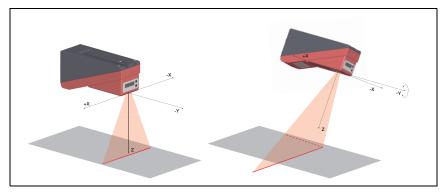


Bild 5.6: Ausrichtung zur Messebene

Eine Verdrehung des Sensors um die Y-Achse verdreht das gesamte Koordinatensystem, auf das die Messwerte bezogen sind. Der Sensor misst entlang der durchgezogenen Linie im rechten Bild, die Messebene befindet sich aber auf der gestrichelten Linie und eine Messung auf das grau dargestellte Förderband würde eine schräge Ebene ergeben.

Beim Einrichten einer Applikation sollte daher unbedingt auf korrekte Ausrichtung geachtet werden und die integrierte Ausrichthilfe am Display verwendet werden.

5.4 Laserwarnschild anbringen

Achtung Laser!

Beachten Sie die Sicherheitshinweise in Kapitel 2.

Bringen Sie die dem Lichtschnittsensor beigefügten Aufkleber (Laserwarnschilder und Laseraustrittssymbol) unbedingt am Lichtschnittsensor an! Sollten die Schilder aufgrund der Einbausituation des LRS verdeckt werden, so bringen Sie die Schilder statt dessen in der Nähe des LRS so an, dass beim Lesen der Hinweise nicht in den Laserstrahl geblickt werden kann!

Verwenden Sie bei Installation des LRS in Nordamerika den Aufkleber mit dem Satz "Complies with 21 CFR 1040.10"

5.5 Reinigen

Reinigen Sie nach der Montage die Optikabdeckungen des LRS mit einem weichen Tuch. Entfernen Sie alle Verpackungsreste, wie z.B. Kartonfasern oder Styroporkugeln. Vermeiden Sie dabei Fingerabdrücke auf den Optikabdeckungen des LRS.

Achtung!

Verwenden Sie zur Reinigung der Geräte keine aggressiven Reinigungsmittel wie Verdünner oder Aceton.

6 Elektrischer Anschluss

Die Lichtschnittsensoren werden über unterschiedlich kodierte M12-Rundsteckverbinder angeschlossen. Somit ist eine eindeutige Anschlusszuordnung gewährleistet.

Die generelle Position der einzelnen Geräteanschlüsse entnehmen sie bitte unten dargestelltem Geräteausschnitt.

Hinweis!

Sie erhalten zu allen Anschlüssen die entsprechenden Gegenstecker bzw. vorkonfektionierten Leitungen. Näheres hierzu finden Sie in Kapitel 15.

Hinweis:

Hier ist beispielhaft ein Lichtschnittsensor dargestellt.

Eine Übersicht der erhältlichen Typen finden Sie in Kapitel 15.1

Bild 6.1: Lage der elektrischen Anschlüsse

Alle Lichtschnittsensoren verfügen über mindestens zwei M12 Stecker/Buchsen die A- und D-kodiert sind.

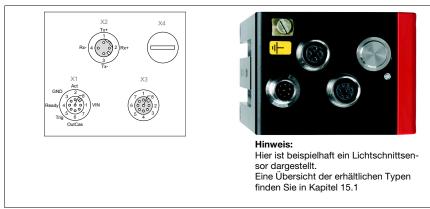


Bild 6.2: Anschlüsse des LRS

Die Steckerbelegung von X1 und X2 ist bei allen Lichtschnittsensoren identisch, X3 und X4 sind je nach Gerätetyp unterschiedlich.

Kontrollieren Sie anhand des Typenschilds die genaue Typenbezeichnung. Die Ausführung von X3/X4 können Sie nachfolgender Tabelle entnehmen:

Typenbezeichnung	Х3	X4	zutreffendes Kapitel
LRS 36/6	Schaltein-/-ausgänge	nicht belegt	Kapitel 6.3.3
LRS 36/PB	nicht belegt	PROFIBUS DP	Kapitel 6.3.4

Tabelle 6.1: Schnittstellenausführung von X3 und X4

6.1 Sicherheitshinweise

Achtung!

Öffnen Sie den Lichtschnittsensor in keinem Fall selbst! Es besteht ansonsten die Gefahr, dass Laserstrahlung aus dem Lichtschnittsensor unkontrolliert austritt. Das Gehäuse des LRS enthält keine durch den Benutzer einzustellenden oder zu wartenden Teile.

Vergewissern Sie sich vor dem Anschließen, dass die Versorgungsspannung mit dem angegebenen Wert auf dem Typenschild übereinstimmt.

Der Anschluss des Gerätes und die Reinigung dürfen nur durch eine elektrotechnische Fachkraft erfolgen.

Können Störungen nicht beseitigt werden, ist der LRS außer Betrieb zu setzen und gegen versehentliche Inbetriebnahme zu schützen.

Die Lichtschnittsensoren der Baureihe LRS sind in Schutzklasse III zur Versorgung durch PELV (Protective Extra Low Voltage) ausgelegt (Schutzkleinspannung mit sicherer Trennung).

Hinweis!

Die Schutzart IP 67 wird nur mit verschraubten Steckverbindern bzw. mit verschraubten Abdeckkappen erreicht! Die verwendeten Steckverbinder müssen mit O-Ring-Dichtungen ausgestattet sein. Verwenden Sie daher vorzugsweise die vorkonfektionierten Leitungen von Leuze electronic.

6.2 Schirmung und Leitungslängen

Die Lichtschnittsensoren der Baureihe 36/36HI besitzen eine moderne Elektronik, die für den industriellen Einsatz entwickelt wurde. Im industriellen Umfeld kann eine Vielzahl an Störungen auf die Sensoren einwirken. Im Folgenden werden Hinweise zur EMV-gerechten Verdrahtung der Sensoren und der anderen Komponenten im Schaltschrank und an der Maschine gegeben.

Beachten Sie folgende maximale Leitungslängen:

Verbindung zum Sensor	Schnittstelle	max. Leitungslänge	Schirmung
Netzteil	X1	50 m	erforderlich
Aktivierung / Kaskadierung / Trigger	X1	50 m	erforderlich
PC/Host	X2	50 m	erforderlich
Encoder	Х3	50 m	erforderlich
Schaltein- / -ausgänge	Х3	10 m	erforderlich
PROFIBUS DP	X4	10m	erforderlich

Tabelle 6.2: Leitungslängen und Schirmung

Schirmung:

1. Erden des LRS Gehäuses:

Verbinden Sie das Gehäuse des LRS über die dafür vorgesehene Funktionserde (FE)-Schraube (siehe Bild 6.3, Geräte ab April 2011) mit dem Schutzleiter am Maschinensternpunkt. Die Leitung soll eine möglichst niedrige Impedanz für hochfrequente Signale haben, d. h. möglichst kurz sein und eine große Querschnittsfläche (Erdungsband, ...) besitzen.

Hat der LRS noch keine eigene FE-Schraube, so verwenden Sie bitte eine der M4-Bohrungen am Schwalbenschwanz.

Wichtig: Legen Sie eine Zahnscheibe unter und kontrollieren Sie die Durchdringung der Eloxalschicht des LRS-Gehäuses, indem Sie die elektrische Verbindung vom FE-Sternpunkt zu den Steckerhülsen bei nicht angeschlossenen Sensorkabeln durchmessen, damit auch andere FE-Unterbrechungen am Maschinenbett und Profilschienen erkannt werden.

2. Alle Anschlussleitungen zum LRS schirmen:

Legen Sie den Schirm beidseitig auf FE. Auf der LRS-Seite ist dies gewährleistet, wenn das LRS Gehäuse wie unter 1. beschrieben auf FE (PE) gelegt ist (Schirm geht über die Steckerhülsen zum Gehäuse).

Klemmen Sie den Schirm im Schaltschrank flächig auf FE. Verwenden Sie dazu spezielle **Schirmklemmen** (z. B. Wago, Weidmüller, ...).

Halten Sie die Länge des schirmfreien Kabelendes soll so kurz wie möglich. Der Schirm soll nicht zusammengedrillt an eine Klemme geführt werden (kein "HF-Zopf").

3. Trennen von Leistungs- und Steuerleitungen:

Führen Sie die Leitungen der Leistungsteile (Motorkabel, Hubmagnete, Frequenzumrichter, ...) möglichst weit von den Sensorleitungen entfernt (Abstand > 30 cm). Vermeiden Sie die Parallelführung von Leistungs- und Sensorleitungen.

Führen Sie Leitungskreuzungen möglichst senkrecht aus.

4. Leitungen dicht an geerdeten Metallflächen verlegen:

Durch diese Maßnahme verringern sich die Störeinkoppungen in die Leitungen.

5. Ableitströme im Kabelschirm vermeiden:

Ableitströme im Kabelschirm entstehen durch einen nicht korrekt ausgeführten Potenzialausgleich. Erden Sie daher alle Teile der Maschine sorgfältig.

Hinweis: Ableitströme können Sie mit einem Zangenstrommesser messen.

6. Sternförmige Kabelverbindungen:

Achten Sie auf eine sternförmige Verbindung der Geräte, um Beeinflussungen verschiedener Verbraucher untereinander zu vermeiden. Dadurch werden Kabelschleifen vermieden.

Allgemeine Schirmhinweise:

Vermeiden Sie bei der Verwendung von Leistungsteilen (Frequenzumrichter, ...) Störemissionen. Die Technischen Beschreibungen der Leistungsteile geben dazu die notwendigen Vorgaben, unter denen der Leistungsteil seine CE-Konformität erfüllt.

In der Praxis haben sich die folgenden Maßnahmen bewährt:

- Netzfilter, Frequenzumrichter flächig auf die verzinkte Montageplatte schrauben.
- Montageplatte im Schaltschrank aus verzinktem Stahlblech, Dicke ≥ 3mm
- Leitung zwischen Netzfilter und Umrichter so kurz wie möglich halten und Leitungen verdrillen.
- · Motorkabel beidseitig schirmen.
- · Das Gesamtsvstem aut erden.

Erden Sie alle Teile der Maschine und des Schaltschranks sorgfältig unter Verwendung von Kupferband, Erdungsschienen oder Erdleitungen mit großem Querschnitt.

Im Folgenden ist beispielhaft der EMV-gerechte Anschluss der Lichtschnittsensoren LRS in der Praxis mit Bildern beschrieben.

Auflegen des Erdpotenzials an die Lichtschnittsensoren

Geräte ab Stand April 2011 sind mit einer zusätzlichen Erdungsklemme ausgestattet.

Achtung!
Zahnscheibe unterlegen und die Durchdringung der
Eloxalschicht kontrollieren!

Alle Geräte können auch an der M4-Gewindebohrung am Schwalbenschwanz auf Erdpotenzial gelegt werden.

Bild 6.3: Auflegen des Erdpotenzials am Lichtschnittsensor

Auflegen des Kabelschirms im Schaltschrank

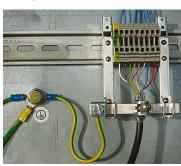


Bild 6.4: Auflegen des Kabelschirms im Schaltschrank

- · Schirm flächig an PE gelegt
- PE-Sternpunkt mit kurzen Leitungen anschließen
- · verzinktes Montageblech

Anmerkung:

abgebildete Schirmkomponenten von Wago, Serie 790 ...:

- 790-108 Schirmklemmbügel 11mm
- 790-300 Sammelschienenhalter für TS35

Auflegen des Kabelschirms an der SPS

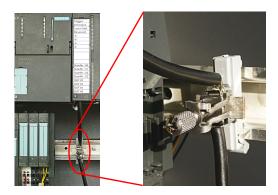


Bild 6.5: Auflegen des Kabelschirms an der SPS

- Sensorleitungen so weit wie möglich geschirmt verlegen
- Schirm mittels Schirmklemmsystem flächig an PE gelegt
- Tragschiene muss gut geerdet sein

Anmerkung:

abgebildete Schirmkomponenten von Wago, Serie 790 ...:

- 790-108 Schirmklemmbügel 11mm
- 790-112 Träger mit Ableitfuß für TS35

6.3 Anschließen

6.3.1 Anschluss X1 - Logik und Power

Achtung!

Alle Leitungen müssen geschirmt sein!

X1 (8-pol. Stecker, A-kodiert)					
X1	Pin	Name	Aderfarbe	Bemerkung	
InAct	1	VIN	WS	+24VDC Versorgungsspannung	
GND 2	2	InAct	br	Aktivierungseingang	
3 0 0 0	3	GND	gn	Masse	
OutReady 4(000)1 VIN	4	OutReady	ge	Ausgang "betriebsbereit"	
5007	5	InTrig	gr	Triggereingang	
InTrig 6	6	OutCas	rs	Kaskadierungsausgang	
OutCas	7		bl	nicht verbinden	
M12-Stecker (A-kodiert)	8		rt	nicht verbinden	

Tabelle 6.3: Anschlussbelegung X1

Verwenden Sie vorzugsweise die vorkonfektionierten Leitungen "K-D M12A-8P...", siehe Kapitel 15.2.2.

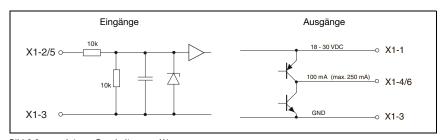


Bild 6.6: Interne Beschaltung an X1

Stromversorgung

Die technischen Daten zur Stromversorgung finden Sie in Kapitel 14.

Aktivierungseingang InAct

Der Aktivierungseingang dient zum Ein- und Ausschalten des Lasers durch die Prozess-Steuerung. Der Sensor gibt keine Daten mehr aus und reagiert nicht auf Triggerkommandos sowie den Triggereingang. Die Ersatzschaltung der Eingänge an X1 wird in Bild 6.6 gezeigt.

Triggereingang InTrig

Der Triggereingang dient zum Synchronisieren der Messung mit dem Prozess und der Synchronisierung kaskadierter Sensoren. Nähere Informationen finden Sie in Kapitel 4.2.3 und Kapitel 4.2.4. Die interne Ersatzschaltung wird in Bild 6.6 gezeigt.

Kaskadierungsausgang OutCas

Um mehrere Lichtschnittsensoren kaskadiert zu betreiben, muss dieser Ausgang direkt mit dem Triggereingang des nachfolgenden Sensors verbunden werden. Nähere Informationen hierzu finden Sie in Kapitel 4.2.4. Die interne Ersatzschaltung wird in Bild 6.6 gezeigt.

Ausgang "betriebsbereit" OutReady

Dieser Ausgang signalisiert Betriebsbereitschaft des Sensors. Der Zustand des Ausgangs entspricht dem Zustand der grünen LED (siehe "LED-Statusanzeigen" auf Seite 44).

6.3.2 Anschluss X2 - Ethernet

Achtung!

Alle Leitungen müssen geschirmt sein!

Der LRS stellt eine Ethernet-Schnittstelle als Host-Schnittstelle zur Verfügung.

X2 (4-pol. Buchse, D-kodiert)					
X2	Pin	Name	Aderfarbe	Bemerkung	
Tx+	1	Tx+	ge	Transmit Data +	
1	2	Rx+	ws	Receive Data +	
	3	Tx-	or	Transmit Data -	
Rx- (4 (o o) 2 Rx+	4	Rx-	bl	Receive Data -	
Tx- M12-Buchse (D-kodiert)	Gewinde	FE	-	Funktionserde (Gehäuse)	

Tabelle 6.4: Anschlussbelegung X2

Verwenden Sie vorzugsweise die vorkonfektionierten Leitungen "KB ET-...-SA...", siehe Kapitel 15.2.3.

Ethernet-Leitungsbelegung

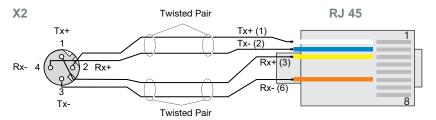


Bild 6.7: Leitungsbelegung HOST / BUS IN auf RJ-45

Hinweis zum Anschluss der Ethernet-Schnittstelle!

Achten Sie auf ausreichende Schirmung. Die gesamte Verbindungsleitung muss geschirmt und geerdet sein. Die Adern Rx+/Rx- und Tx+/Tx- müssen paarig verseilt sein. Verwenden Sie CAT 5 Leitungen zur Verbindung.

X3 (8-pol. Buchse, A-kodiert)				
	Pin	Name	Aderfarbe	Bemerkung
	1	Out4	WS	Ausgang Erkennungsergebnis
\/O				4
X3	2	Out3	br	Ausgang Erkennungsergebnis
Out4				3
InSel 2 7 1 8 InSel 1	3	GND	gn	Masse
(% % \	4	Out2	ge	Ausgang Erkennungsergebnis
InSel 3 (6 (0 d 0) 2 Out3				2
5 3	5	Out1	gr	Ausgang Erkennungsergebnis
Outi				1
Out2 M12-Buchse	6	InSel3	rs	Auswahl Inspection Task Bit 3
(A-kodiert)				(MSB)
(1 1 3 4 1 5 4 1 5 4 1	7	InSel2	bl	Auswahl Inspection Task Bit 2
	8	InSel1	rt	Auswahl Inspection Task Bit 1
	0	o IIISeii		(LSB)

6.3.3 Anschluss X3 - Schaltein-/ausgänge (nur LRS 36/6)

Tabelle 6.5: Anschlussbelegung X3

Schaltausgänge des X3-Anschlusses

Out1 bis Out4 stellen jeweils eine logische Verknüpfung von Auswerteergebnissen der einzelnen AWs dar. Diese logische Verknüpfung wird in LRSsoft definiert (siehe Kapitel 9.4 "Parametereinstellungen/Reiter Parameters"). Bis zu 16 unterschiedliche logische Verknüpfungen der AWs und entsprechende Ergebnisdarstellungen an Out1 bis Out4 können zu Inspektionsaufgaben (Inspection Tasks) zusammengefasst werden.

Schalteingänge des X3-Anschlusses

Die 3 Schalteingänge InSel1-3 dienen zur Auswahl der Inspektionsaufgabe (Inspection Task) 0-7. Hierbei bedeutet "000" Inspection Task 0, "001" Inspection Task 1, etc. Die Umschaltzeit zwischen 2 Inspection Tasks ist < 100 ms

Hinweis!

Die Inspection Tasks 8-15 lassen sich über LRSsoft, PROFIBUS oder über Ethernet umschalten. Die Einstellung über Ethernet überschreibt die per Eingang InSel1-3 eingestellte Inspection Task.

X4 (5-pol. Buchse, B-kodiert) Pin Name Bemerkung X4 VP Versorgungsspannung +5V (Terminierung) 2 2 Empfangs-/Sendedaten Α RxD/TxD-N, grün DGND 3 DGND Datenbezugspotential 4 B Empfangs-/Sendedaten FΕ RxD/TxD-P. rot Funktionserde M12-Buchse 5 FE (B-kodiert) Gewinde FF Funktionserde (Gehäuse)

6.3.4 Anschluss X4 - PROFIBUS DP (nur LRS 36/PB)

Tabelle 6.6: Anschlussbelegung X3

Hinweis!

Der Anschluss X4 ist nur beim LRS 36/PB belegt.

Der Anschluss an den PROFIBUS DP erfolgt über die 5-polige M12-Buchse X4 mit einem externen Y-Steckeradapter. Die Belegung entspricht dem PROFIBUS-Standard. Der Y-Steckeradapter ermöglicht den Austausch des LRS 36/PB ohne Unterbrechung der PROFIBUS-Leitung.

Der externe Y-Steckeradapter wird auch benötigt, wenn der LRS 36/PB der letzte Busteilnehmer ist. Dann wird daran der externe Busabschlusswiderstand (Terminierung) angeschlossen. An X4 ist die 5V-Versorgung für die Terminierung aufgelegt.

Hinweis!

Zur Anschluss empfehlen wir unsere vorkonfektionierten PROFIBUS Leitungen (siehe Kapitel 15.2 "Zubehör")

Zur Bus-Termininerung empfehlen wir unseren PROFIBUS Abschlusswiderstand (siehe Kapitel 15.2 "Zubehör")

7 Display und Bedienfeld

7.1 Anzeige- und Bedienelemente

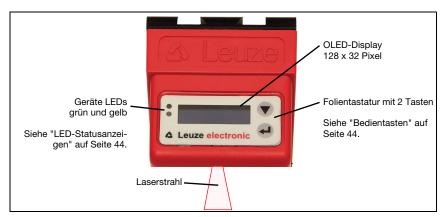


Bild 7.1: Anzeige- und Bedienelemente LRS

Nach dem Einschalten der Versorgungsspannung $+U_B$ und der fehlerfreien Geräteinitialisierung leuchtet die grüne LED dauernd: Der LRS befindet sich im Erkennungsmodus. Das OLED-Display zeigt die Ausrichthilfe und die Statusanzeige.

7.1.1 LED-Statusanzeigen

LED	Zustand	Anzeige im Messbetrieb
grün	Dauerlicht	Sensor betriebsbereit
	aus	Sensor nicht betriebsbereit
gelb	Dauerlicht	Ethernet-Verbindung hergestellt
	blinkend	Ethernet-Datenübertragung aktiv
	aus	Keine Ethernet-Verbindung

Tabelle 7.1: LED Funktionsanzeige

7.1.2 Bedientasten

Die Bedienung des LRS erfolgt über die beiden Tasten ▼ und ← , die neben dem OLED-Display angeordnet sind.

7.1.3 Anzeigen im Display

Die Anzeige im Display ändert sich entsprechend der aktuellen Betriebsart. Es gibt dabei folgende 3 Anzeigemodi:

- · Ausrichthilfe und Statusanzeige
- Befehlsmodus
- Menüanzeige

In die Menüanzeige gelangt man durch Drücken einer der beiden Bedientasten. Die Bedienung des LRS über das Menü ist in Kapitel 7.2.2 beschrieben.

Bei PROFIBUS-Geräten wird nach Power-on zunächst der Busstatus angezeigt (Anzeige für ca. 3s). Falls der PROFIBUS erkannt wurde, erfolgt daraufhin die Anzeige von Ausrichthilfe und Status.

Ausrichthilfe

Als Ausrichthilfe wird im OLED-Display der aktuelle Messwert in der Einheit Millimeter am linken Rand (Lxxx), in der Mitte (Mxxx) und am rechten Rand (Rxxx) des Erfassungsbereichs angezeigt. Wird kein

Objekt erfasst bzw. ist der Abstand zu gering erscheint im Display der Distanzwert ØØØ (mm).

Richten Sie den Lichtschnittsensor durch Drehung um die Y-Achse so aus, dass für L, M, R der gleiche Wert angezeigt wird.

Statusanzeige

In der zweiten Zeile des Displays wird die ausgewählte Inspection Task (Txx), der Zustand der 4 Schaltausgänge (@xxxx) bzw. bei PROFIBUS-Geräten **Out1** ... **Out4** des Eingangsdatenbytes **uSensorInfo** sowie der aktuelle Sensorstatus (siehe Kapitel 4.2 "Betrieb des Sensors") angezeigt.

Die Anzeige des Sensorstatus im Display hat folgende Bedeutung:

- fRun = Free Running
- Trig = Triggerung
- !Act = Aktivierung (Laser ein/aus)

T12 bedeutet z.B., dass Inspection Task 12 gerade aktiv ist. Wertebereich: T00 bis T15. Q0100 bedeutet z.B., dass Out1=0, Out2=1, Out3=0 und Out4=0 ist. Wertebereich: Q0000 bis Q1111.

Wird bei PROFIBUS-Geräten nach Power-on kein PROFIBUS erkannt, erscheint statt 00000 in der Mitte der unteren Zeile no PB.

Für den Sensorstatus gibt es folgende Optionen: fRun bedeutet Free Running, Tris bedeutet getriggert (siehe Kapitel 4.2.3 "Triggerung - Free Running") und !ACK bedeutet, dass der Sensor deaktivert ist (keine Laserlinie, siehe Kapitel 4.2.2 "Aktivierung - Laser ein/aus").

Befehlsmodus

Bei Anschluss des LRS an eine Steuerung kann der LRS von der Steuerung in einen Befehlsmodus (Command Mode) versetzt werden, in dem er Befehle empfängt und ausführt (siehe Kapitel 10.2.9 "Auswertetelegramm"). Im Befehlsmodus ist die Darstellung des OLED-Displays einzeilig.

In der ersten Zeile des Displays erscheint Command Mode.

Command Mode

→ Hinweis!

Treten während des Betriebs Fehler auf, so werden diese auf dem Display angezeigt. Hinweise ersehen Sie in Kapitel 12.3.

7.2 Menübeschreibung

7.2.1 Aufbau/Struktur

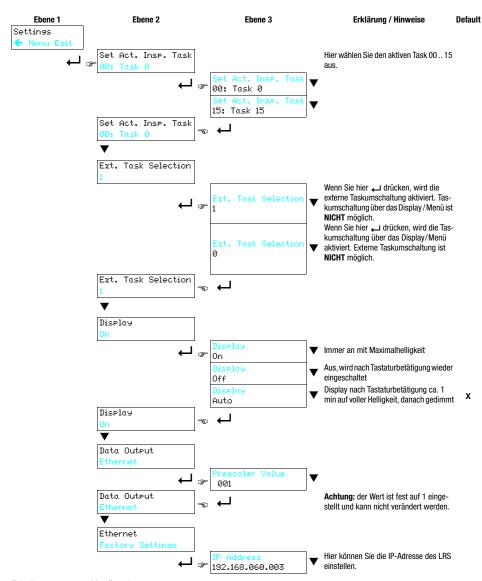


Tabelle 7.2: Menüstruktur

Ebene 1

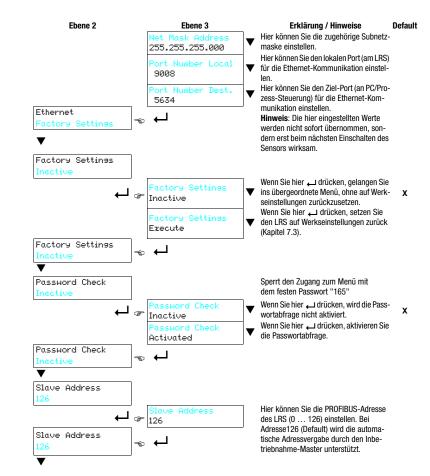


Tabelle 7.2: Menüstruktur

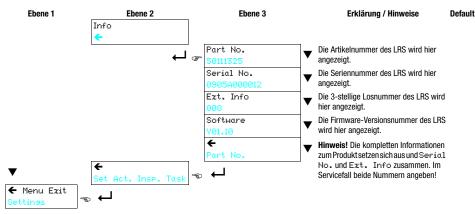


Tabelle 7.2: Menüstruktur

Nach 3 Minuten ohne Tastenbetätigung verlässt der LRS den Menümodus und geht in den Erkennungsmodus. Das OLED-Display zeigt wieder die Ausrichthilfe und die Sensorstatusanzeige an.

Hinweis!

Nach Ändern der PROFIBUS Slave-Adresse muss ein Power-on-Reset durchgeführt werden, um die Adresse endgültig zu übernehmen.

7.2.2 Bedienung/Navigation

Folgende Darstellungen können auftreten:

Menü-Navigation

- ▼ wählt den nächsten Menüpunkt an (Ethernet)
- □ geht ins invertiert dargestellte Untermenü (Data Output)

- ▼ wählt den nächsten Menüpunkt an (IP Address)
- ← geht zurück in die übergeordnete Menüebene (←). Auf oberster Menüebene kann hier das Menü beendet werden (Menu Exit). Die Anzahl von Strichen am linken Rand zeigt die aktuelle Menüebene:

Werte- oder Auswahlparameter zum Editieren auswählen

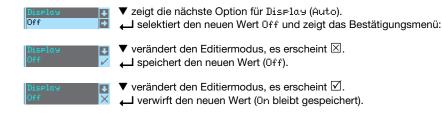
- ▼ wählt den nächsten Menüpunkt an (Net Mask Addr.)
- wählt den Editiermodus für IP Address aus

Werteparameter editieren

- ▼ dekrementiert den Wert der aktuell ausgewählten Ziffer (1).
- wählt die nächste Ziffer rechts (\mathfrak{S}) zum Editieren aus. Nach Durchklicken aller Ziffern mit \longrightarrow erscheint ein Häkchen (\square) unten rechts. Wurde ein unzulässiger Wert eingegeben, erscheint das Symbol \square (Neueingabe) und es wird kein Häkchen zur Auswahl angeboten.

- ▼ verändert den Editiermodus. es erscheint ひ.

- ▼ verändert den Editiermodus, es erscheint ⊠.
- wählt die erste Ziffer (1) zum erneuten Editieren aus.



- lacktriangledown verändert den Editiermodus, es erscheint lacktriangledown oder lacktriangledown.
- ✓ verwirft den neuen Wert (in diesem Beispiel bleibt die Werkseinstellung 192.168.060.003 gespeichert)

Auswahlparameter editieren

- ▼ zeigt die nächste Option für Display (Off).

Hinweis

Um sicherzugehen, dass mit dem Menü geänderte Werte auch übernommen werden, sollten Sie den Sensor nach einer Werteänderung kurz spannungslos machen.

7.3 Rücksetzen auf Werkseinstellungen

Das Rücksetzen auf Werkseinstellungen kann auf 3 verschiedene Arten erfolgen:

- Halten der Taste 🔟 beim Anlegen der Versorgungsspannung
- · Menüpunkt Factory Setting
- Über die Parametriersoftware LRSsoft

Im Folgenden wird beispielhaft die erste erwähnte Methode beschrieben:

Halten Sie beim Anlegen der Versorgungsspannung die Taste ugedrückt, um die Parametrierung des LRS auf den Auslieferungszustand zurücksetzen.

Es erscheint die nebenstehende Displayanzeige.

Rücksetzen abbrechen

Durch Drücken von ▼ erscheint die nebenstehende Anzeige. Wenn Sie jetzt die Taste ← drücken, verlassen Sie das Menü, ohne den LRS auf Werkseinstellungen zurückzusetzen.

Rücksetzen ausführen

Durch Drücken der Taste $\begin{cal} \end{cal}$ bei angezeigtem Häkchen ($\begin{cal} \end{cal} \end{cal}$) erscheint die nebenstehende Sicherheitsabfrage.

Drücken von \blacktriangledown bricht den Resetvorgang ab, reset cancelled erscheint für ca. 2s im Display und danach geht der LRS zurück in den Erkennungsmodus.

Drücken von 🗀 setzt alle Parameter auf die Werkseinstellung zurück. Alle zuvor gemachten Einstellungen gehen unwiederbringlich verloren. Im Display erscheint reset done für ca. 2s und danach geht der LRS zurück in den Normalbetrieb.

Sie können das Zurücksetzen auf Werkseinstellungen ebenfalls über LRSsoft aufrufen.

Wählen Sie im Menü Configuration den Eintrag Reset to Factory Settings.

51

8 Inbetriebnahme und Parametrierung

8.1 Einschalten

Nach dem Einschalten der Versorgungsspannung +U_B und der fehlerfreien Geräteinitialisierung leuchtet die grüne LED dauernd: Der LRS befindet sich im Erkennungsmodus.

Hinweis

Der Lichtschnittsensor hat nach einer Aufwärmzeit von 30 min die für eine optimale Messung erforderliche Betriebstemperatur erreicht.

8.2 Verbindung zum PC herstellen

Der LRS wird über einen PC mit dem Programm LRSsoft parametriert, bevor er in die Prozess-Steuerung eingebunden wird.

Um eine UDP-Kommunikation mit dem PC aufbauen zu können, müssen die IP-Adresse Ihres PCs und die IP-Adresse des LRS im gleichen Adressbereich liegen. Da der LRS über keinen eingebauten DHCP-Client verfügt, müssen Sie die Adresse manuell einstellen. Das geschieht am einfachsten am PC.

Hinweis!

Sollten Sie eine Desktop-Firewall verwenden, stellen Sie bitte sicher, dass der PC über die Ethernet-Schnittstelle per UDP auf den Ports 9008 und 5634 mit dem LRS kommunizieren kann (diese Ports sind ab Werk voreingestellt, können aber auch vom Benutzer verändert worden sein, siehe Kapitel 7.2 "Menübeschreibung"). Außerdem muss die Firewall ICMP-Echo-Nachrichten für den Verbindungstest (Ping) durchlassen.

Wird der PC üblicherweise mit DHCP-Adressvergabe an ein Netzwerk angeschlossen, ist es für den Zugriff auf den LRS am einfachsten, in den TCP/IP-Einstellungen des PCs eine alternative Konfiguration anzulegen und den LRS mit dem PC zu verbinden.

 Überprüfen Sie die Netzwerkadresse des LRS, indem Sie aus dem Erkennungsmodus des LRS heraus zweimal nacheinander
 drücken, danach zweimal ▼ und dann erneut
 drücken.

Sie gelangen damit ins Untermenü Ethernet und können die aktuellen Einstellungen des LRS mit mehrmaligem Drücken von ▼ nacheinander ablesen.

🖔 Notieren Sie sich die Werte für IP-Address und Net Mask Addr..

Der Wert in Net Mask Addra gibt an, welche Stellen der IP-Adresse von PC und LRS übereinstimmen müssen, damit sie miteinander kommunizieren können.

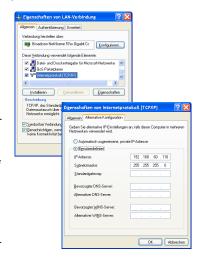
Adresse des LRS	Netzmaske	Adresse des PC
192.168.060.003	255.255.255.0	192.168.060.xxx
192.168.060.003	255.255.0.0	192.168.xxx.xxx

Tabelle 8.1: Adressvergabe im Ethernet

Anstelle von xxx können Sie jetzt Ihrem PC beliebige Zahlen zwischen 000 und 255 zuteilen, aber NICHT DIE GLEICHEN wie beim LRS.

Also z.B. 192.168.060.110 (aber nicht 192.168.060.003!). Haben LRS und PC die gleiche IP-Adresse, können sie nicht miteinander kommunizieren.

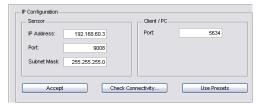
Einstellen einer alternativen IP-Adresse am PC


- Melden Sie sich an Ihrem PC als Administrator an.
- Gehen Sie über Start->Systemsteuerung ins Menü Netzwerkverbindungen (Windows XP) bzw. ins Netzwerk- und Freigabecenter (Windows Vista).
- Wählen Sie dort die LAN-Verbindung und rufen Sie mit Mausklick rechts die zugehörige Eigenschaften-Seite auf.
- Wählen Sie das Internetprotokoll (TCP/IP) aus (ggf. nach unten scrollen) und klicken Sie auf Eigenschaften.
- Wählen Sie im Fenster Eigenschaften von Internetprotokoll (TCP/IP) den Reiter Alternative Konfiguration
- Stellen Sie die IP-Adresse des PCs im Adressbereich des LRS ein.

Achtung: nicht die Gleiche wie beim LRS!

- Stellen Sie die Subnetzmaske des PCs auf den aleichen Wert wie beim LRS ein.
- Schließen Sie den Einstellungsdialog, indem Sie alle Fenster mit OK bestätigen
- Verbinden Sie die Schnittstelle X2 des LRS direkt mit dem LAN-Port Ihres PCs. Nutzen Sie zur Verbindung ein Kabel KB ET-...-SA-RJ45, siehe Tabelle 15.7

Der PC versucht zuerst über die automatische Konfiguration eine Netzwerkverbindung herzustellen. Dies dauert einige Sekunden, danach wird die alternative Konfiguration aktiviert, die Sie soeben eingestellt haben. Jetzt kann der PC mit dem LRS kommunizieren.


Hinweise zur Parametrierung mit LRSsoft finden Sie in Kapitel 9.

8.3 Inbetriebnahme

Zur Inbetriebnahme und Einbindung des Sensors in die Prozess-Steuerung sind folgende Schritte notwendig:

- LRS parametrieren siehe Kapitel 9.
- Prozess-Steuerung programmieren siehe Kapitel 10 oder Kapitel 11. oder
- 3. Schaltein- und -ausgänge entsprechend anschließen siehe Kapitel 6.3.
- 4. Bei Einbindung in Ethernet Prozess-Steuerungen ist die IP-Konfiguration des LRS so anzupassen, dass der LRS mit der Prozess-Steuerung kommunizieren kann. Die Werte entsprechend untenstehendem Screenshot sind im LRS ab Werk voreingestellt. Wenn Sie andere Werte einstellen wollen, dann müssen Sie die Werte über das Display des LRS im Menüpunkt Ethernet ändern (siehe "Menübeschreibung" auf Seite 47). Sie können die geänderten Werte testen, indem Sie sie in LRSsoft im Bereich Configuration eintragen und auf den Button Check Connectivity klicken.

- LRS an die Prozess-Steuerung anschließen. Dies kann bei allen LRS über die Ethernet-Schnittstelle erfolgen oder je nach Typ über die Schaltausgänge bzw. den PROFIBUS.
- 6. Ggf. Anschlüsse für Aktivierung, Triggerung und Kaskadierung herstellen.

Hinweis zum Anschluss mehrerer Lichtschnittsensoren über Ethernet Will man mehrere Sensoren ansprechen, so müssen alle Sensoren sowie die Steuerung unterpolitielle IB. Advancen im gleichen Subnett erhelten. Bei allen Sensoren müssen

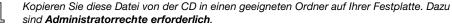
unterschiedliche IP-Adressen im gleichen Subnetz erhalten. Bei allen Sensoren müssen unterschiedliche Ports sowohl im Bereich Sensor als auch im Bereich Client/PC konfiguriert sein.

9 Parametriersoftware LRSsoft

9.1 Systemanforderungen

Der verwendete PC sollte folgende Anforderungen erfüllen:

- Pentium®- oder schnellerer Intel®-Prozessor > 1,5 GHz (Pentium 4, Celeron, Xeon)
 bzw. kompatible Modelle von AMD® (Athlon 64, Opteron, Sempron)
 Der Prozessor muss den SSE2 Befehlssatz unterstützen.
- Mindestens 512 MB Arbeitsspeicher (RAM), 1024 MB empfohlen
- CD-Laufwerk
- Festplatte mit mindestens 1 GB freiem Speicherplatz
- Ethernetschnittstelle
- Microsoft[®] Windows XP ab Service Pack 2 / Windows 7


9.2 Installation

Hinweis!

Deinstallieren Sie eine evtl. vorhandene Matlab Runtime, bevor Sie mit der Installation der LXSsoft-Suite beginnen.

Das Installationsprogramm LXSsoft_Suite_Setup.exe befindet sich auf der mitgelieferten CD. Alternativ können Sie das Programm auch aus dem Internet unter www.leuze.com berunterladen.

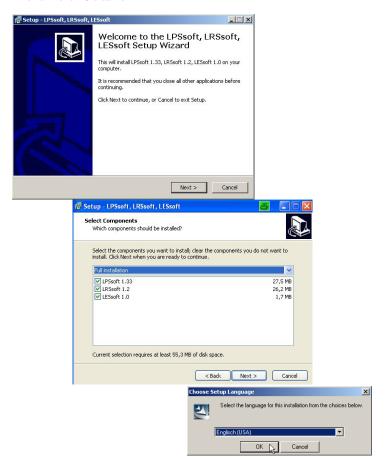
Hinweis!

Bitte beachten Sie, dass die Standardeinstellung der Textgröße verwendet wird. Bei Windows XP beträgt die erforderliche DPI-Einstellung 96 DPI, bei Windows 7 ist die Anzeige auf "Kleiner - 100%" einzustellen.

- Starten Sie die Installation per Doppelklick auf die Datei LXSsoft_Suite_Setup.exe.

Im nächsten Fenster können Sie wählen, welche Parametriersoftware Sie installieren wollen.

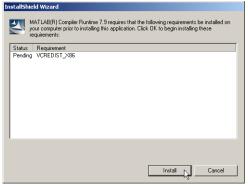
Sie benötigen LPSsoft zur Parametrierung von Lichtschnittsensoren der LPS-Baureihe.

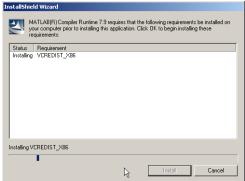

Sie benötigen LRSsoft zur Parametrierung von Lichtschnittsensoren der LRS-Baureihe.

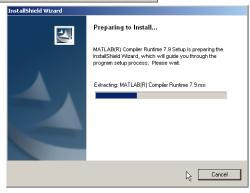
Sie benötigen LESsoft zur Parametrierung von Lichtschnittsensoren der LES-Baureihe.

Wählen Sie die gewünschten Optionen aus und klicken Sie auf Next und im nächsten Fenster dann auf Install.

Die Installationsroutine startet. Nach einigen Sekunden erscheint das Fenster zur Auswahl der Sprache für die Installation der Matlab Compiler Runtime (MCR). Die MCR dient zur Parametrierung in LRSsoft. Sie existiert nur in Englisch oder Japanisch.

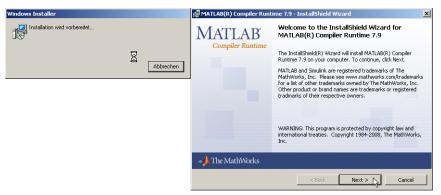

 Behalten Sie deshalb im Fenster Choose Setup Language die Auswahl English bei und klicken Sie auf OK.

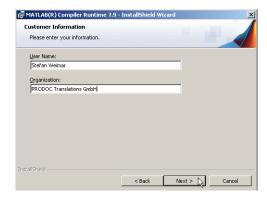



Je nach Konfiguration Ihres Windows-Systems erscheint noch der untenstehende Dialog (fehlende Komponente VCREDIST_X86).

♥ Klicken Sie auf Install.

Es erscheinen zwei weitere Installationsfenster, in denen Sie aber keine Eingabe machen müssen.




Nach einiger Zeit (bis zu mehreren Minuten je nach Systemkonfiguration) erscheint dann der Startbildschirm des MCR-Installers.

Klicken Sie auf Next.

Das Fenster zur Eingabe der Benutzerdaten erscheint.

Geben Sie Ihren Namen und den Firmennamen ein und klicken Sie anschließend auf Next.

Behalten Sie im Fenster zur Auswahl des Installationspfads (Destination Folder) unbedingt den vorgegebenen Ordner bei.

Der Standard-Pfad ist C:\Programme\MATLAB\MATLAB Compiler Runtime\.

Klicken Sie auf Next und im nächsten Fenster auf Install.

Die Installation startet und es wird ein Statusfenster angezeigt. Das kann erneut einige Minuten dauern.

Nach erfolgreicher MCR-Installation erscheint das Fenster InstallShield Wizard Completed.

& Klicken Sie auf Finish zum Abschluss der MCR-Installation.

Jetzt erscheint das Fenster zur Auswahl des Installationspfads für LRSsoft/LPSsoft/LRSsoft (sofern vorher von Ihnen ausgewählt).

Behalten Sie den vorgegebenen Ordner bei und klicken Sie auf Next.

Die Installation von **LPSsoft** startet. Falls Sie auch **LRSsoft** und **LESsoft** zum Installieren ausgewählt hatten erscheint nach Abschluss der **LPSsoft**-Installation das gleiche Fenster erneut zur Eingabe des Installationspfads für **LRSsoft** und **LESsoft**.

Behalten Sie auch hier den vorgegebenen Ordner bei und klicken Sie auf Next.

Nach Abschluss der Installation erscheint das obenstehende Fenster.

Die Installationsroutine hat in Ihrem Startmenü eine neue Programmgruppe Leuze electronic mit den installierten Programmen LRSsoft/LPSsoft/LRSsoft erzeugt.

Klicken Sie auf Finish und starten Sie dann das gewünschte Programm über das Startmenü.

9.2.1 Mögliche Fehlermeldung

Je nach Einstellung der Bildschirmanzeige kann es zu der Fehlermeldung "Width and Height must be >0" kommen. Ursache ist eine inkompatible Einstellung der Bildschirmanzeige.

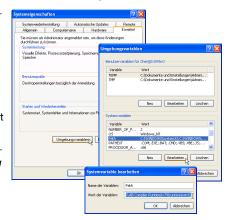
Bei Windows XP beträgt die erforderliche DPI-Einstellung 96 DPI. Bei Windows 7 ist die Anzeige auf "Kleiner - 100% (Standard)" einzustellen.

Die Einstellung kann wie folgt angepasst werden.

- Passen Sie die Anzeige für Windows XP an, indem Sie unter Eigenschaften -> Anzeige -> Einstellungen -> Erweitert -> Anzeige -> DPI-Einstellung den Wert "96 DPI" wählen.
- Für Windows 7 nehmen Sie die Anpassung der Anzeige über Systemsteuerung -> Anzeige vor, indem Sie die Anzeige auf "Kleiner 100% (Standard)" einstellen.

Je nach Systemkonfiguration kann es jetzt zu nebenstehender Fehlermeldung kommen.

Ursache für die Fehlermeldung ist ein Bug in der MCR-Installationsroutine, der auf manchen Systemen die Umgebungsvariable Pfad nicht korrekt setzt.


Das können Sie aber leicht ohne Neuinstallation der MCR korrigieren.

- Öffnen Sie das Fenster Systemeigenschaften, das Sie in der Systemsteuerung von Windows unter System finden.
- Gehen Sie dort zur Registerkarte Erweitert und klicken Sie auf Umgebungsvariablen.

Das Fenster Umgebungsvariablen öffnet sich.

- Scrollen Sie dort im Bereich Systemvariablen nach unten bis Sie den Eintrag Path finden.
- Klicken Sie Path an und anschließend auf Bearbeiten

Das Fenster Systemvariable bearbeiten öffnet sich.

Dort muss sich im Feld Wert der Variablen ganz am Ende der Eintrag ;C:\Programme\MATLAB\MATLAB Compiler Runtime\v79\runtime\win32 befinden.

- Fehlt dieser Eintrag, dann kopieren Sie den Eintrag aus diesem Dokument und fügen ihn zusammen mit dem vorangestellten Semikolon ein.
- ♦ Danach klicken Sie auf OK und beenden auch alle weiteren Fenster mit OK.
- Fahren Sie Windows herunter, starten Sie Windows neu und starten Sie dann LRSsoft per Doppelklick.

Jetzt erscheint der Startbildschirm von LRSsoft, wie in Kapitel 9.3 beschrieben.

9.3 Start von LRSsoft/Reiter Communication

Starten Sie LRSsoft über den entsprechenden Eintrag im Windows-Startmenü.
Es erscheint folgender Bildschirm:

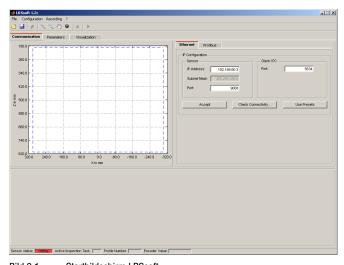
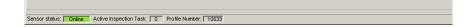


Bild 9.1: Startbildschirm LRSsoft

 Geben Sie im Bereich IP-Configuration die Einstellungen des LRS ein und klicken Sie auf Accept.

Diese Daten haben Sie bereits in Kapitel 8.2 ermittelt.


♥ Klicken Sie auf Check Connectivity, um die Verbindung zum LRS zu testen.

Wenn folgende Meldung erscheint, ist die Ethernet-Verbindung zum LRS korrekt konfiguriert: The connection attempt to sensor ... was successful.

Klicken Sie auf den Button Connect to sensor:

Daraufhin stellt **LRSsoft** eine Verbindung her und zeigt das momentan gemessene 2D-Profil an. In der Statuszeile unten links steht jetzt statt einem rot hinterlegten Offline ein grün hinterlegtes Online.

\Box

Hinweis!

In der Statuszeile werden folgende Zusatzinformationen dargestellt:

- Verbindungsstatus des Sensors (Sensor status)
- Nummer der aktiven Inspektionsaufgabe (Active Inspection Task)
- Scannummer (Profile Number)
- Encoderwert abhängig von Sensortype (Encoder Value)
- angeschlossene Sensortype (Sensor Type)
- Status Analogausgang (Analog output)

\Box

Hinweis!

Wenn LRSsoft eine Verbindung zum LRS hergestellt hat, blinkt der Laserstrahl.

PROFIBUS Einstellungen (nur LRS 36/PB)

Bei PROFIBUS Geräten können Sie im Register PROFIBUS die Slave-Adresse und die Baudrate einstellen.

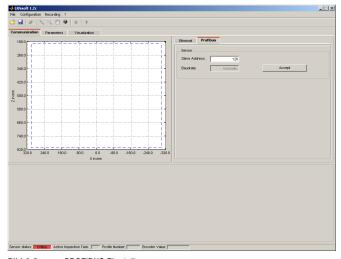


Bild 9.2: PROFIBUS Einstellungen

Automatische Erkennung der Baudrate/Automatische Adressvergabe

Der LRS 36/PB unterstützt die automatische Erkennung der Baudrate und die automatische Adressvergabe über den PROFIBUS.

Die Adresse des PROFIBUS-Teilnehmers kann automatisch vom Inbetriebnahme-Tool der PROFIBUS-Anlage (ein PROFIBUS-Master der Klasse 2) erfolgen. Dazu muss die Slave-

Adresse auf den Wert **126** im Sensor eingestellt sein (Werkseinstellung). Dies erfolgt durch LRSsoft oder über das Display.

Der Inbetriebnahme-Master prüft, ob ein Slave die Adresse 126 hat und weist diesem dann eine Slave-Adresse kleiner 126 zu. Diese Adresse wird im Teilnehmer permanent gespeichert. Die geänderte Adresse kann dann über das Display oder LRSsoft abgefragt (und ggf. auch wieder geändert) werden.

Einstellbare Baudraten sind:

- Automatisch
- 19,2kBaud
- 93,75 kBaud
- 500kBaud
- 3MBaud

- 9,6kBaud
- 45.45kBaud
- 187,5kBaud
- 1,5MBaud
- 6MBaud

Hinweis!

Nach Ändern der Slave-Adresse über das Display oder LRSsoft muss ein Power-on-Reset durchgeführt werden, um die Adresse endgültig zu übernehmen. Damit die gemachten Einstellungen wirksam werden, müssen sie in Sensor übertragen werden!

9.4 Parametereinstellungen/Reiter Parameters

🔖 Klicken Sie auf den Reiter Parameters, um zu den Parametereinstellungen zu gelangen:

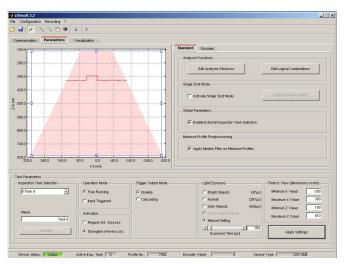


Bild 9.3: Parametereinstellungen LRSsoft

Hier stellen Sie zuerst im Bereich Task Parameters die zum Betrieb des LRS benötigten Werte ein. Anschließend definieren Sie im Bereich Analysis Functions Auswertefenster und deren logische Verknüpfung für Ihre Inspektionsaufgabe. Diese Einstellungen speichern Sie schließlich mit Apply Settings bzw. Transmit to Sensor als Inspection Task ab.

9.4.1 Bereich Task Parameters

Inspection Task Selection

Im Bereich Inspection Task Selection können Sie Inspektionsaufgaben auswählen.

Hinweis!

Standardmäßig hat die Umschaltung der Inspektionsaufgabe über den PROFIBUS Master (SPS) Priorität gegenüber LRSsoft. Die **Auswahl** der Inspektionsaufgabe mit LRSsoft ist in diesem Feld nur möglich, wenn unter Global Parameters **kein** Häkchen vor Enable External Inspection Task Selection steht. Ansonsten ist die Auswahl der Inspektionsaufgabe ausschließlich über die Prozessschnittstelle möglich.

Durch das Entfernen des Häkchens in der Checkbox Enable External Inspection Task Selection wird also verhindert, dass über die Prozessschnittstelle die Inspektionsaufgabe umgestellt wird, während eine Parametrierung stattfindet. Nach der Parametrierung mit LRSsoft und vor der Übertragung der Einstellungen an den Sensor ('Transmit to Sensor'), muss die Checkbox Enable External Inspection Taks Selection wieder aktiviert werden. Nur dann lassen sich Inspektionsaufgaben über die Prozessschnittstelle auswählen.

Im oberen Drop-Down-Menü Inspection Task Selection können Sie eine der 16 möglichen Inspektionsaufgaben auswählen. Nach Auswahl der Inspektionsaufgabe werden die zugehörigen Parameter geladen und dargestellt. Diese Parameter können Sie verändern und die veränderten Parameter unter gleichem Namen wieder abspeichern.

Im Feld Name können Sie der oben ausgewählten Inspektionsaufgabe einen aussagekräftigen Namen geben (max. 12 Zeichen), den Sie mit Klick auf Accept abspeichern.

Beim Speichern mit der Schaltfläche Apply Settings wird die aktuell angezeigte Inspektionsaufgabe temporär im Sensor gespeichert. Beim Ausschalten gehen die Daten/Einstellungen verloren.

Beim Speichern mit dem Menübefehl Configuration -> Transmit to Sensor werden alle angelegten Inspektionsaufgaben zum Sensor übertragen und dort permanent gespeichert.

Hinweis!

Wurde eine Inspektionsaufgabe verändert, sollte die permanente Speicherung im Sensor mit Configuration -> Transmit to Sensor erfolgen.

Die typische Vorgehensweise zum Anlegen und Abspeichern von Inspektionsaufgaben ist in Kapitel 9.7, "Definition von Inspektionsaufgaben" auf Seite 76 beschrieben.

Operation Mode

Unter Operation Mode können Sie mit Free Running einstellen, dass der LRS Messdaten kontinuierlich erfasst und ausgibt (Werkseinstellung). Mit Input Triggered erfasst der LRS Messdaten nur, wenn eine steigende Flanke am Triggereingang anliegt oder der Befehl "Ethernet Trigger" (Kapitel 10.3.4) oder der PROFIBUS Trigger (Kapitel 11.5) verwendet wird. Nähere Informationen dazu finden Sie in Kapitel 4.2.3.

Activation

Unter Activation bewirkt die Einstellung Regard, dass der Laser entsprechend des Pegels am Aktivierungseingang oder über PROFIBUS ein- und ausgeschaltet wird. Nähere Informationen dazu finden Sie in Kapitel 4.2.2.

Bei der Einstellung Disregard bleibt der Laser immer eingeschaltet, unabhängig vom Pegel am Aktivierungseingang oder der PROFIBUS-Aktivierung (Werkseinstellung).

Trigger Output Mode

Unter Trigger Output Mode können Sie mit Cascading den Kaskadierungsausgang aktivieren. Nähere Informationen dazu finden Sie in Kapitel 4.2.4. Bei Einstellung auf Disable wird der Kaskadierungsausgang nicht gesetzt (Werkseinstellung).

Light Exposure

Unter Light Exposure können Sie die Belichtungsdauer des Lasers bei der Messwerterfassung steuern und an die Reflexionseigenschaften der zu erkennenden Objekte anpassen.

Wählen Sie eine Belichtungeinstellung, die eine durchgezogene Linie um die Objektkontur herum anzeigt. Versuchen Sie dann einen möglichst kontinuierlichen Linienverlauf auf ebener Fläche zu erzielen.

Field of View

Unter Field of View können Sie den Erfassungsbereich des LRS einschränken. Das Gleiche geschieht, wenn man den blau eingerahmten Erfassungsbereich an den quadratischen Anfassern mit der Maus anklickt und zieht.

Werkseinstellung für Field of View:

	LRS 36
Min X	-300
Max X	300
Min Y	190
Max Y	810

Durch die Einschränkung auf den notwendigen Erfassungsbereich können Fremdlicht oder unerwünschte Reflexionen ausgeblendet werden.

Apply Settings

Der Button Apply Settings überträgt die Einstellungen der aktuellen Inspektionsaufgabe temporär zum Sensor. Beim Ausschalten gehen die Daten/Einstellungen verloren.

→ Hinweis!

Wurde eine Inspektionsaufgabe verändert, sollte die permanente Speicherung im Sensor mit Configuration -> Transmit to Sensor erfolgen.

9.4.2 Bereich Analysis Functions

Edit Logical Combinations

Nach Klick auf den Button Edit Logical Combinations erscheint folgendes Fenster:

Hinweis!

Nach Ändern des Erfassungsbereichs durch Ziehen des schwarzen Rahmens mit der Maus müssen Sie den **Button** Accept Analysis Window Rectangle klicken, damit die Werte übernommen werden.

Klicken Sie irgendwo anders im Fenster Analysis Window Definitions, werden die Werte vor dem Ändern des Erfassungsbereichs per Maus wieder hergestellt.

Bild 9.4: Fenster "Analysis Window Definitions"

Nach Klick auf das Ankreuzfeld Active in einer der 16 Zeilen AW01 bis AW16 erscheint links in der Darstellung des Erfassungsbereichs ein schwarzer Rahmen mit Anfassern:

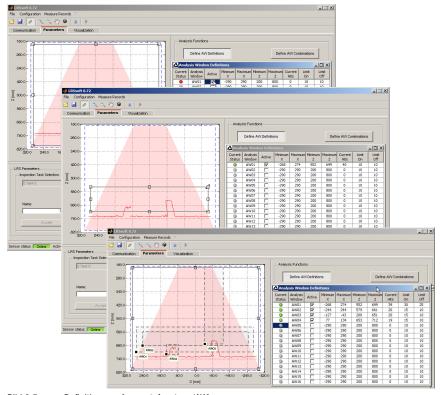


Bild 9.5: Definition von Auswertefenstern (AW)

Mit der Maus

Sie können die Größe und Position des Auswertefensters an den Anfassern durch Klicken und Ziehen mit der Maus verändern.

Hinweis!

Wenn Sie Größe und/oder Position mit der Maus an den Anfassern verändern, dann wird die Schrift auf dem Button Accept Analysis Window Rectangle Schwarz und Sie müssen den Button anklicken, um die Werte zu übernehmen.

Direkte Eingabe

Alternativ können Sie die gewünschten Positionswerte direkt in den Spalten $Minimum/Maximum\ X/Z$ eingeben.

In der Spalte Current Hits zeigt LRSsoft an, wie viele Objektpunkte im Auswertefenster erkannt werden.

Hinweis!

Die aktuellen Einstellungen zu Erfassungsbereich und Auswertefenstern müssen erst mit Apply Settings zum Sensor übertragen werden. Danach zeigt die Spalte Current Hits Werte an.

In der Spalte Hits On legen Sie fest wie viele Objektpunkte erkannt werden müssen, damit das Auswerteergebnis für das jeweilige AW "1" ist, bzw. in der Spalte Current Status eine grüne LED angezeigt wird.

Die LED bleibt so lange grün, bis die Anzahl der erkannten Objektpunkte kleiner oder gleich dem Wert ist, den Sie in der Spalte Hits Off einstellen.

Mit den Einträgen in Hits On und Hits off können Sie also eine Schalthysterese einstellen, um so bei zulässigen Veränderungen der Objektposition oder anderer physikalischer Größen keine (unerwünschte) Veränderung des Schaltzustands zu erhalten.

In Bild 9.5 wurden insgesamt drei Auswertebereiche definiert. Erkannt werden sollen Objekte gleicher Breite aber unterschiedlicher Höhe, sowie die Position der Objekte im Erfassungsbereich:

- AW01 erkennt, dass mindestens 2 Objekte der vorgegebenen Breite vorhanden sind
- AW02 erkennt, dass mindestens 1 hohes Objekt vorhanden ist
- AW03 erkennt, dass rechts ein hohes Objekt vorhanden ist
- AW04 erkennt, dass links ein niedriges Objekt vorhanden ist

Durch logische Verknüpfung der Auswerteergebnisse dieser 4 AWs kann man im Bereich Analysis Window Combination Tables das Schaltverhalten der Ausgänge Out1 bis Out4 und die PROFIBUS -Prozessdaten einstellen.

Edit Logical Combinations

Nach Klick auf den Button Edit Logical Combinations erscheint folgendes Fenster:

Bild 9.6: Fenster "Analysis Window Combination Tables"

Parameter im Fenster Analysis Window Combination Tables:

Parameter	Beschreibung	Wertebereich
Out1 - Out4	Schaltausgang 1-4 bzw. bei PROFIBUS:	Grün = Aktiv = 1 /
	Zustand der Sensorausgänge uSensorInfo (Byte 2)	Rot = Inaktiv = 0
Active	Aktivierung des Schaltausgangs	On/Off
Ana. Depth	Auswertetiefe ¹), d.h. Anzahl der aufeinanderfolgenden Auswertungen mit gleichem Ergebnis, die für ein Umschalten des Schaltausgangs erforderlich ist	1 255
Negation	Negation des Ergebnisses der Zeile OR	On/Off
Zeile OR	Ergebnisse der Spalten & Diese Ergebnisse werden ODER-verknüpft und ergeben dann entsprechend der Einstellungen für Active, Anal. Depth und Negation den Zustand des Schaltausgangs	Grün = 1 / Rot = 0
Spalte &	Logische UND-Verknüpfung der Ergebnisse der gewählten AWs	
AW01 - AW16	Angabe ob das Ergebnis des AW bei der &-Verknüpfung berücksichtigt wird (+) oder ob es negiert berücksichtigt wird (-)	+/-

Tabelle 9.1: Parametereinstellungen zur Ansteuerung der Schaltausgänge

1) Hinweis zu Auswertetiefe:

Durch die Wahl eines großen Wertes für die Auswertetiefe verfügt der LRS über ein sicheres Schaltverhalten, die Ansprechzeit des Sensors erhöht sich entsprechend (Beispiel: Auswertetiefe = 3 -> Ansprechzeit 3 x 10 ms = 30 ms). Störsignale einzelner Scans werden unterdrückt. Wird eine Auswertetiefe von "1" (Werkeinstellung ab Firmware Version 01.25) gewählt, so beträgt die Ansprechzeit 10 ms.

Im Fenster von Bild 9.7 legen Sie logische Verknüpfungen der Auswerteergebnisse einzelner AWs fest:

Pro Ausgang (Out1 bis Out4) legen Sie zuerst in der ersten &-Spalte fest, welche AWs Sie UND-verknüpfen wollen. Das Ergebnis dieser Verknüpfung wird über der betreffenden Spalte in der Zeile OR als 1 oder 0 angezeigt. Ggf. definieren Sie weitere UND-Verknüpfungen in den weiteren &-Spalten.

Sie können in den 4 Spalten pro Ausgang also bis zu vier unterschiedliche UND-Verknüpfungen einzelner Ausgänge definieren.

Die Ergebnisse dieser 4 Spalten werden automatisch ODER-verknüpft.

D.h. der Ausgang schaltet, wenn eine der 4 UND-Verknüpfungen eine 1 als Ergebnis hat.

Ein Beispiel:

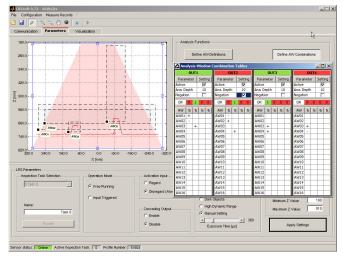


Bild 9.7: Definition von logischen Verknüpfungen mehrerer AWs

Im obigen Beispiel sind die AW-Definitionen von Bild 9.5 gültig. Das bedeutet dann mit der gezeigten Einstellung für die Schaltausgänge:

- **OUT1** ist aktiv (=1)
 - wenn ein Objekt in AW01 vorhanden ist (AW01+) UND wenn kein Objekt in AW02 vorhanden ist (AW02-)

ODER

- wenn ein Objekt in AW03 vorhanden ist (AW03+).
- OUT2 ist nicht aktiv (=0, weil das Häkchen Negation gesetzt ist)
 - wenn kein Objekt in AW01 vorhanden ist (AW01-) UND wenn ein Objekt in AW02 vorhanden ist (AW02+)

ODER

- wenn ein Objekt in AW04 vorhanden ist (AW04+).
- **OUT3** ist aktiv (=1)
 - wenn ein Objekt in AW03 vorhanden ist (AW03+) UND wenn ein Objekt in AW04 vorhanden ist (AW04+).
- **OUT4** ist aktiv (=1)
 - wenn ein Objekt in AW03 vorhanden ist (AW03+) UND wenn kein Objekt in AW04 vorhanden ist (AW04-).

Durch logische Verknüpfungen können also, wie in Bild 9.7 gezeigt, unterschiedliche Erkennungsaufgaben definiert werden.

Das Gut/Schlecht-Ergebnis der logischen Spaltenverknüpfungen wird in Zeile **OR** farblich dargestellt. Im dargestellten Beispiel ist bei **OUT1** die **Spalte 2 grün**, da ein Objekt in AW03 vorhanden ist.

Da die Spalten von OUT1 mit ODER verknüpft sind, ist OUT1 aktiv und wird grün dargestellt.

Die Auswertetiefe **Ana. Depth** ist auf **10** eingestellt. Das bedeutet, dass 10 identische Auswertungen aufeinander folgen müssen, um ein Umschalten des Schaltausgangs zu bewirken.

9.4.3 Bereich Single Shot Mode

Im Single Shot Mode führt der Sensor nur jeweils nach Klick auf die Schaltfläche Request Measurement eine einzelne Auswertung durch und stellt das Ergebnis in **LRSsoft** so lange dar, bis Request Measurement erneut geklickt wird.

9.4.4 Bereich Global Parameters

Unter Global Parameters können Sie mit Enable External Inspection Task Selection einstellen, ob die Auswahl der Inspektionsaufgaben 0-7 über die Eingänge InSel1-InSel3 bzw. über PROFIBUS möglich ist oder nicht.

Über PROFIBUS können die Inspektionsaufgaben 0-15 ausgewählt werden.

Ist das Häkchen vor Enable External Inspection Task Selection gesetzt, ist die Auswahl der Inspektionsaufgabe nur über die Eingänge oder über PROFIBUS möglich. Das Drop-Down-Menü unter Inspection Task Selection hat dann keine Funktion.

9.5 Erkennungsfunktion/Reiter Visualisierung

Klicken Sie auf den Reiter Visualization um sich den zeitlichen Verlauf der Zustände von AWs und Schaltausgängen bzw. der Zustände der Sensorausgänge uSensorInfo (Byte 2) beim PROFIBUS Gerät anzeigen zu lassen:

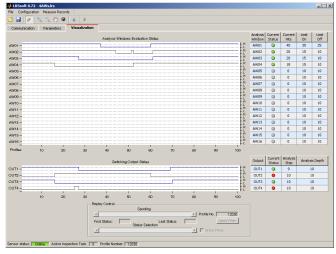


Bild 9.8: Visualisierung LRSsoft

9.5.1 Gespeicherte Erkennungsdaten auswerten

Um Erkennungsdaten auszuwerten, können Sie, wie in Kapitel 9.6.3 beschrieben, Erkennungsdaten aufzeichnen, speichern und wieder öffnen. Ein gespeicherter Erkennungsdatensatz lässt sich mit LRSsoft über das Menü Recording -> Archive -> Open Record öffnen.

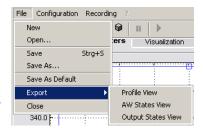
Hinweis!

Nach Öffnen eines Erkennungsdatensatzes sollten Sie die aktuelle Parametereinstellung des LRS übertragen (siehe Kapitel 9.6.2), so dass bei Hits On und Hits Off die aktuellen Sensorparametrierung angezeigt wird.

Standardmäßig laufen die Erkennungsdaten im Reiter Visualization kontinuierlich durch. Um diese kontinuierliche Anzeige anzuhalten und einzelne Datensätze untersuchen zu können, müssen Sie auf den Pfeil in der Werkzeugleiste klicken.

Zur Auswertung dienen die Schieberegler im Bereich Replay Control.

Spooling ermöglicht eine schnelle Verschiebung des angezeigten Ausschnitts von 100 Einzelergebnissen über alle Daten des Erkennungsdatensatzes (der durchaus mehrere hundert Einzelergebnisse umfassen kann) hinweg.

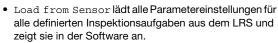

Dabei zeigt der Wert in First Status die wievielte Messung bei 0 angezeigt wird und der Wert in Last Status die wievielte Messung bei 100 angezeigt wird.

Mit dem Schieberegler Status Selection stellen Sie ein, welcher der dargestellten Einzeldatensätze im rechten Fensterbereich bei den Einzelergebnissen der AWs und Schaltausgänge bzw. der Zustände der Sensorausgänge uSensorlnfo (Byte 2) beim PROFIBUS Gerät angezeigt wird. Die zugehörige Datensatznummer wird unter Profile No. angezeigt. Die Option Show Plane markiert diesen Einzeldatensatz mit einer durchgezogenen schwarzen Linie.

9.6 Menübefehle

9.6.1 Parametereinstellungen speichern/Menü File

Das Menü File dient zum Speichern von Parameterdaten auf dem PC. Damit lassen sich Einstellungen für verschiedene Erkennungsaufgaben im Rahmen der Inbetriebnahme festlegen und auf Datenträger als Parameterdateien abspeichern. Im Betrieb wird der LRS über Inspection Tasks umparametriert. Eine auf einem Datenträger gespeicherte Parameterdatei kann man nur mit der Parametriersoftware LRSsoft verwenden!


- · New erzeugt eine neue Parameterdatei.
- Open öffnet eine Parameterdatei vom Datenträger.
- Save speichert die geöffnete Parameterdatei mit gleichem Namen.
- Save as speichert die geöffnete Parameterdatei unter anderem Namen.
- Save as default speichert die geöffnete Parametrierung als Grundeinstellung ab, die immer geladen wird, wenn man LRSsoft öffnet

Weiterhin bietet das Menü File die Möglichkeit folgende Ansichten auf Datenträger zu exportieren (mögliche Formate: *.png, *.jpg, *.bmp, *.tif):

- Profile View: die aktuelle Ansicht als 2D-Ansicht
- AW States View: zeitlicher Verlauf des Zustands aller 16 AWs
- Output States View: zeitlicher Verlauf des Zustands der 4 Schaltausgänge bzw. der Zustände der Sensorausgänge uSensorInfo (Byte 2) beim PROFIBUS Gerät

9.6.2 Parametereinstellungen übertragen/Menü Configuration

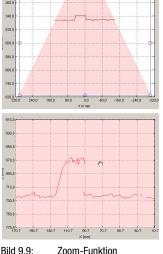
Das Menü Configuration dient zum Austausch von Parameterdaten mit dem angeschlossenen LRS.

- Transmit to Sensor speichert alle Parametereinstellungen aller definierten Inspektionsaufgaben aus der Parametriersoftware permanent im LRS.
- Reset to factory settings setzt den LRS auf Werkseinstellungen zurück.

9.6.3 Erkennungsdaten verwalten/Menü Measure Records

Unter Erkennungsdaten verstehen wir hier die Ergebnisse einzelner Auswertefenster und die Zustände der Schaltausgänge.

Das Menü Recording dient zum Verwalten von Erkennungsdaten auf dem PC im Format *.csv.


· New... erzeugt einen neuen Erkennungsdatensatz. Nach einem Abfragedialog zum Dateinamen erscheint ein Dialog, in den Sie eingeben müssen, wie viele Einzelscans (2D-Profile) in der Datei abgespeichert werden sollen.

- Archive -> Open Record öffnet einen gespeicherten Erkennungsdatensatz.
- Archive -> Close record schließt den geöffneten Erkennungsdatensatz.

9.6.4 Zoom und Pan/Werkzeugleiste

Die Buttons Zoom in / Zoom out und Pan der Werkzeugleiste ermöglichen es, einzelne Bereiche der Ansicht zu vergrößern und so visuell besser auswerten zu können:

Pan Reset plots to initial settings Zoom In Zoom Out

Bereich vergrößern:

- 1. Zoom in wählen
- 2. In die Ansicht klicken
- 3. Pan wählen
- 4. Zu untersuchenden Bereich in Bildschirmmitte verschieben
- So oft wiederholen bis gewünschte Ansicht erreicht
- Die Originalgröße kann mit Reset plots to initial settings wiederhergestellt werden.

Zoom-Funktion

Nach Aktivieren der Vergrößerungslupe vergrößert jeder Klick in die Ansicht den dargestellten Ausschnitt. Der vergrößerte Ausschnitt kann dann mit aktivierter Hand-Funktion verschoben werden, um den interessierenden Bereich anzuzeigen.

Hinweis!

Das Zoomen mittels Klicken und Ziehen, wie es von anderen Programmen her bekannt ist. funktioniert hier nicht.

Vor der weiteren Bedienung der LPSsoft müssen die Werzeugbuttons (Zoom, Pan, ...) deaktiviert werden.

9.7 Definition von Inspektionsaufgaben

Typisches Vorgehen

- 1. LRSsoft starten und mit Sensor verbinden:
 Klicken Sie auf den Button Connect to sensor:
- Parametrierung mit Load from Sensor vom Sensor holen, oder mit Open von Datenträger laden.
- 3. Häkchen vor Enable Selection Inputs entfernen.
- Mit Inspection Task Selection die Inspektionsaufgabe auswählen, die verändert werden soll.
- 2D-Ansicht des Erfassungsbereichs im Reiter Parameters anzeigen und ggf. vergrößern.
- 6. Benötigte (E)AWs mit Maus oder Tastatur im Fenster Analysis Windows Definitions (Schaltfläche Edit Analysis Windows) definieren, dabei die eingestellten (E)AWs jeweils mit Apply Settings bestätigen.
 - Innerhalb eines AWs werden die Bildpunkte des aktuellen 2D-Profils vom LRS ermittelt (Current Hits).
 - Der Anwender parametriert dann für jedes AW eine obere und untere Grenze für die Hits (Hits On/Off) und damit eine Schalthysterese.
 - Nachfolgend ergibt sich ein Status ok oder not ok, was durch eine rote oder grüne Statusanzeige signalisiert wird.

Hinweis!

Die Anzahl der Current Hits korrespondiert nicht zwingend mit der Objektgröße, da die Anzahl der Hits abhängig von der Distanz **z** ist. Ein in x-Richtung ausgedehntes Objekt weist bei geringer Distanz zum Sensor (z. B. 300mm) fast doppelt so viele Hits wie bei größerer Distanz (z. B. 600mm) auf. Bei identischer Objektdistanz bleibt die Anzahl der Hits nahezu konstant.

- 7. Schaltinformationen für die Ausgänge Out1 bis Out 4 bzw. PROFIBUS Prozessdaten im Fenster Analysis Window Combination Tables (Schaltfläche Edit Logical Combinations) generieren:
 - Spaltenweise UND-Verknüpfung der Ergebnisse (ggf. invertiert) einzelner AWs
 - ODER-Verknüpfung in der Zeile **OR** von bis zu vier UND-Ergebnissen
 - Ggf. Invertierung des Ergebnisses der ODER-Verknüpfung (Häkchen bei Negation)
 - Eingabe der Auswertetiefe
- 8. Der Inspektionsaufgabe einen Namen zuweisen (Name) und mit Accept bestätigen.
- 9. Inspektionsaufgabe mit Apply Settings temporär übernehmen.
- 10. Ggf. weitere Inspektionsaufgaben mit den Schritten 5.-9. definieren.
- 11. Häkchen Enable Selection Inputs wieder setzen.
- 12. Parametrierung einschließlich aller Inspektionsaufgaben mit Transmit to Sensor permanent in den Sensor übertragen.
- 13. Ggf. Parametrierung mit Save As... auf Datenträger speichern.
- 14. Trennen Sie abschließend die Verbindung mit dem Sensor: Klicken Sie auf den Button Disconnect from sensor:

10 Einbindung des LRS in die Prozess-Steuerung (Ethernet)

10.1 Allgemeines

Der LRS kommuniziert mit der Prozess-Steuerung über UDP/IP mit dem in Kapitel 10.2 beschriebenen Protokoll. Das Protokoll arbeitet alternativ in 2 unterschiedlichen Modi:

- Erkennungsmodus
- Befehlsmodus (Command Mode)

Im Erkennungsmodus überträgt der LRS das Auswertetelegramm. Dieses wird im "Free Running" Betrieb kontinuierlich übertragen - im getriggerten Betrieb einmal je Trigger. Im Befehlsmodus reagiert der LRS auf Befehle von der Steuerung. Die verfügbaren Befehle sind in Kapitel 10.3 beschrieben.

Hinweis!

Sollten Sie eine Firewall verwenden, stellen Sie bitte sicher, dass die Steuerung über die Ethernet-Schnittstelle per UDP auf den Ports 9008 und 5634 mit dem LRS kommunizieren kann (diese Ports sind ab Werk voreingestellt, können aber auch vom Benutzer verändert worden sein, siehe Kapitel 7.2 "Menübeschreibung"). Außerdem muss die Firewall ICMP-Echo-Nachrichten für den Verbindungstest (Ping) durchlassen.

Die Einbindung der PROFIBUS Gerätevariante LRS 36/PB in die Prozess-Steuerung über PROFIBUS ist im Kapitel 11 "Einbindung des LRS 36/PB in den PROFIBUS" auf Seite 92 beschrieben.

10.2 Protokollaufbau Ethernet

\ Hinweis!

Die Reihenfolge, in der die einzelnen Bytes gespeichert werden, ist je nach Betriebssystem unterschiedlich. Die Befehle in Kapitel 10.3 und die Protokollbeschreibung sind im Format "Big-Endian" dargestellt, d.h. das High-Byte zuerst und das Low-Byte darauffolgend (0x... hexadezimal).

Windows-PCs (und manche Steuerungen wie z.B. die Siemens S7) speichern Daten im Format "Little-Endian", d.h. das Low-Byte zuerst und das High-Byte darauffolgend.

Wenn in Ihrem Prozessumfeld der LRS auf Befehle der Steuerung nicht reagiert, obwohl die Kommunikation mit LRSsoft einwandfrei funktioniert, dann sollten Sie prüfen, ob es an der Byte-Order liegt.

Beispiel: für den Befehl Øz434E(Connect to Sensor) muss ein Windows-PC Øz4Eund Øz43 senden, damit er vom LRS verstanden wird. In der Transaktionsnummer der Antwort vom LRS steht dann ebenfalls Øz4E43 (Byte-Folge 0x43, 0x4E).

Der LRS sendet Daten als "Little-Endian", also erst das Low-Byte und dann das High-Byte.

Die möglichen Werte einzelner Bytes und deren Bedeutung sind weiter unten beschrieben.

Protokollaufbau

Das Protokoll setzt sich zusammen aus dem **Header** (30 Byte) gefolgt von den **Nutzdaten** (0 ... 53 Datenworte à 2 Byte). Das Protokoll wird sowohl im Befehlsmodus beim Senden von Befehlen, und bei den Befehlsquittungen des Sensors, als auch im Erkennungsmodus verwendet.

Header

Länge 4 Byre, Wert fix. Wert bereich: DX0000OKFFF Länge 2 Byre, Wertebereich: Wertebereic	Startseq. 1	Startseq. 2	00000x0	0x0059 Befehls-Nr.	00000x0	Pakethr.	0x000x0	0000 Transaktions-Nr.	Ox000x0 Status	0000x0 Encoder H	0x0000x0	0x000x0	Scannr.	0x0010	0000x0 Nutzdaten-Worte
	Länge 4 Byte, Wert fix:	OXFFF	Länge 2 Byte, Wert fix: 0x0000	Länge 2 Byte, mögliche Werte: siehe Kapitel 10.3	Länge 2 Byte, Wert fix: 0x0000	Länge 2 Byte, Wertebereich: 0x00000xFFFF	Länge 2 Byte, Wert fix: 0x0000	Länge 2 Byte, Wertebereich: 0x00000xFFFF	Länge 2 Byte, Wertebereich: 0x00000xFEFF	Länge 4 Byte, Wertebereich:	0XFFF FFF '1)	Länge 2 Byte, Wert fix: 0x0000	Länge 2 Byte, Wertebereich: 0x00000xFFFF	Länge 2 Byte, Wert fix: 0x0010	Länge 2 Byte, mögliche Werte: 0x0000 / 0x0001 / 0x0002 / 0x0003 / 0x0178

Diese 4 Byte enthalten bei Sensorvarianten mit Encoder-Eingang den Encoder-Wert. Beim LRS ist dieser Wert immer 0x0000 0000.

10.2.1 Befehlsnummer

Die Befehlsnummer spezifiziert den Befehl sowohl von der Steuerung an den Sensor wie auch vom Sensor an die Steuerung (siehe Kapitel 10.3).

Im **Erkennungsmodus** sendet der Sensor immer sein Auswertetelegramm mit der Befehlsnummer 0x5354.

10.2.2 Paketnummer

Die Paketnummer dient zu internen Service-Zwecken des Herstellers.

10.2.3 Transaktionsnummer

Im **Erkennungsmodus** steht hier 0x0000.

Im **Befehlsmodus** steht bei der Befehlsquittung des Sensors hier die Befehlsnummer des Befehls, auf den geantwortet wird.

10.2.4 Status

Gibt den Zustand des Sensors an. Der Zustand ist wie folgt kodiert:

MS	В	I	High	ı-By	rte	ı	LSB	MS	В		Low	-Ву	te	ı	_SB	Bedeutung der Bits
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	Sensor nicht über Ethernet verbunden
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	Sensor über Ethernet verbunden
-	-	-	-	-	-	-	-	0	0	0	1	-	-	-	-	Erkennungsmodus
-	-	-	-	-	-	-	-	0	0	1	0	-	-	-	-	Menümodus
-	-	-	-	-	-	-	-	0	1	0	0	-	-	-	-	Befehlsmodus
-	-	-	-	-	-	-	-	1	0	0	0	-	-	-	-	Fehlermodus
-	-	-	-	-	-	-	0	-	-	-	-	-	-	-	-	Sensor über Aktivierungsfunktion deaktiviert
-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	Sensor über Aktivierungsfunktion aktiviert
-	-	-	-	-	-	0		-	-	-	-	-	-	-	-	Keine Warnung
-	-	-	-	-	-	1		-	-	-	-	-	-	-	-	Warnung, Sensor kurzfristig gestört
-	-	-	-	-	0	-	-	-	-	-	-	-	-	-	-	Messmode Free Running
-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	Messmode getriggert
-	-	0	-	-	-	-	-	-	-	-	-	-	-	-	-	Kein Fehler
-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	Fehler erkannt, Messdaten werden ggf. noch gesendet, danach geht Sensor in den Fehler- modus

Das LSB des High-Bytes steht immer auf 1 solange in **LRSsoft** der Parameter Activation Input auf Disnegard (Аlмауз on) gesetzt wurde.

Steht der Parameter Activation Input auf Regard, dann entspricht der Zustand des Bits dem Zustand des Signals einer Aktivierungsquelle (Eingang, Ethernetaktivierung).

Unabhängig vom gerade aktiven Modus geht der Sensor bei Tastenbetätigung am Display in den Menümodus und reagiert weder auf Befehle, noch sendet er Messdaten. Der Menümodus wird automatisch nach 3 Minuten beendet, wenn keine Tastenbetätigung erfolgt. Alternativ kann der Benutzer den Menümodus über den Menüpunkt Exit beenden.

10.2.5 Encoder High / Low

Der Encoder-Zähler ist bei Sensorvarianten mit Encoder-Eingang implementiert. Alle anderen Sensoren zeigen fest 0x00000000 an.

Die 4 Bytes in Encoder High und Encoder Low geben für Lichtschnittsensoren mit Encoder-Schnittstelle den Encoderzählerstand an. Dabei ist der Maximalwert 0xFFFF FFFF.

10.2.6 Scannummer

Die **2 Bytes** der **Scannummer** geben die Nummer der einzelnen Messungen in zeitlicher Reihenfolge an. Nach jedem gemessenen Profil wird diese Nummer um 1 erhöht. Dabei ist der Maximalwert 0xFFFF. Danach kommt es zu einem Überlauf auf 0x0000. Die zu einer Messung gehörenden Z- und X-Daten werden über die gleiche Scannummer identifiziert.

10.2.7 Typ

Gibt an, wie die Erkennungsdaten zu interpretieren sind. Der Wert ist auf 0x0010 fest voreingestellt.

10.2.8 Anzahl Nutzdaten

Die Nutzdaten haben eine variable Länge von 0, 1, 2, 3 oder 53 Datenworten (0, 2, 4, 6 oder 106 Byte).

Gibt die Anzahl der übertragenen Nutzdaten an. Der Wert ist im Erkennungsmodus auf 0x0059 fest voreingestellt.

10.2.9 Auswertetelegramm

Im Erkennungsmodus wird beim LRS das Auswertetelegramm mit der Befehlsnummer 0x5354 übertragen. Nach dem Header kommen 53 Nutzdatenworte mit der folgenden Stuktur:

Byte	MS	В	H	ligl	1-B	yte	L	.SB	MS	В	L	ow-	-Ву	te	L	.SB	Bedeutung der Bits
3132	-	-	-	-	-	-	-	-	-	-	-	-	N4	N3	N2	N1	Nummer der aktuellen Inspektionsaufgabe
3334		AW 15		AW 13				AW 9	AW 8	AW 7	AW 6	AW 5	AW 4	AW 3	AW 2	AW 1	Ergebnisse der einzelnen Auswertefenster
3536	-	-	-	-	-	-	-	A9	A8	Α7	A6	A 5	A4	АЗ	A2	A1	Aktuelle Anzahl Objektpunkte (Current Hits) im Auswertefenster 1
3738	-	-	-	-	-	-	-	A9	A 8	A7	A6	A 5	A4	АЗ	A2	A1	Aktuelle Anzahl Objektpunkte (Current Hits) im Auswertefenster 2
3940	-	-	-	-	-	-	-	A9	A8	A7	A6	A 5	A4	АЗ	A2	A1	Aktuelle Anzahl Objektpunkte (Current Hits) im Auswertefenster 3
4142	-	-	-	-	-	-	-	A9	A 8	Α7	A6	A 5	A4	АЗ	A2	A1	Aktuelle Anzahl Objektpunkte (Current Hits) im Auswertefenster 4
4344	-	-	-	-	-	-	-	A9	A8	Α7	A6	A 5	A4	АЗ	A2	A1	Aktuelle Anzahl Objektpunkte (Current Hits) im Auswertefenster 5
4546	-	-	-	-	-	-	-	A9	A8	Α7	A6	A 5	A4	АЗ	A2	A1	Aktuelle Anzahl Objektpunkte (Current Hits) im Auswertefenster 6
4748	-	-	-	-	-	-	-	A9	A8	Α7	A6	A 5	A4	АЗ	A2	A1	Aktuelle Anzahl Objektpunkte (Current Hits) im Auswertefenster 7
4950	-	-	-	-	-	-	-	A9	A8	Α7	A6	A 5	A4	АЗ	A2	A1	Aktuelle Anzahl Objektpunkte (Current Hits) im Auswertefenster 8
5152	-	-	-	-	-	-	-	A9	A8	Α7	A6	A 5	A4	АЗ	A2	A1	Aktuelle Anzahl Objektpunkte (Current Hits) im Auswertefenster 9
5354	-	-	-	-	-	-	-	A9	A8	Α7	A6	A 5	A4	АЗ	A2	A1	Aktuelle Anzahl Objektpunkte (Current Hits) im Auswertefenster 10
5556	-	-	-	-	-	-	-	A9	A8	Α7	A6	A 5	A4	АЗ	A2	A1	Aktuelle Anzahl Objektpunkte (Current Hits) im Auswertefenster 11
5758	-	-	-	-	-	-	-	A9	A8	Α7	A6	A 5	A4	АЗ	A2	A1	Aktuelle Anzahl Objektpunkte (Current Hits) im Auswertefenster 12
5960	-	-	-	-	-	-	-	A9	A8	Α7	A6	A 5	A4	АЗ	A2	A1	Aktuelle Anzahl Objektpunkte (Current Hits) im Auswertefenster 13
6162	-	-	-	-	-	-	-	A9	A8	A7	A6	A 5	A4	АЗ	A2	A1	Aktuelle Anzahl Objektpunkte (Current Hits) im Auswertefenster 14
6364	-	-	-	-	-	-	-	A9	A8	A7	A6	A 5	A4	А3	A2	A1	Aktuelle Anzahl Objektpunkte (Current Hits) im Auswertefenster 15
6566	-	-	-	-	-	-	-	A9	A8	A7	A6	A 5	A4	АЗ	A2	A1	Aktuelle Anzahl Objektpunkte (Current Hits) im Auswertefenster 16

Byte	MS	В	Н	ligh	ı-B	yte	L	.SB	MS	В	L	ow.	-Ву	te	L	SB	Bedeutung der Bits
6768	04 C4	04 C3	04 C2	04 C1	03 C4	03 C3	03 C2	03 C1	02 C4	02 C3	02 C2	02 C1	01 C4	01 C3	01 C2	01 C1	Spaltenergebnisse der UND-Verknüpfung für die Ausgänge. Siehe "Bereich Analysis Functions" auf Seite 68. Beispiel: 01/C3 = Ausgang 1, Spalte 3
6970	-	-	-	-	-	-	-	-	-		-		04	03	02		Schaltzustand der Ausgänge Out1 - Out4. Siehe "Bereich Analysis Functions" auf Seite 68.
7172	-	-	-	-	-	-	-	-	T8	T7	T6	T5	T4	Т3	T2	T1	Aktueller Stand des Zählers für die Auswertetiefe von Ausgang 1
7374	-	-	-	-	-	-	-	-	T8	T7	T6	T5	T4	Т3	T2	T1	Aktueller Stand des Zählers für die Auswertetiefe von Ausgang 2
7576	-	-	-	-	-	-	-	-	T8	T7	T6	T5	T4	Т3	T2	T1	Aktueller Stand des Zählers für die Auswertetiefe von Ausgang 3
7778	-	-	-	-	-	-	-	-	T8	T7	T6	T5	T4	Т3	T2	T1	Aktueller Stand des Zählers für die Auswertetiefe von Ausgang 4
7980	-	-	-	-	-	-	-	-	-	-	-	-	-	13	12	l1	Zustand der drei Eingänge zur Auswahl der Inspektionsaufgabe
81136	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Die übrigen Nutzdaten dienen zu internen Service-Zwecken des Herstellers.

10.3 Ethernet-Befehle

→ Hinweis!

Die Reihenfolge, in der die einzelnen Bytes der Befehle und des Protokolls gesendet werden müssen, um vom LRS verarbeitet zu werden, entspricht der Byte-Reihenfolge "Little-Endian". Die Antwort des LRS entspricht ebenfalls dem Standard "Little-Endian". Siehe dazu den Hinweis in Kapitel 10.2.

Im Erkennungsmodus kann jedoch nur Connect to Sensor, Disconnect to Sensor, Enter Command mode und Ethernet Trisser verarbeitet werden (Quittierung jeweils mit 'Ack'=0x4141). Alle anderen Befehle werden mit 'Not Ack'=0x414E quittiert, es erfolgt keine Verarbeitung des Befehls.

Weitere Befehle stehen im Befehlsmodus (Command Mode) zur Verfügung.

10.3.1 Elementare Befehle

Mit den Befehlen Connect to Sensor und Disconnect from Sensor wird eine Verbindung zwischen Steuerung und Sensor auf- bzw. abgebaut. Es wird dabei über die zuvor in LRSsoft parametrierten Ports mit dem LRS kommuniziert.

Befe	ehl von Steuerung an LRS	Antv	wort von LRS an Steuerung
Befehls-Nr.	Bedeutung	Befehls-Nr.	Bedeutung
0x434E	Connect to Sensor	0x4141	Verbindung aufgebaut, der Sensor
	Mit dem Sensor verbinden		ist dauerhaft verbunden.
			Über den Sensor-Status (Byte 17
			und 18) kann man erkennen, ob der
			Sensor verbunden ist.
		0x414E	Der gesendete Befehl wurde nicht
			verarbeitet (möglicher Sensorsta-
			tus: Sensor ist schon verbunden
			oder im Menümodus, detaillierte
			Info siehe Kapitel 10.2.4 "Status").
0x4443	Disconnect from Sensor	0x4141	Verbindung getrennt.
	Verbindung zum Sensor trennen	0x414E	Der gesendete Befehl wurde nicht
			verarbeitet (möglicher Sensorsta-
			tus: Sensor war schon getrennt oder
			im Menümodus, detaillierte Info
			siehe Kapitel 10.2.4 "Status").

Tabelle 10.1: Verbindungsbefehle

Nach Einschalten des Sensors und dem Aufbau einer Verbindung befindet der Sensor sich zuerst im Erkennungsmodus und überträgt kontinuierlich Auswertedaten (Free Running) bzw. wartet auf ein Triggersignal zur Übertragung von Auswertedaten.

Um zwischen Erkennungsmodus und Befehlsmodus umzuschalten stehen die beiden Befehle Enter Command Mode und Exit Command Mode zur Verfügung.

Bef	ehl von Steuerung an LRS	Antv	wort von LRS an Steuerung
Befehls-Nr.	Bedeutung	Befehls-Nr.	Bedeutung
0x3132	Enter Command Mode	0x4141	Sensor im Befehlsmodus
	Befehlsmodus aktivieren	0x414E	Der gesendete Befehl wurde nicht verarbeitet (möglicher Sensorstatus: Sensor befindet sich gerade im Menümodus und kann keine Befehle ausführen. Sensor befindet sich bereits im Befehlsmodus) 1).
0x3133	Exit Command Mode Befehlsmodus beenden	0x4141	Sensor zurück im Erkennungsmodus
		0x414E	Der gesendete Befehl wurde nicht verarbeitet, weil der Sensor nicht im Befehlsmodus war.

Tabelle 10.2: Befehlsmodus-Steuerungsbefehle

10.3.2 Befehle im Befehlsmodus

Im Befehlsmodus stehen folgende Befehle zur Verfügung:

	Befehl von Steuerung an LRS			Antwort von LRS an Steuerung	
Befehls- Nr.		Nutz- daten- worte	Befehls- Nr.	Bedeutung	Nutz- daten- worte
0x0001	Set Laser Gate		0x4141	Befehl ausgeführt	0
	Laseraktivierung und Deaktivierung (umschalten), siehe Kapitel 10.3.3	1	0x414E	Befehl wurde nicht ausgeführt.	0
0x0049	Get Actual Inspection Task		0x004A	Im Nutzdatenbereich wird die	
	Nummer der aktuellen Inspekti-	0		Tasknummer übermittelt.	1
	onsaufgabe holen			(0 = Task0, bis 15 = Task15)	
0x004B	Set Actual Inspection Task		0x4141 ¹⁾	Setzen der Inspektionsaufgabe	0
	Nummer der aktuellen Inspekti-	2		durchgeführt	U
	onsaufgabe einstellen, siehe		0x414E 2)	Der gesendete Befehl wurde	0
	Kapitel 10.3.3			nicht verarbeitet.	U

Tabelle 10.3: Sensorsteuerungsbefehle

- 1) 0x4141 = Acknowledge: Ausführung des Befehls wird bestätigt
- 2) 0x414E = Not Acknowledge oder Error: Befehl wurde nicht ausgeführt

Detaillierte Info zu möglichen Sensorstati siehe Kapitel 10.2.4 "Status". Ob der Sensor sich im Menümodus befindet kann man durch einen kurzen Blick auf das Display erkennen. Der Menümodus kann über den den Menüpunkt Exit beendet werden.

10.3.3 Nutzdaten im Befehlsmodus (Befehlsparameter)

Set Laser Gate

Beim Sensorsteuerungsbefehl 0x0001 wird an den Sensor ein Wort Nutzdaten übergeben:

Byte	MS	В		Hiç	jh-B	yte	L	.SB	MS	В	L	.ow	-Ву	te	L	.SB	Bedeutung der Bits
3132	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LF	LF = Laser Flag

LF=0 schaltet den Laser aus, LF=1 schaltet den Laser ein.

Set Actual Inspection Task

Beim Sensorsteuerungsbefehl 0x004B werden an den Sensor zwei Worte Nutzdaten übergeben:

Byte	MS	В		Hiç	jh-B	yte	ı	.SB	MS	В	ı	_ow	-Ву	te	L	.SB	Bedeutung der Bits
3132	-	-	-	-	-	-	-	-	-	-	N4 N3			N2		Nummer der einzustellenden Inspektionsaufgabe (0 = Task0 15 = Task 15)	
3334	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	SF	SF = SaveFlag

Ist SF=0 wird die Inspektionsaufgabe nur temporär umgestellt.

Ist SF=1 wird die neu eingestellte Inspektionsaufgabe auch nach einem Neustart des LRS beibehalten.

Get Actual Inspection Task

Auf den Sensorsteuerungsbefehl 0x0049 antwortet der LRS mit 0x004A und einem Wort Nutzdaten:

Byte	MS	В		Hig	jh-B	yte	L	.SB	MS	В	ı	_ow	-Ву	te	L	.SB	Bedeutung der Bits
3132	-	-	-	-	-	-	-	-	-	-	-	-	N4	N3	N2		Nummer der eingestellten Inspektionsaufgabe $(0 = Task0 \dots 15 = Task 15)$

Set Scan Number

Beim Sensorsteuerungsbefehl 0x0053 wird an den Sensor ein Wort Nutzdaten übergeben:

Byte	MSE	3	Н	igh-	Byte	L	SB		MSE	3	ı	_ow-	Byte)	ı	LSB	Bedeutung der Bits
3132	S16	S15	S14	S13	S12	S11	S10	S9	S8	S7	S6	S5	S4	S3	S2	S1	Neu einzustellende Scannummer

Der Sensorsteuerungsbefehl Set Scan Number ermöglicht es bei mehreren Sensoren, die kaskadiert betrieben werden, eine einheitliche Scannummer für das Übertragungsprotokoll einzustellen. Eine Beschreibung des kaskadierten Betriebs finden Sie in Kapitel 4.2.4.

Hinweis!

- Setzen Sie den Master (Sensor 1) in den Befehlsmodus. Die kontinuierliche Messung wird dadurch gestoppt. Im Befehlsmodus ist der Kaskadierungsausgang nicht aktiv!
- 2. Setzen Sie eine beliebige Scannummer mit dem Befehl 0x0053 für den Master.
- 3. Setzen Sie nacheinander alle Slaves (Sensor 2, 3, ...) in den Befehlsmodus und stellen Sie für jeden einzelnen Slave die gleiche Scannummer ein, die Sie zuvor unter 2. beim Master gesetzt haben.
- 4. Setzen Sie die Slaves zurück in den Messmodus.
- 5. Setzen Sie den Master in den Messmodus.

Set Single Inspection Task Parameter (ab Firmware V01.40!)

Mit dem Sensorsteuerungsbefehl 0x006D können einzelne Parameter der aktiven Inspektionsaufgabe geändert werden. Folgende Parameter lassen sich verändern:

- Name einer Inspektionsaufgabe (Name),
- Betriebsart (Operation Mode: Free Running oder Input Triggered),
- Freischalten der Aktivierung (Activation Input: Regard oder Disregard),
- Freischalten des Kaskadierausgangs (Cascading Output: Enable oder Disable),
- Belichtungsdauer des Lasers (Light Exposure),
- Erfassungsbereich des LPS (Field of View).

Befehlsaufbau von Steuerung an den Sensor:

Startseq. 1	Startseq. 2	Füllzeichen	Befehls-Nr.	Füllzeichen	Paketnr.	Füllzeichen	Transaktions-Nr.	Status	Encoder H	Encoder L	Füllzeichen	Scannr.	Тур	Anzahl Daten
0xFFFF	0xFFFF	0x0000	0x006D	0x0000	0x0000	0x0000	0x0000	0x0000	0x0000	0x0000	0x0000	0x0000	0x0010	0x0003- 0x000E

Byte	MS	В	Hiç	jh-E	Byte	L	SB.	MS	В	Low-Byte LSB E			L	.SB	Bedeutung der Bits	
3132															SF	SF = SaveFlag
3334																Parameter ID für Parameterauswahl
3558																Parameterwert[e] abhängig von Parameter ID

Parameter und Einstellungen:

Ist SF=0, wird der Parameter nur temporär umgestellt.

Ist SF=1, wird der Parameter auch nach einem Neustart des LRS beibehalten.

Parameter ID	Bedeutung Parameter	gültige Parameterwerte	Datentyp von Parameter	Anzahl Parameterwerte
0x0BB9	Name der aktiven Inspektionsaufgabe	Maximale Länge: 12 ASCII Zeichen, jedes Zeichen wird als 16 Bit Wort gespeichert	CHAR	12
0x0BBA	Betriebsart	0=Operation Mode: Free Running; 1=Operation Mode Input Triggered	UINT8	1
0x0BBB	Freischalten der Aktivierung	0=Activation Input: Disregard; 1=Activation Input: Regard	UINT8	1
0x0BBC	Freischalten des Kaskadierausgangs	0=Cascading Output: Disable; 1=Cascading Output: Enable	UINT8	1
0x0BBD	Belichtungsdauer des Lasers	0 = Normal (ca. 261 µs) 1 = Bright Objects (ca. 97 µs) 2 = Dark Objects (ca. 655 µs) 3 = Normal to Bright Objects (ca. 328 µs) 4 = Manual Setting (Einstellung der Belichtungszeit erfolgt über den Parameter ID 0x0BBE)	UINT8	1
0x0BBE	Manuelle Einstellung der Belichtungs- dauer	Zulässiger Wertebereich LRS 36/6, LRS 36/6.10, LRS 36/PB: 97313109 (Einheit Belichtungszeit in 1/10µs). Die Belichtungsdauer wird im Sensor stufenweise eingestellt. Die tatsächliche Belichtungsdauer kann geringfügig vom übertragenen Parameterwert abweichen. Die eingestellte Belichtungsdauer läßt sich mit dem Befehl "Get Single Inspection Task Parameter"(0x006F) in Verbindung mit der Paramer-ID 0x0BBD abfragen.	UINT16	1
0x0BBF	Erfassungsbereich X-Koordinaten	2 vorzeichenbehaftete X-Werte für Field of View, Wert 1: Minimum X Value, Wert 2: Maximum X Value, zulässiger Wertebereich LRS 36/6, LRS 36/6.10, LRS 36/PB: -30003000 (Einheit in 1/10mm)	SINT16	2
0x0BC0	Erfassungsbereich Z-Koordinaten	2 nicht vorzeichenbehaftete Z-Werte für Field of View, Wert 1: Minimum Z Value, Wert 2: Maximum Z Value (Einheit in mm), zulässiger Wertebereich LRS 36/6, LRS 36/6.10, LRS 36/PB: 19008100 (Einheit in 1/10mm)	UINT16	2

Antwort vom Sensor:

Befehlsnummer	Bedeutung	Nutzdatenworte
0x4141	"Ack", der Befehl wurde erfolgreich ausgeführt.	0
0x414E	"Not Ack", der Befehl wurde nicht ausgeführt	0

Get Single Inspection Task Parameter (ab Firmware V01.40!)

Mit dem Sensorsteuerungsbefehl 0x006F können einzelne Parameter der aktiven Inspektionsaufgabe ausgegeben werden. Folgende Parameter lassen sich abfragen:

- Name der aktiven Inspektionsaufgabe (Name),
- Nummer der aktiven Inspektionsaufgabe (Number)
- Betriebsart (Operation Mode: Free Running oder Input Triggered),
- Einstellung der Aktivierung (Activation Input: Regard oder Disregard),
- Einstellung des Kaskadierausgangs (Cascading Output: Enable oder Disable),
- Belichtungsdauer des Lasers (Light Exposure),
- Erfassungsbereich des LRS (Field of View).

Befehlsaufbau von Steuerung an den Sensor:

Startseq. 1	Startseq. 2	Füllzeichen	Befehls-Nr.	Füllzeichen	Paketnr.	Füllzeichen	Transaktions-Nr.	Status	Encoder H	Encoder L	Füllzeichen	Scannr.	Тур	Anzahl Daten
OVEEEE	Overer	nynnnn	UVUURE	UVUUUU	nynnnn	nynnnn	UVUUUU	UVUUUU	UVUUUU	nynnnn	nynnnn	nynnnn	0v0010	0v0001

|0xFFFF| 0xFFFF| 0x0000 |0x006F| 0x0000 |0x0000 |0x0000 |0x0000 |0x0000 |0x0000 |0x0000 |0x0000 |0x0000 |0x0000 |0x0010 |0x0010 |0x0001

Byte	MSB		High-Byte		LSI	LSB MSB		ı	_ow	-Ву	te	L	.SB	Bedeutung der Bits	
3132															Parameter ID welche abgefragt werden kann

Parameter und Einstellungen:

Parameter ID	Bedeutung Parameter
0x0BB8	Nummer der aktiven Inspektionsaufgabe
0x0BB9	Name einer Inspektionsaufgabe
0x0BBA	Betriebsart
0x0BBB	Freischalten der Aktivierung
0x0BBC	Freischalten des Kaskadierausgangs
0x0BBD	Belichtungsdauer des Lasers
0x0BBE	Manuelle Einstellung der Belichtungsdauer
0x0BBF	Erfassungsbereich X-Koordinaten
0x0BC0	Erfassungsbereich Z-Koordinaten

Antwort vom Sensor an Steuerung:

Startseq. 1	Startseq. 2	Füllzeichen	Befehls-Nr.	Füllzeichen	Paketnr.	Füllzeichen	Transaktions-Nr.	Status	Encoder H	Encoder L	Füllzeichen	Scannr.	Тур	Anzahl Daten
0xFFFF	0xFFFF	0x0000	0x0070	0x0000	0x0000	0x0000	0x006F	0x0000	0x0000	0x0000	0x0000	0x0000	0x0010	0x0009- 0x0014

Byte	MS	В	Hig	jh-E	Byte	LS	SB	MSI	В	Low-Byte LSB B		В	Bedeutung der Bits		
3132															Parameter ID für Parameterauswahl
3334															Datentyp: 1 = UINT8; 2 = UINT16, 5 = SINT16, 7 = CHAR
3536															Anzahl Parameterwerte (Byte 47ff)
3738															Untere Grenze Parameterwert (HighWord)
3940															Untere Grenze Parameterwert (LowWord)
4142															Obere Grenze Parameterwert (HighWord)
4344															Obere Grenze Parameterwert (LowWord)
4546															ohne Bedeutung
4770															Parameterwert(e) der abgefragten Parameter ID

10.3.4 Befehle im Erkennungsmodus

Im Erkennungsmodus stehen folgende Befehle zur Verfügung:

	Befehl von Steuerung an LRS			Antwort von LRS an Steuerung				
Befehls- Nr.	Bedeutung	Nutz- daten- worte	Befehls- Nr.	Bedeutung	Nutz- daten- worte			
0x4554	Ethernet Trigger Mit dem Ethernet Trigger Befehl wird im Erkennungsmodus eine Einzelmessung ausgelöst, ähn- lich der Triggerung über den Trig- gereingang. Voraussetzung ist, dass der LRS mit LRSsoft unter Operation Mode auf Input Triggered para- metriert ist. Es muss eine Verbindung zum Sensor bestehen, bevor der Befehl Ethernet Trigger benutzt werden kann.	0	0x5354 0x414E	Es wird mit dem Auswertetele- gramm geantwortet (Status und Schaltinformationen), siehe Kapitel 10.2.9 Der gesendete Befehl wurde nicht verarbeitet.	1 Paket à 53			

Tabelle 10.4: Befehle im Erkennungsmodus

10.4 Arbeiten mit dem Protokoll (Ethernet)

Hinweis!

Befehl mit Nutzdaten

Set Actual Inspection Task (LRS im Befehlsmodus, Task 15 aktivieren und nicht flüchtig speichern)

PC an LRS:

Startseq. 1	Startseq. 2	Füllzeichen	Befehlsnr.	Füllzeichen	Paketnr.	Füllzeichen	Trans. Nr.	Status	Encoder H	Encoder L	Füllzeichen	Scannr.	Тур	Anz.Daten	Nutzdaten	Nutzdaten
0xFFFF	0xFFFF	0x0000	0x004B	0x0000	0x0000	0x0000	0x0000	0x0000	0x0000	0x0000	0x0000	0x0000	0x0000	0x0002	0x000F	0x0001

LRS an PC (Befehl ausgeführt):

	1	1	1	1	1	1		1	ii		ii	ii	ii		
-	2	en en		E .		믑			_		ue			_	
8	8	eiche	lsni	eiche	E	ਚੁੰ	ᆂ	S	er	erl	S	<u>:</u>		ate	
Startseq.	arts	Ž	efeh	Z	ket	IIzei	ans	tatus	pool	pool	Ilzei	anr	Q.	1z.D	
St	St	记	Be	记	Ра	记	ı	St	ᇤ	ᇤ	Ē	Sc	Ţ	Ar	
0xFFFF	0xFFFF	0x0000	0x4141	0x0000	0x0000	0x0000	0x004B	0x0000	0x0000	0x0000	0x0000	0x0000	0x0000	0x0000	

10.5 Betrieb mit LxS Lib.dll

Die LxS_Lib.dll ist eine .NET 2.0 kompatible Sammlung an Funktionen, die die Einbindung aller Leuze Lichtschnittsensoren (LPS, LRS und LES) in PC-Umgebungen wesentlich vereinfacht. Die LxS_Lib.dll kann in einer Vielzahl von Programmiersprachen verwendet werden, wie z.B. C#, Visual Basic, usw. Die Einbindung in MatLab ist ebenfalls möglich.

Es lassen sich mehrere Lichtschnittsensoren über Ethernet mit der DLL steuern.

Die LxS_Lib.dll unterstützt unter anderem folgende Funktionen:

- Aufbau/Trennen der Sensorverbindung
- · Auswertung des Sensorstatus
- Triggerung, Aktivierung über Ethernet
- Aktivierung von einzelnen Inspektionsaufgaben
- Laden und Speichern aller angelegten Inspektionsaufgaben
- Aktivierung von Inspektionsaufgaben
- Parameteränderungen der aktiven Inspektionsaufgabe

Weiterhin ermöglicht die LxS_Lib.dll die Auswertung der spezifischen Nutzdaten von LPS, LES oder LRS. Beim LRS und LES stehen alle Sensorinformationen und Zwischenergebnisse zur Verfügung, so dass wesentlich komplexere Auswertungen in der Prozesssteuerung realisiert werden können.

Zugriff

Die Bibliothek befindet sich auf der mitgelieferten Produkt-CD. Alternativ können Sie das Programm auch aus dem Internet unter **www.leuze.com** herunterladen.

10.6 Weitergehende Unterstützung bei der Sensoreinbindung

Weitere Tools (z. B. MatLab-Beispiel, Funktionsbausteine S7, Protokoll-Klartext-Decodierung, UDP-Terminal) stehen zur Verfügung. Bitte kontaktieren Sie hierzu Ihr Leuze Vertriebsoder Servicebüro.

11 Einbindung des LRS 36/PB in den PROFIBUS

11.1 Allgemeines

Der LRS 36/PB ist als PROFIBUS DP/DPV1 kompatibler Slave konzipiert. Die Ein/Ausgangsfunktionalität des Sensors ist durch die zugehörige GSD-Datei definiert. Die Baudrate der zu übertragenden Daten beträgt unter Produktionsbedingungen max. 6 MBit/s.

Für den Betrieb ist die GSD-Datei entsprechend anzupassen.

Der LRS 36/PB unterstützt die automatische Erkennung der Baudrate

Eigenschaften LRS 36/PB

- Ethernet und PROFIBUS können im Erkennungsmodus als vollwertige Schnittstellen gleichzeitig genutzt werden
- Befindet sich der Sensor im Menümodus, so ist der PROFIBUS aktiv. Anfragen von der Steuerung werden nicht verarbeitet und die Prozessdaten sind eingefroren (erkennbar an der konstanten Scannummer).
- Befindet sich der Sensor im Befehlsmodus, so ist der PROFIBUS aktiv. Anfragen von der Steuerung werden nicht verarbeitet und die Prozessdaten sind eingefroren (erkennbar an der konstanten Scannummer).
- Wird der Sensor mit LRSsoft und PROFIBUS gleichzeitig betrieben, so ist der PRO-FIBUS aktiv. Anfragen von der Steuerung werden verzögert verarbeitet und die Prozessdaten werden auch verzögert aktualisiert (erkennbar an sich langsam erhöhenden Scannummern). Die Aktualisierung erfolgt alle 200 ms.
- Die Eingangssignale über Ethernet, PROFIBUS und Signalleitungen sind gleichberechtigt. Das zuerst anliegende Signal wird ausgeführt.
- Die Parametrierung des Sensors erfolgt über die Parametriersoftware LRSsoft.

Gegenüber der Gerätevariante LRS 36/6 mit Schaltausgängen besitzt die PROFIBUS-Variante folgende zusätzliche Funktionen:

- Ausgabe des Status von 16 Auswertefenstern
- Ausgabe der Treffer (Current Hits) in bis zu 16 Auswertefenstern
- Ergebnis logischer Verknüpfungen
- Übertragung von Scannummer und Sensorstatus
- Auswahl von bis zu 16 Inspektionsaufgaben
- Aktivierung und Triggerung per PROFIBUS

Die Beschränkung auf die Anwahl von maximal 8 Inspektionsaufgaben über die Schalteingänge des LRS 36/6, besteht beim LRS 36/PB nicht. Es lassen sich von der Steuerung bis zu 16 verschiedene Inspektionsaufgaben aktivieren

11.2 PROFIBUS Adressvergabe

Im folgenden werden die verschiedenen Möglichkeiten zur Einstellung der Slave-Adresse beschrieben. Die automatische Adressvergabe über den PROFIBUS (Slave-Adresse 126) ist voreingestellt.

Automatische Adressvergabe

Der LRS 36/PB unterstützt die automatische Erkennung der Baudrate und die automatische Adressvergabe über den PROFIBUS.

Die Adresse des PROFIBUS-Teilnehmers kann automatisch vom Inbetriebnahme-Tool der PROFIBUS-Anlage (ein PROFIBUS-Master der Klasse 2) erfolgen. Dazu muss die Slave-Adresse auf den Wert **126** im Sensor eingestellt sein (Werkseinstellung).

Der Inbetriebnahme-Master prüft, ob ein Slave die Adresse 126 hat und weist diesem dann eine Knotenadresse kleiner 126 zu. Diese Adresse wird im Teilnehmer permanent gespeichert. Die geänderte Adresse kann dann über das Display oder LRSsoft abgefragt (und ggf. auch wieder geändert) werden.

Adressvergabe mit LRSsoft

Über LRSsoft kann die PROFIBUS Slave-Adresse eingestellt werden können. Diese Einstellung kann dann zusammen mit den anderen Sensoreinstellungen auf dem PC gespeichert werden.

Bild 11.1: PROFIBUS Adressvergabe mit LRSsoft

Adressvergabe mit Folientastatur und Display

Die Einstellung der Adresse mit der Tastatur und Display ermöglichte es, den Sensor im Feld ohne weitere Hilfsmittel in eine PROFIBUS-Anlage einzubringen. Siehe "Slave Address" auf Seite 48. Ebenfalls kann die eingestellte Adresse vom Anwender ohne weitere Hilfsmittel abgefragt werden.

○ Hinweis!

Nach dem Ändern der PROFIBUS Slave-Adresse über LRSsoft oder per Display/Tastatur muss ein Power-on-Reset durchgeführt werden, um die Adresse endgültig zu übernehmen.

11.3 Allgemeine Infos zur GSD-Datei

Wird der LRS in einem PROFIBUS-Netzwerk betrieben, kann die Parametrierung ausschließlich über die Parmetriersoftware LRSsoft erfolgen. Die Funktionalität der Eingänge/Ausgänge des Lichtschnittsensors zur Steuerung wird über Module definiert. Mit einem anwenderspezifischen Projektierungs-Tool werden bei der SPS-Programmerstellung die jeweils benötigten Module eingebunden und entsprechend der Messapplikation parametriert.

Beim Betrieb des Lichtschnittsensors am PROFIBUS ist die Funktionalität der Eingänge/ Ausgänge mit Default-Werten belegt. Werden diese Parameter vom Anwender nicht geändert, so arbeitet das Gerät mit denen von Leuze electronic ausgelieferten Default-Einstellungen. Die Default-Einstellungen des Gerätes entnehmen Sie bitte den nachfolgenden Modulbeschreibungen.

○ Hinweis!

Es muss mindestens ein Modul aus der GSD-Datei im Projektierungstool der Steuerung aktiviert werden, üblicherweise die **Module M1 oder M2**.

Hinweis!

Teilweise stellen Steuerungen ein sogenanntes "Universalmodul" zur Verfügung. Dieses Modul darf für den LRS 36/PB nicht aktiviert werden.

Achtung!

Das Gerät stellt eine PROFIBUS- und eine Ethernet-Schnittstelle zur Verfügung. Beide Schnittstellen können parallel betrieben werden.

Hinweis!

An einem am PROFIBUS betriebenen LRS 36/PB können zu Testzwecken Parameter über das Display geändert werden. Zu diesem Zeitpunkt ist eine Objekterkennung an PROFIBUS nicht möglich.

Hinweis!

Alle in dieser Dokumentation beschriebenen Eingangs- und Ausgangsmodule sind **aus der Sicht der Steuerung** beschrieben:

Beschriebene Eingänge (E) sind Eingänge der Steuerung.

Beschriebene Ausgänge (A) sind Ausgänge der Steuerung.

Beschriebene Parameter (P) sind Parameter der GSD-Datei in der Steuerung.

→ Hinweis!

Die aktuelle Version der GSD-Datei **LEUZE401.GSD** für den LRS 36/PB finden Sie auf der Leuze Website unter **Download -> erkennen -> Messende Sensoren**.

11.4 Übersicht der GSD Module

Der LRS 36/PB hat einen Modul-Slot. Mit der Auswahl des entsprechenden Moduls aus der GSD werden die zu übertragenden Prozessdaten des LRS 36/PB eingestellt. Es stehen mehrere Module zur Auswahl. Beginnend mit dem einfachsten Eingangsmodul M1, kommen bei nachfolgenden Modulen jeweils neue Eingänge hinzu. Alle verfügbaren Ausgangsdaten sind schon in Modul M1 enthalten. Die Module mit höheren Nummern enthalten jeweils die Module mit niedrigeren Nummern (Beispiel: M2 enthält M1 und die Erweiterungen von M2).

Mit steigender Modulnummer nehmen auch die zu übertragenden Nutzdaten-Bytes zu. Die maximale Erkennungsrate von 100Hz kann nur bis Modul **M3** gewährleistet werden.

Es sollten daher nur Module ausgewählt werden, die die tatsächlich benötigten Daten enthalten, d. h. es sollte eine möglichst kleine Modulnummer ausgewählt werden.

Hinweis!

Alle in dieser Dokumentation beschriebenen Eingangs- und Ausgangsmodule sind **aus der Sicht der Steuerung** beschrieben:

Beschriebene Eingänge (E) sind Eingänge der Steuerung.

Beschriebene Ausgänge (A) sind Ausgänge der Steuerung.

Beschriebene Parameter (P) sind Parameter der GSD-Datei in der Steuerung.

Ausgangsdaten (aus Sicht der Steuerung)

Position	Name				Bits in	n Byte				Werte-	Bedeutung
(Bytes)		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	bereich	
0	uTrigger	Trig_7	Trig_6	Trig_5	Trig_4	Trig_3	Trig_2	Trig_1	Trig_0	0 255	Triggerung per PROFIBUS (bei Änderung)
1	uActivation	-	-	-	-	-	-	-	Act_On	0 1	Aktivierung (=1) oder Deaktivierung (=0) des Sensors
2	ulnspTask		-	-	-	IT_b3	IT_b2	IT_b1	IT_b0	0 15	Inspection Task vom PROFIBUS Master und Save-Flag (B7)

Tabelle 11.1: PROFIBUS - Übersicht der Ausgangsdaten (aus Sicht der Steuerung)

Eingangsdaten (aus Sicht der Steuerung)

GSD-	Position	Name	Bits im Byte					Werte-	Bedeutung				
Modul	(Bytes)		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	bereich		
M1 4 Byte	0	wScanNum (HighByte)	SN_b15	SN_b14	SN_b13	SN_b12	SN_b11	SN_b10	SN_b9	SN_b8	0 255	Scannummer (Highbyte)	
	1	wScanNum (LowByte)	SN_b7	SN_b6	SN_b5	SN_b4	SN_b3	SN_b2	SN_b1	SN_b0	0 255	Scannummer (Lowbyte)	
	2	uSensorInfo	Out4	Out3	0ut2	Out1	IT_b3	IT_b2	IT_b1	IT_b0	0 255	SensorInfo (Nr. Insp. Task, Ausgänge)	
	3	uSensorState	ErrM	Cmd	Menu	Meas	ErrF	WarnF	activ	connect	0 255	Status des Sensors	
M2	4	wResultAWs (HighByte)	AW16	AW15	AW14	AW13	AW12	AW11	AW10	AW9	0 255	Zustand der AWs (Highbyte)	
6 Byte	5	wResultAWs (LowByte)	AW8	AW7	AW6	AW5	AW4	AW3	AW2	AW1	0 255	Zustand der AWs (Lowbyte)	
M3	6	wActObjPtsAW1 (HighByte)	-	-	-	-	-	-	-	0P_b8	0 1	Aktuelle Anzahl Objektpunkte	
16 Byte	7	wActObjPtsAW1 (LowByte)	0P_b7	0P_b6	0P_b5	0P_b4	0P_b3	0P_b2	0P_b1	0P_b0	0 255	(Current Hits) im Auswertefenster 1	
	8	wActObjPtsAW2 (HighByte)	-	-	-	-	-	-	-	0P_b8	0 1	Aktuelle Anzahl Objektpunkte	
	9	wActObjPtsAW2 (LowByte)	0P_b7	0P_b6	0P_b5	0P_b4	0P_b3	0P_b2	0P_b1	0P_b0	0 255	(Current Hits) im Auswertefenster 2	
	10	wActObjPtsAW3 (HighByte)	-	-	-	-	-	-	-	0P_b8	0 1	Aktuelle Anzahl Objektpunkte	
	11	wActObjPtsAW3 (LowByte)	0P_b7	OP_b6	0P_b5	0P_b4	0P_b3	0P_b2	0P_b1	0P_b0	0 255	(Current Hits) im Auswertefenster 3	
	12	wActObjPtsAW4 (HighByte)	-	-	-	-	-	-	-	0P_b8	0 1	Aktuelle Anzahl Objektpunkte	
	13	wActObjPtsAW4 (LowByte)	0P_b7	0P_b6	OP_b5	0P_b4	0P_b3	0P_b2	0P_b1	0P_b0	0 255	(Current Hits) im Auswertefenster 4	
	14	wActObjPtsAW5 (HighByte)	-		-	-	-	-		0P_b8	0 1	Aktuelle Anzahl Objektpunkte	
	15	wActObjPtsAW5 (LowByte)	0P_b7	0P_b6	0P_b5	0P_b4	0P_b3	0P_b2	0P_b1	0P_b0	0 255	(Current Hits) im Auswertefenster 5	
M4	16	wActObjPtsAW6 (HighByte)	-	-	-	-	-	-		0P_b8	0 1	Aktuelle Anzahl Objektpunkte (Current Hits) im Auswertefenster 6	
24 Byte	17	wActObjPtsAW6 (LowByte)	0P_b7	0P_b6	OP_b5	0P_b4	0P_b3	0P_b2	0P_b1	0P_b0	0 255		
	18	wActObjPtsAW7 (HighByte)	-	-	-	-	-	-	-	0P_b8	0 1	Aktuelle Anzahl Objektpunkte	
	19	wAct0bjPtsAW7 (LowByte)	0P_b7	OP_b6	0P_b5	0P_b4	0P_b3	0P_b2	0P_b1	0P_b0	0 255	(Current Hits) im Auswertefenster 7	
	20	wActObjPtsAW8 (HighByte)	-	-	-	-	-	-	-	0P_b8	0 1	Aktuelle Anzahl Objektpunkte (Current Hits) im Auswertefenster 8	
	21	wActObjPtsAW8 (LowByte)	0P_b7	OP_b6	0P_b5	0P_b4	0P_b3	0P_b2	0P_b1	0P_b0	0 255		
	22	wActObjPtsAW9 (HighByte)	-	-	-	-	-	-	-	0P_b8	0 1	Aktuelle Anzahl Objektpunkte (Current Hits) im Auswertefenster 9	
	23	wActObjPtsAW9 (LowByte)	0P_b7	0P_b6	0P_b5	0P_b4	0P_b3	0P_b2	0P_b1	0P_b0	0 255		
M5	24	wAct0bjPtsAW10 (HighByte)	-	-	-	-	-	-	-	0P_b8	0 1	Aktuelle Anzahl Objektpunkte	
38 Byte	25	wAct0bjPtsAW10 (LowByte)	0P_b7	OP_b6	0P_b5	0P_b4	0P_b3	0P_b2	0P_b1	0P_b0	0 255	(Current Hits) im Auswertefenster 10	
	26	wAct0bjPtsAW11 (HighByte)	-	-	-	-	-	-	-	0P_b8	0 1	Aktuelle Anzahl Objektpunkte	
	27	wAct0bjPtsAW11 (LowByte)	0P_b7	0P_b6	0P_b5	0P_b4	0P_b3	0P_b2	0P_b1	0P_b0	0 255	(Current Hits) im Auswertefenster 11	
	28	wActObjPtsAW12 (HighByte)	-	-	-	-	-	-	-	0P_b8	0 1	Aktuelle Anzahl Objektpunkte	
	29	wActObjPtsAW12 (LowByte)	0P_b7	0P_b6	0P_b5	0P_b4	0P_b3	0P_b2	0P_b1	0P_b0	0 255	(Current Hits) im Auswertefenster 12	
	30	wAct0bjPtsAW13 (HighByte)	-	-	-	-	-	-	-	0P_b8	0 1	Aktuelle Anzahl Objektpunkte	
	31	wActObjPtsAW13 (LowByte)	0P_b7	0P_b6	0P_b5	0P_b4	0P_b3	0P_b2	0P_b1	0P_b0	0 255	(Current Hits) im Auswertefenster 13	
	32	wActObjPtsAW14 (HighByte)	-	-	-	-	-	-	-	0P_b8	0 1	Aktuelle Anzahl Objektpunkte	
	33	wActObjPtsAW14 (LowByte)	0P_b7	0P_b6	0P_b5	0P_b4	0P_b3	0P_b2	0P_b1	0P_b0	0 255	(Current Hits) im Auswertefenster 14	
	34	wActObjPtsAW15 (HighByte)	-	-	-	-	-	-	-	0P_b8	0 1	Aktuelle Anzahl Objektpunkte	
	35	wActObjPtsAW15 (LowByte)	0P_b7	0P_b6	0P_b5	0P_b4	0P_b3	0P_b2	0P_b1	0P_b0	0 255	(Current Hits) im Auswertefenster 15	
	36	wActObjPtsAW16 (HighByte)	-	-	-	-	-	-	-	0P_b8	0 1	Aktuelle Anzahl Objektpunkte	
	37	wActObjPtsAW16 (LowByte)	0P_b7	0P_b6	0P_b5	0P_b4	0P_b3	0P_b2	0P_b1	0P_b0	0 255	(Current Hits) im Auswertefenster 16	

Tabelle 11.2: PROFIBUS - Übersicht der Eingangsdaten (aus Sicht der Steuerung)

11.5 Beschreibung der Ausgangsdaten

PROFIBUS-Trigger

Damit je PROFIBUS-Zyklus eine Messung getriggert werden kann, reagiert der PROFIBUS-Trigger des LRS auf eine Änderung des Masterausgangs-Bytes **uTrigger**. Die Steuerung muss lediglich den Triggerwert inkrementieren, um eine neue Messung auszulösen.

Die maximale Triggerfrequenz liegt bei 100Hz. Erfolgt die Triggerung während einer Messung, so wird das Triggersignal, ebenso wie in der Betriebsart **Free Running** (Anzeige am Display: fRun), ignoriert.

Activation - Aktivierung des Sensors

Die Aktivierung kann im Erkennungsmodus alternativ über den Aktivierungseingang **InAct** (Pin 2 an X1) oder den Masterausgang **uActivation** = 1 eingeschaltet werden.

Bei der Parameter-Einstellung **Disregard** in LRSsoft ist der Sensor immer aktiviert, der Eingang **InAct** und die Aktivierung über PROFIBUS werden ignoriert.

Inspection Tasks - Anwahl der Inspektionsaufgabe

Mit dem Masterausgang **uInspTask** (Bits IT_b3 ... IT_b0 in Ausgangsdaten-Byte 2) können die Inspektionsaufgaben 0 ... 15 angewählt werden. Die Umschaltung erfolgt im zyklischen IO-Betrieb und dauert ca. 70ms. Während der Umschaltung werden die PROFIBUS IO-Daten eingefroren und die interne Rekonfiguration findet statt, erkennbar an der Scannummer, die nicht erhöht wird.

Nach erfolgtem Wechsel der Inspektionsaufgabe werden die PROFIBUS IO-Daten des Sensors wieder aktualisiert. Der Wert **uSensorInfo** in den Eingangsdaten zeigt dann die im Sensor eingestellte Inspektionsaufgabe an und die Scannummer erhöht sich wieder mit jeder neuen Messung.

Achtung!

Bei der Parametrierung des LRS mit LRSsoft via Ethernet sollte der Globale Parameter **Enable External Inspection Task Selection** abgeschaltet sein, damit die Inspektionsaufgabe nicht versehentlich während der Parametrierung durch die Steuerung umgeschaltet wird.

Nach der Parametrierung muss die Checkbox für diesen Parameter dann wieder aktiviert werden, bevor die Parametrierung zum Sensor per **Transmit Configuration To Sensor** übertragen wird.

Anderenfalls lassen sich über PROFIBUS keine Inspektionsaufgaben mehr anwählen!

11.6 Beschreibung der Eingangsdaten

Es stehen mehrere Module zur Auswahl. Beginnend mit dem einfachsten Eingangsmodul M1, kommen bei nachfolgenden Modulen jeweils neue Eingänge hinzu. Alle verfügbaren Ausgangsdaten sind schon in Modul M1 enthalten. Die Module mit höheren Nummern enthalten jeweils die Module mit niedrigeren Nummern (Beispiel: M2 enthält M1 und die Erweiterungen von M2).

11.6.1 Modul M1

Das Modul M1 stellt die minimal erforderlichen PROFIBUS-Daten bereit.

Die maximale Erkennungsrate von 100Hz ist bei Einstellung dieses Moduls gewährleistet.

Scannummer

Die Scannummer wird als PROFIBUS Master-Input bereitgestellt. Es handelt sich dabei um einen 16-Bit Wert (Bytes **wScanNum**, HighByte und LowByte).

Bei jeder Messung wird die Scannummer um 1 erhöht. Im **FreeRunning** Mode erhöht sich die Scannummer auch bei nicht explizit aktiviertem Sensor. Im getriggerten Mode wird die Scannummer mit jedem (erfolgreichen) Trigger erhöht.

Wird die Inspektionsaufgabe gewechselt, werden die PROFIBUS IO-Daten des Sensors eingefroren und die Scannummer ändert sich nicht.

Π

Hinweis!

Es wird empfohlen, die Scannummer in der Applikation zu überwachen, um festzustellen, ob es sich auch tatsächlich um neue Daten handelt.

Sensorinfo

Das Byte **uSensorInfo** beinhaltet im High-Nibble (Bit 7 ... 4) die Zustände der internen (virtuellen) Schaltausgänge des Sensors **Out4** ... **Out1** und im Low-Nibble (Bit 3 ... 0) die im Sensor eingestellte Inspektionsaufgabe **IT_b3** ... **IT_b0**.

Bit	Bezeichnung	Bedeutung	
7	Out4	Zustand des (virtuellen) Schaltausgangs 4: 0 = inaktiv, 1 = aktiv	
6	Out3	Zustand des (virtuellen) Schaltausgangs 3: 0 = inaktiv, 1 = aktiv	
5	Out2	Zustand des (virtuellen) Schaltausgangs 2: 0 = inaktiv, 1 = aktiv	
4	Out1	Zustand des (virtuellen) Schaltausgangs 1: 0 = inaktiv, 1 = aktiv	
3	IT_b3		
2	IT_b2	Nummer der aktuell eingestellten Inspektionsaufgabe. Wertebereich 0 15	
1	IT_b1	Nummer der aktuen eingestenten hispektionsaufgabe. Wertebereich 0 15	
0	IT_b0		

Tabelle 11.3: Eingangsdaten-Byte **uSensorInfo**

Sensorstatus

Im Sensorstatus-Byte uSensorState sind folgende Informationen enthalten:

Bit	Bezeichnung	Bedeutung
7	ErrM	Fehlermodus, Sensor dauerhaft gestört
6	Cmd	Befehlsmodus: Der Sensor befindet sich im Befehlsmodus. Die Anfragen von der Steuerung werden nicht verarbeitet und die Messdaten sind eingefroren (erkennbar an der konstanten Scannummer).
5	Menu	Menümodus: Der Sensor wird per Display/Tastatur vom User bedient. Die Anfragen von der Steuerung werden nicht verarbeitet und die Messdaten sind eingefroren (erkennbar an der konstanten Scannummer).
4	Meas	Erkennungsmodus: Der Sensor befindet sich im Erkennungsmodus. Dies ist der normale Betriebszustand, bei dem die maximale Erkennungsrate erreicht wird.
3	ErrF	Fehler, Sensor dauerhaft gestört.
2	WarnF	Warnung, Sensor kurzfristig gestört.
1	activ	Sensor aktiviert.
0	connect	Sensor über Ethernet verbunden.

Tabelle 11.4: Eingangsdaten-Byte **uSensorState**

11.6.2 Modul M2

Die maximale Erkennungsrate von 100Hz ist bei Einstellung dieses Moduls gewährleistet.

→ Hinweis!

Das Modul **M2** enthält die Eingangsdaten von Modul **M1**. In diesem Abschnitt sind lediglich die zusätzlichen Eingangsdaten beschrieben.

Auswerteergebnisse der Auswertefenster

Die binären Auswerteergebnisse der 16 Auswertefenster (Analysis Windows) AW1 ... AW16 (siehe Kapitel 9.4.2 "Bereich Analysis Functions") werden als PROFIBUS Master-Input bereitgestellt. Es handelt sich dabei um einen 16-Bit Wert (Bytes wResultAWs HighByte und wResultAWs LowByte).

Byte	Bit	Bezeichnung	Bedeutung
(e)	7	AW16	Auswerteergebnis von Auswertefenster 16: 1 = 0n; 0 = 0ff
Byt	6	AW15	Auswerteergebnis von Auswertefenster 15: 1 = 0n; 0 = 0ff
lgi-	5	AW14	Auswerteergebnis von Auswertefenster 14: 1 = 0n; 0 = 0ff
Ŧ.	4	AW13	Auswerteergebnis von Auswertefenster 13: 1 = 0n; 0 = 0ff
I ≸	3	AW12	Auswerteergebnis von Auswertefenster 12: 1 = 0n; 0 = 0ff
wResultAWs (High-Byte)	2	AW11	Auswerteergebnis von Auswertefenster 11: 1 = 0n; 0 = 0ff
Res	1	AW10	Auswerteergebnis von Auswertefenster 10: 1 = 0n; 0 = 0ff
>	0	AW9	Auswerteergebnis von Auswertefenster 9: $1 = 0n$; $0 = 0$ ff
(e)	7	AW8	Auswerteergebnis von Auswertefenster 8: 1 = On; 0 = Off
Byt	6	AW7	Auswerteergebnis von Auswertefenster 7: 1 = On; 0 = Off
Š	5	AW6	Auswerteergebnis von Auswertefenster 6: $1 = 0$ n; $0 = 0$ ff
	4	AW5	Auswerteergebnis von Auswertefenster 5: $1 = 0$ n; $0 = 0$ ff
¥	3	AW4	Auswerteergebnis von Auswertefenster 4: 1 = On; 0 = Off
불	2	AW3	Auswerteergebnis von Auswertefenster 3: $1 = 0$ n; $0 = 0$ ff
wResultAWs (Low-Byte)	1	AW2	Auswerteergebnis von Auswertefenster 2: 1 = 0n; 0 = 0ff
>	0	AW1	Auswerteergebnis von Auswertefenster 1: 1 = On; 0 = Off

Tabelle 11.5: Eingangsdaten-Bytes **wResultAWs** (High- und Low-Byte)

Die SPS erhält so direkten Zugriff auf die Auswerteergebnisse aller AWs und kann diese in eigene logische Verknüpfungen einbeziehen.

Die Beschränkungen bei den logischen Verknüpfungen im LRS 36/6 auf 4 Schaltausgänge können so umgangen werden und die Steuerung kann sich selber weitere Schaltausgänge über eigene logische Verknüpfungen definieren.

11.6.3 Modul M3

Die maximale Erkennungsrate von 100Hz ist bei Einstellung dieses Moduls gewährleistet.

Hinweis!

Das Modul **M3** enthält die Eingangsdaten von Modul **M2**. In diesem Abschnitt sind lediglich die zusätzlichen Eingangsdaten beschrieben.

Anzahl Objektpunkte (Current Hits) im Auswertefenster 1

Dieser 16-Bit Wert (Bytes **wActObjPtsAW1**, HighByte und LowByte) gibt die Anzahl der erkannten Objektpunkte (Current Hits) im Auswertefenster 1 (AW1) an. Die SPS kann damit eine eigene Auswertung innerhalb des Auswertefensters machen, ohne die im Sensor parametrierten Ein- und Ausschaltschwellen (HitsOn/HitsOff) zu berücksichtigen (siehe Kapitel 9.4.2 "Bereich Analysis Functions").

Anzahl Objektpunkte (Current Hits) im Auswertefenster 2

: : : : : :

Anzahl Objektpunkte (Current Hits) im Auswertefenster 5

Beschreibung siehe "Anzahl Objektpunkte (Current Hits) im Auswertefenster 1".

Hinweis!

Durch Auswertung der Anzahl der Objektpunkte (Current Hits) in einem Auswertefenster lässt sich bei konstanter Distanz eine qualitative Bestimmung der Objektgröße/Ausdehnung in x-Richtung realisieren.

11.6.4 Modul M4

Mit der Einstellung dieses Moduls sinkt die maximale Erkennungsrate auf weniger als 100Hz, je nach Buslast.

Das Modul **M4** enthält die Eingangsdaten von Modul **M3**. In diesem Abschnitt sind lediglich die zusätzlichen Eingangsdaten beschrieben.

	: : : : :
	Anzahl Objektpunkte (Current Hits) im Auswertefenster 9 Beschreibung siehe Anzahl Objektpunkte (Current Hits) im Auswertefenster 1 in Kapitel 11.6.3.
\bigcap_{1}°	Hinweis! Durch Auswertung der Anzahl der Objektpunkte (Current Hits) in einem Auswertefenster läss sich bei konstanter Distanz eine qualitative Bestimmung der Objektgröße/Ausdehnung in x Richtung realisieren.
11.6.5	Modul M5
	Mit der Einstellung dieses Moduls sinkt die maximale Erkennungsrate auf weniger als 100 Hz , je nach Buslast.
\bigcap_{\prod}	Hinweis! Das Modul M5 enthält die Eingangsdaten von Modul M4. In diesem Abschnitt sind lediglich die zusätzlichen Eingangsdaten beschrieben.
	Anzahl Objektpunkte (Current Hits) im Auswertefenster 10
	Anzahl Objektpunkte (Current Hits) im Auswertefenster 16 Beschreibung siehe Anzahl Objektpunkte (Current Hits) im Auswertefenster 1 in Kapitel 11.6.3.
0	Hinweis! Durch Auswertung der Anzahl der Objektpunkte (Current Hits) in einem Auswertefenster läss sich bei konstanter Distanz eine qualitative Bestimmung der Objektgröße/Ausdehnung in x Richtung realisieren.

Anzahl Objektpunkte (Current Hits) im Auswertefenster 6

12 Diagnose und Fehlerbehebung

12.1 Allgemeine Fehlerursachen

Fehler	mögliche Fehlerursache	Maßnahmen		
Steuerung empfängt keine	Ethernet-Verbindung	Verbindung mit LRSsoft prüfen.		
Messdaten	unterbrochen	Siehe "Inbetriebnahme" auf Seite 54.		
	Steuerung nicht mit dem	Befehl "To sensor" verwenden.		
	Sensor verbunden			
Objektkonturen nicht	Abschattung	Siehe "Abschattung" auf Seite 15.		
erkannt	Verschmutzung der	Optikabdeckungen reinigen,		
	Optikabdeckungen	siehe "Reinigen" auf Seite 106.		
	Fremdlicht	Fremdlicht vermeiden, Sensor abschirmen, siehe		
		"Wahl des Montageortes" auf Seite 32.		
		Erfassungsbereich mit LPSsoft einschränken, siehe		
		"Field of View" auf Seite 67.		
	Reflexionen	Reflexionen vermeiden.		
		Erfassungsbereich mit LPSsoft einschränken, siehe		
		"Field of View" auf Seite 67.		
	Unpassende Belichtungs-	Belichtungsdauer an die Reflexionseigenschaften der		
	einstellung	zu erkennenden Objekte anpassen. Siehe "Light		
		Exposure" auf Seite 66.		
	Objekt nicht im Messbe-	Visuelle Beurteilung mit LRSsoft,		
	reich	Arbeitsabstand/Position des Sensors zum Objekt ver-		
		ringern. Siehe "Bereich Task Parameters" auf		
		Seite 65.		
	Erfassungsbereich zu	Erfassungsbereich mit LRSsoft parametrieren.		
	klein gewählt	Siehe "Field of View" auf Seite 67.		
	Falscher Inspection Task	Inspection Task mit LRSsoft umstellen oder Ethernet		
	ausgewählt	Befehl "Set Actual Inspetion Task" anwenden. Siehe		
		"Set Actual Inspection Task" auf Seite 84.		
Sensor reagiert nicht auf	Sensor im Mess-/Menü-	Menüansicht auf OLED-Diplay verlassen.		
Befehle	modus	Sensor mit Steuerung verbinden. Ggf. Sensor in		
		Befehlsmodus versetzen.		
	Sensor nicht verbunden	Einstellungen der Ethernet Schnittstelle überprüfen.		
		Sensor mit Steuerung verbinden		
	Sensor nicht aktiviert	Sensor über PIN 2 auf X1 oder über PROFIBUS akti-		
		vieren.		
		Aktivierungseingang ausschalten. Siehe "Activation"		
		auf Seite 66.		

Tabelle 12.1: Allgemeine Fehlerursachen

Fehler	mögliche Fehlerursache	Maßnahmen
Keine Laserlinie	Sensor nicht aktiviert	Sensor über PIN 2 auf X1 oder über PROFIBUS akti-
		vieren.
	Laser wurde im Befehls-	Laser einschalten.
	modus mit dem Befehl	Siehe "Set Laser Gate" auf Seite 84.
	"Set Laser Gate" deakti-	
	viert	
	Sensor im Triggermodus	Einzelmessung durch Ethernet Trigger oder über
		PIN 5 auf X1 oder über PROFIBUS aktivieren.
Sensor reagiert nicht auf	Sensor im Befehlsmodus	Befehlsmodus verlassen über Befehl "Exit Command
Trigger		Mode"
	Triggerung zu schnell	Triggerate verkürzen. Der kürzestmögliche Abstand
		zwischen zwei aufeinanderfolgenden Triggersignalen
		beträgt 10 ms. Siehe "Triggerung - Free Running" auf
		Seite 21.
Sensor lässt sich über Akti-	Activation Input steht auf	Mit LRSsoft den Aktivierungseingang auf "Regard"
vierungseingang nicht	"Disregard"	parametrieren. Siehe "Activation" auf Seite 66.
deaktivieren		

Tabelle 12.1: Allgemeine Fehlerursachen

12.2 Schnittstellenfehler

Fehler	mögliche Fehlerursache	Maßnahmen
Keine Verbindung	Verdrahtungsfehler	Ethernet-Leitung prüfen.
Gelbe LED leuchtet nicht		
Keine Verbindung	DHCP im Netzwerk akti-	Alternative IP-Adresse zuweisen, siehe "Verbindung
Gelbe LED leuchtet	viert, keine feste oder	zum PC herstellen" auf Seite 52.
	alternative Netzwerkad-	
	resse zugewiesen.	
	Falsche IP-Adresse/Sub-	IP-Adresse/Subnetzmaske kontrollieren, IP-Adresse
	netzmaske am LRS ein-	von LRS und Steuerung müssen unterschiedlich
	gestellt.	sein, Subnetzmaske jedoch gleich, siehe
		Tabelle 8.1 "Adressvergabe im Ethernet" auf
		Seite 52.
	Falsche Port-Zuweisung	Mit Ping-Befehl prüfen, ob der Sensor antwortet.
	an LRS / Steuerung	Wenn ja, Port-Zuweisung an LRS und Steuerung prü-
		fen. Die eingestellten Ports müssen übereinstimmen.
	Firewall blockiert Ports	Firewall vorübergehend ausschalten und Verbin-
		dungstest wiederholen.

Tabelle 12.2: Schnittstellenfehler

12.3 Fehlermeldungen im Display (ab Firmware V01.40)

Im Display kann maximal 1 Fehler angezeigt werden. Bei einem Fehler, wird in der ersten Displayzeile eine Fehlermeldung und in der zweiten Displayzeile hierzu eine Klartextnachricht angezeigt.

Fehler	mögliche Fehlerursache	Maßnahmen
Error: 001xx, 005xx, 006xx	EMV-Störung	Verkabelung überprüfen, Sensor schirmen.
Error: 00302, 00309,	Umgebungsstemperatur	Einbauraum mit geringerer Temperatur wählen.
00402, 00403	zu hoch	
Error: 01000	Versorgungsspannung	Versorgungsspannung überprüfen.
	beim Einschalten zu hoch	
Error: 01001	Versorgungsspannung	Versorgungsspannung überprüfen.
	beim Einschalten zu nied-	
	rig	
Output Overload	Kurzschluss an Ausgang,	Verkabelung überprüfen, Sensor schirmen.
	EMV-Störung	

Tabelle 12.3: Fehlermeldungen im Display

Hinweis!

Treten abweichende Fehlermeldung auf, wenden Sie sich an Ihr Leuze Vertriebs- oder Servicebüro.

Bitte trennen Sie den Sensor von der Versorgungsspannung und beseitigen Sie die Fehlerursache.

Tritt an einem Ausgang ein Kurzschluss auf, so erfolgt folgende Anzeige.

Bitte beseitigen Sie die Fehlerursache.

Hinweis!

Durch Quittierung des Fehlers mit der "Enter"-Taste der Folientastatur wird ein Software Reset des Sensors durchgeführt. Während dieser Zeit ist der Sensor nicht bereit – sichtbar an:- X1-Pin4: Out Ready (Betriebsbereit) und Ethernet Protokoll: "Status".

Der Sensor startet automatisch und ist nachfolgend wieder betriebsbereit. Eine Ethernet-Verbindung muss wieder neu aufgebaut werden.

Hinweis!

Bitte benutzen Sie das Kapitel 12 als Kopiervorlage im Servicefall.

Kreuzen Sie bitte in der Spalte "Maßnahmen" die Punkte an, die Sie bereits überprüft haben, füllen Sie das nachstehende Adressfeld aus und faxen Sie die Seiten zusammen mit Ihrem Serviceauftrag an die unten genannte Fax-Nummer oder senden Sie die Informationen per e-mail.

Kundendaten (bitte ausfüllen)

Gerätetyp :	
Seriennummer :	
Firmware Version :	
Parametriersoftware Version :	
Anzeige auf OLED-Display :	
Firma :	
Ansprechpartner / Abteilung :	
e-mail Adresse:	
Telefon (Durchwahl) :	
Fax :	
Strasse / Nr :	
PLZ / Ort :	
Land :	

Halten Sie für den Service folgende Informationen bereit:

- Datei: LRSsoft.log (befindet sich im Installationsverzeichnis von LRSsoft)
- Parameterdatei *.1rs, ggf. Screenshots, Bilder, etc.

Leuze Service Fax-Nummer: +49 7021 573 - 199

Leuze Service e-mail der Produkteinheit LOS: service.erkennen@leuze.de

13 Wartung

13.1 Allgemeine Wartungshinweise

Der Lichtschnittsensor bedarf im Normalfall keiner Wartung durch den Betreiber.

Reinigen

Bei Staubbeschlag reinigen Sie den LRS mit einem weichen Tuch und bei Bedarf mit Reinigungsmittel (handelsüblicher Glasreiniger).

→ Hinweis!

Verwenden Sie zur Reinigung der Lichtschnittsensoren keine aggressiven Reinigungsmittel wie Verdünner oder Aceton. Das Gehäusefenster kann dadurch eingetrübt werden.

13.2 Reparatur, Instandhaltung

Reparaturen an den Geräten dürfen nur durch den Hersteller erfolgen.

Wenden Sie sich für Reparaturen an Ihr Leuze Vertriebs- oder Servicebüro. Die Adressen entnehmen Sie bitte der Umschlaginnen-/rückseite.

Hinweis!

Bitte versehen Sie Lichtschnittsensoren, die zu Reparaturzwecken an Leuze electronic zurückgeschickt werden, mit einer möglichst genauen Fehlerbeschreibung.

13.3 Abbauen, Verpacken, Entsorgen

Wiederverpacken

Für eine spätere Wiederverwendung ist das Gerät geschützt zu verpacken.

Elektronikschrott ist Sondermüll! Beachten Sie die örtlich geltenden Vorschriften zu dessen Entsorgung.

14 Technische Daten

14.1 Allgemeine technische Daten

Optische Daten		
Erfassungsbereich 1)	200 800mm (Richtung z)	
Lichtquelle	Laser	
Wellenlänge	658nm (sichtbares Rotlicht)	
Max. Ausgangsleistung	< 8mW	
Pulsdauer	3ms	
Laserlinie	600 x 3mm bei 800mm	
Objekterkennung		
Mindestobjektgröße in Richtung x 2)	2 3mm	
Mindestobjektgröße in Richtung z ²⁾	2 6mm	
Zeitverhalten	·	
Ansprechzeit	≥ 10ms (parametrierbar)	
Bereitschaftsverzögerung	ca. 1,5s	
Elektrische Daten		
Betriebsspannung U _B 3)	18 30VDC (inkl. Restwelligkeit)	
Restwelligkeit	≤ 15% von U _B	
Leerlaufstrom	≤ 200 mA	
Ethernet-Schnittstelle	UDP	
Schaltausgänge	1 (Betriebsbereit) / 100mA / Push-Pull auf X1 ⁴⁾	
	1 (Kaskadierung) / 100mA / Push-Pull auf X1 4)	
	4 / 100mA / Push-Pull auf X3 4) 5) (nur LRS 36/6	
	und LRS 36/6.10)	
Eingänge	1 (Trigger) auf X1	
	1 (Aktivierung) auf X1	
	3 (Auswahl Inspektionsaufgabe) auf X3 6)	
	(nur LRS 36/6 und LRS 36/6.10)	
Signalspannung high/low	≥ (U _B -2V)/≤ 2V	
PROFIBUS (nur LRS 36/PB)		
Schnittstellentyp	1xRS 485 auf X4 (nur LRS 36/PB)	
Protokolle	PROFIBUS DP/DPV1 Slave	
Baudrate	9,6kBaud 6stMBaud	
Anzeigen		
LED grün Dauerlicht	betriebsbereit	
aus	3	
LED gelb Dauerlicht	3	
blinkend	3 3 3	
aus	keine Ethernetverbindung vorhanden	

Mechanische Daten	
Gehäuse	Aluminiumrahmen mit Kunststoffdeckel
Optikabdeckung	Glas
Gewicht	620g
Anschlussart	M12-Rundsteckverbindung
Umgebungsdaten	
Umgebungstemperatur	-30°C +50°C/-30°C +70°C
(Betrieb/Lager)	
Schutzbeschaltung 7)	1, 2, 3
VDE-Schutzklasse	III, Schutzkleinspannung
Schutzart	IP 67
Laserklasse	2M (nach EN 60825-1 und 21 CFR 1040.10 mit
	Laser Notice No. 50)
Gültiges Normenwerk	IEC/EN 60947-5-2, UL 508

- 1) Remissionsgrad 6% ... 90%, gesamter Erfassungsbereich, bei 20°C nach 30min. Aufwärmzeit, mittlerer Bereich $\rm U_B$
- Minimalwert, abhängig von Messabstand und Objekt, Erprobung unter Applikationsbedingungen erforderlich
- 3) Bei UL-Applikationen: nur für die Benutzung in "Class 2"-Stromkreisen nach NEC
- 4) Die Push-Pull (Gegentakt) Schaltausgänge dürfen nicht parallel geschaltet werden
- 5) Anzahl Erkennungsfelder: bis zu 16 mit logischer Verknüpfungsmöglichkeit
- 6) Anzahl Inspektionsaufgaben: bis zu 16 (davon 8 über Eingänge aktivierbar)
- 1=Transientenschutz, 2=Verpolschutz, 3=Kurzschluss-Schutz für alle Ausgänge, externe Schutzbeschaltung für induktive Lasten erforderlich

14.2 Typischer Erfassungsbereich

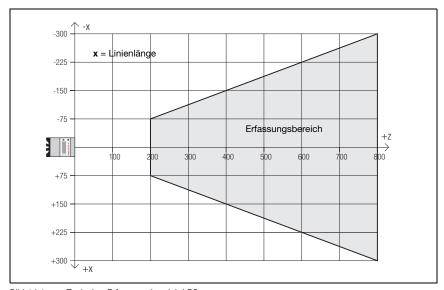


Bild 14.1: Typischer Erfassungsbereich LRS

14.3 Maßzeichnung

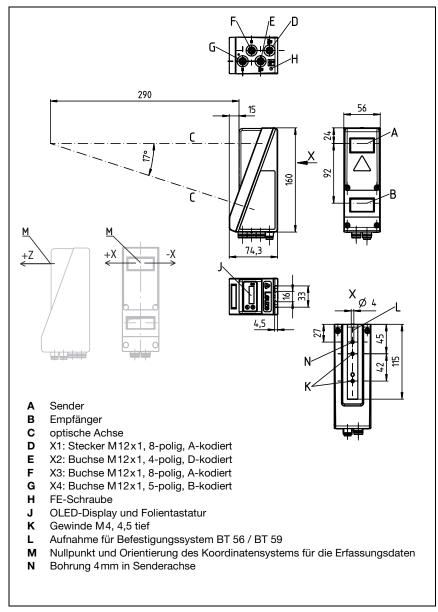


Bild 14.2: Maßzeichnung LRS

15 Typenübersicht und Zubehör

15.1 Typenübersicht

15.1.1 LPS

Typenbezeichnung	Beschreibung	Artikelnummer
LPS 36/EN	Linienprofilsensor zur Profilgenerierung, Messbereich 200 800mm, Linienlänge 600mm mit Ethernetschnittstelle, Inkrementalgeberanschluss	50111324
LPS 36	Linienprofilsensor zur Profilgenerierung, Messbereich 200 800mm, Linienlänge 600mm mit Ethernetschnittstelle	50111325
LPS 36 HI/EN	Linienprofilsensor zur Profilgenerierung, Messbereich 200 600 mm, Linienlänge 140 mm mit Ethernetschnittstelle, Inkrementalgeberanschluss	50111334

Tabelle 15.1: Typenübersicht LPS

15.1.2 LRS

Typenbezeichnung	Beschreibung	Artikelnummer
LRS 36/6	Linienprofilsensor zur Produkterkennung (auch mehrspurig),	50111330
	Erfassungsbereich 200 800 mm, Linienlänge 600 mm, Ethernetschnittstelle,	
	4 Schaltausgänge für Erfassungsinformationen,	
	3 Schalteingänge zur Auswahl der Inspektionsaufgabe	
LRS 36/6.10	Linienprofilsensor zur Produkterkennung (auch mehrspurig),	50115418
	Erfassungsbereich 200 800 mm, Linienlänge 600 mm, Ethernetschnittstelle,	
	4 Schaltausgänge für Erfassungsinformationen,	
	3 Schalteingänge zur Auswahl der Inspektionsaufgabe,	
	Ausführung mit Kunststoffscheibe	
LRS 36/PB	Linienprofilsensor zur Produkterkennung (auch mehrspurig),	50111332
	Erfassungsbereich 200 800 mm, Linienlänge 600 mm, Ethernetschnittstelle,	
	PROFIBUS DP	

Tabelle 15.2: Typenübersicht LRS

15.1.3 LES

Typenbezeichnung	Beschreibung	Artikelnummer
LES 36/VC	Linienprofilsensor zur Kantenerkennung und Objektvermessung (auch mehrspurig), Erfassungsbereich 200 800mm, Linienlänge 600mm, Ethernetschnittstelle, Analoger Strom- oder Spannungsausgang	50111326
LES 36/PB	Linienprofilsensor zur Produkterkennung (auch mehrspurig), Erfassungsbereich 200 800mm, Linienlänge 600mm, Ethernetschnittstelle, PROFIBUS DP	50111327

Tabelle 15.3: Typenübersicht LES

Typenbezeichnung	Beschreibung	Artikelnummer
LES 36/VC6	Linienprofilsensor zur Kantenerkennung und Objektvermessung (auch mehrspurig), Erfassungsbereich 200 800 mm, Linienlänge 600 mm, Ethernetschnittstelle, Analoger Strom- oder Spannungsausgang, 4 Schaltausgänge für Erfassungsinformationen, 3 Schalteingänge zur Auswahl der Inspektionsaufgabe	50111333
LES 36HI/VC6	Linienprofilsensor zur Kantenerkennung und Objektvermessung (auch mehrspurig), Erfassungsbereich 200 600 mm, Linienlänge 140 mm, Ethernetschnittstelle, Analoger Strom- oder Spannungsausgang 4 Schaltausgänge für Erfassungsinformationen, 3 Schalteingänge zur Auswahl der Inspektionsaufgabe	50111329

Tabelle 15.3: Typenübersicht LES

15.2 Zubehör

15.2.1 Befestigung

Befestigungsteile

Typenbezeichnung	Beschreibung	Artikelnummer
BT 56	Befestigungsteil mit Schwalbenschwanz für Rundstange	500 27375
BT 59	Befestigungsteil mit Schwalbenschwanz für ITEM-Profil	50111224

Tabelle 15.4: Befestigungsteile für den LRS

15.2.2 Zubehör vorkonfektionierte Leitungen zur Spannungsversorgung X1

Kontaktbelegung X1-Anschlussleitung

X1-Anschlussleitung (8-pol. Buchse, A-kodiert)					
X1	Pin	Name	Aderfarbe		
InAct	1	VIN	ws		
2 GND	2	InAct	br		
8 3	3	GND	gn		
VIN 1 (0 0 0)4 OutReady	4	OutReady	ge		
70005	5	InTrig	gr		
6 InTrig	6	OutCas	rs		
OutCas	7	Nicht verbinden!	bl		
M12-Buchse (A-kodiert)	8	Nicht verbinden!	rt		

Tabelle 15.5: Leitungsbelegung K-D M12A-8P...

Bestellbezeichnungen der Leitungen zur Spannungsversorgung

Typenbezeichnung	Beschreibung	Artikelnummer	
M12-Buchse für X1, axiale	M12-Buchse für X1, axialer Leitungsabgang, offenes Leitungsende		
K-D M12A-8P-2m-PUR	Leitungslänge 2m	50104591	
K-D M12A-8P-5m-PUR	Leitungslänge 5 m	50104590	
K-D M12A-8P-10m-PUR	Leitungslänge 10 m	50106882	
CB-M12-15000E-8G	Leitungslänge 15 m	678062	
CB-M12-25000E-8G	Leitungslänge 25 m	678063	
CB-M12-50000E-8G	Leitungslänge 50 m	678064	

Tabelle 15.6: X1-Leitungen für den LRS

15.2.3 Zubehör für die Ethernet-Schnittstelle X2

Vorkonfektionierte Leitungen mit M12-Stecker/offenem Leitungsende

M12-Ethernet-Anschlussleitungen (4 pol. Stecker, D-kodiert, offenes Leitungsende)				
X2	Name	Pin (M12)	Aderfarbe	
Rx+	Tx+	1	ge	
2	Rx+	2	WS	
	Tx-	3	or	
Tx -(3 (0 0) 1)Tx+	Rx-	4	bl	
	SH	Schirmung	-	
SH Ax -		(Gewinde)		
M12-Stecker (D-kodiert)				

Tabelle 15.7: Leitungsbelegung KB ET-...-SA

Typenbezeichnung	Beschreibung	Artikelnummer	
M12-Stecker für X2, axialer Leitungsabgang, offenes Leitungsende			
KB ET - 2000 - SA	Leitungslänge 2 m	50106739	
KB ET - 5000 - SA	Leitungslänge 5 m	50106740	
KB ET - 10000 - SA	Leitungslänge 10 m	50106741	
KB ET - 15000 - SA	Leitungslänge 15 m	50106742	
KB ET - 30000 - SA	Leitungslänge 30 m	50106746	

Tabelle 15.8: Ethernet-Anschlussleitungen M12-Stecker/offenes Leitungsende

M12-Ethernet-Anschlussleitungen (4 pol. Stecker, D-kodiert, M12 auf RJ-45)				
X2	Name	Pin (M12)	Aderfarbe	Pin (RJ-45)
Rx+	Tx+	1	ge	1
2	Rx+	2	WS	3
	Tx-	3	or	2
Tx -(3 (0 0) 1)Tx+	Rx-	4	bl	6
SH 4 Rx -	SH	Schirmung (Gewinde)	-	
M12-Stecker (D-kodiert)				

Vorkonfektionierte Leitungen mit M12-Stecker/RJ-45-Stecker

Tabelle 15.9: Leitungsbelegung KB ET-...-SA-RJ45

Typenbezeichnung	Beschreibung	Artikelnummer
M12-Stecker für X2 auf RJ-45 Stecker		
KB ET - 2000 - SA-RJ45	Leitungslänge 2m	50109880
KB ET - 5000 - SA-RJ45	Leitungslänge 5 m	50109881
KB ET - 10000 - SA-RJ45	Leitungslänge 10 m	50109882
KB ET - 15000 - SA-RJ45	Leitungslänge 15 m	50109883
KB ET - 30000 - SA-RJ45	Leitungslänge 30 m	50109886

Tabelle 15.10: Ethernet-Anschlussleitungen M12-Stecker/RJ-45

Vorkonfektionierte Leitungen mit M12-Stecker/M12-Stecker

M12-Ethernet-Anschlussleitungen (4 pol. Stecker, D-kodiert, beidseitig)				
X2	Name	Pin (M12)	Aderfarbe	Pin (M12)
Rx+	Tx+	1	ge	1
2	Rx+	2	WS	2
	Tx-	3	or	3
Tx -(3 (0 0) 1) Tx+	Rx-	4	bl	4
	SH	Schirmung	-	Schirmung
SH 4		(Gewinde)		(Gewinde)
Rx -				
M12-Stecker (D-kodiert)				

Tabelle 15.11: Leitungsbelegung KB ET-...-SSA

Typenbezeichnung	Beschreibung	Artikelnummer
M12-Stecker + M12 Stecker für X2		
KB ET - 2000 - SSA	Leitungslänge 2m	50106899
KB ET - 5000 - SSA	Leitungslänge 5 m	50106900
KB ET - 10000 - SSA	Leitungslänge 10 m	50106901
KB ET - 15000 - SSA	Leitungslänge 15 m	50106902
KB ET - 30000 - SSA	Leitungslänge 30 m	50106905

Tabelle 15.12: Ethernet-Anschlussleitungen M12-Stecker/M12-Stecker

Steckverbinder

Typenbezeichnung	Beschreibung	Artikelnummer
D-ET1	RJ45 Stecker zum selbstkonfektionieren	50108991
KDS ET M12 / RJ 45 W - 4P	Umsetzer von M12 D-kodiert auf RJ 45 Buchse	50109832

Tabelle 15.13: Steckverbinder für den LRS

15.2.4 Zubehör vorkonfektionierte Leitungen für X3 (nur LRS 36/6)

Kontaktbelegung X3-Anschlussleitungen

X3 (8-pol. Stecker, A-kodiert)				
X3	Pin	Name	Aderfarbe	
Out3	1	Out4	WS	
GND 2 InSel1	2	Out3	br	
3000	3	GND	gn	
Out2 (4 (o o o) 1) Out4	4	Out2	ge	
5007	5	Out1	gr	
Out1 6 InSel2	6	InSel3	rs	
InSel3 M12-Stecker	7	InSel2	bl	
(A-kodiert)	8	InSel1	rt	

Tabelle 15.14: Leitungsbelegung KB M12/8-...-SA

Bestellbezeichnungen der Anschlussleitungen für X3

Typenbezeichnung	Beschreibung Artikelnı	
M12-Stecker für X3, axialer Leitungsabgang, offenes Leitungsende, bis einschließlich 10m geschirmt		
KB M12/8-2000-SA	Leitungslänge 2 m	50110179
KB M12/8-5000-SA	Leitungslänge 5 m	50110180
KB M12/8-10000-SA	Leitungslänge 10 m	50110181

Tabelle 15.15: X3-Leitungen für den LRS 36/6

15.2.5 Anschlusszubehör / vorkonfektionierte Leitungen für X4 (nur LRS 36/PB) Kontaktbelegung X4-Anschlussleitungen

X4 (5-pol. Stecker, B-kodiert)				
X4	Pin	Name	Bemerkung	
Α	1	N.C.	_	
2	2	Α	Empfangs-/Sendedaten	
			RxD/TxD-N, grün	
N.C. 3 (0_0 0)1 N.C.	3	N.C.	-	
N.C. 3 (0,0 0)1 N.C.	4	В	Empfangs-/Sendedaten	
N.C. 4			RxD/TxD-P, rot	
В	5	N.C.	_	
M12-Stecker (B-kodiert) X4 A 2 VP (1 0 0 0 0 3 DGND	Gewinde	FE	Funktionserde (Gehäuse)	
4 FE B M12-Buchse (B-kodiert)				

Tabelle 15.16: Anschlussbelegung X4

Bild 15.1: Leitungsaufbau PROFIBUS-Anschlusskabel

Bestellbezeichnungen des Anschlusszubehörs für X4

Typenbezeichnung	chnung Beschreibung Artikelnummer		
Terminierungsstecker zur Busterminierung PROFIBUS			
TS 02-4-SA	M12 Terminierungswiderstand für PROFIBUS	50038539	
PROFIBUS T-Stück			
KDS BUS OUT M12-T-5P	M12 T-Stück für BUS OUT	50109834	

Tabelle 15.17: PROFIBUS Anschlusszubehör für den LRS 36/PB

Bestellbezeichnungen der PROFIBUS Anschlussleitungen für X4

Typenbezeichnung	Beschreibung	Artikelnummer
KB PB-2000-BA	M12-Buchse für BUS IN, axialer Leitungsabgang, offenes Leitungsende, Leitungslänge 2m	50104181
KB PB-5000-BA	M12-Buchse für BUS IN, axialer Leitungsabgang, offenes Leitungsende, Leitungslänge 5 m	50104180
KB PB-10000-BA	M12-Buchse für BUS IN, axialer Leitungsabgang, offenes Leitungsende, Leitungslänge 10 m	50104179
KB PB-2000-SA	M12-Stecker für BUS OUT, axialer Leitungsabgang, offenes Leitungsende, Leitungslänge 2m	50104188
KB PB-5000-SA	M12-Stecker für BUS OUT, axialer Leitungsabgang, offenes Leitungsende, Leitungslänge 5 m	50104187
KB PB-10000-SA	M12-Stecker für BUS OUT, axialer Leitungsabgang, offenes Leitungsende, Leitungslänge 10 m	
KB PB-2000-SBA	M12-Stecker + M12 Buchse für PR0FIBUS, axiale Leitungsabgänge, Leitungslänge 2m	50104097
KB PB-5000-SBA	M12-Stecker + M12 Buchse für PROFIBUS, axiale Leitungsabgänge, Leitungslänge 5 m	50104098
KB PB-10000-SBA	M12-Stecker + M12 Buchse für PROFIBUS, axiale Leitungsabgänge, Leitungslänge 10 m	50104099

Tabelle 15.18: PROFIBUS-Leitungen für den LRS 36/PB

15.2.6 Parametriersoftware

Typenbezeichnung	Beschreibung	Artikelnummer
CD TD LRS 36	CD mit Parametriersoftware für Lichtschnittsensoren	50111933

Tabelle 15.19: Parametriersoftware für den LRS

Hinweis!

Die aktuelle Version der Parametriersoftware finden Sie auf der Leuze Website.

16 Anhang

16.1 Glossar

Aktivierungseingang Eingang zum Ein-/Ausschalten des Laserstrahls. Keine exakte zeitliche Zuordnung

zwischen dem Anlegen/Wegnehmen des Signals und dem Ein-/Ausschaltzeit-

punkt.

Ausrichthilfe Visualisierung der Z-Koordinaten auf dem Display: Die Messwerte am linken Rand,

> in der Mitte und am rechten Rand der in X-Achse verlaufenden Laserlinie werden angezeigt. Dient dazu, die Lichtaustrittsfläche des Lasers parallel zum Förderband

auszurichten.

Auswertefenster

Rechteckiger Bereich des LRS, in dem Objekte erkannt werden. Ein Objekt wird (Analysis Window - AW) nur erkannt, wenn die Anzahl der Objekt-Messpunkte (current hits) größer gleich

der definierten Mindestanzahl von Messpunkten (Hits On) ist.

Auswertefenster

Rechteckiger Bereich, in dem die Anzahl der Objektpunkte im AW ausgewertet

(Analysis Window = AW) wird.

Das Ergebnis des AWs ist wahr (=1), wenn die Anzahl der Objektpunkte (Current

Hits) \geq der Hits On ist.

Das Ergebnis ist falsch (=0), wenn die Anzahl der Objektpunkte (Current Hits) ≤

der Hits Off ist.

Liegt die Anzahl der Objektpunkte (Current Hits) zwischen Hits On/OFF bleibt

des Ergebnis des AWs unverändert.

Auswertetiefe (Analysis Depth) Die Auswertetiefe bestimmt, nach wie vielen identischen Ergebnissen eine Ände-

rung der Schaltausgangsinformation erfolgt.

Durch die Auswertetiefe wird die erreichbare Ansprechzeit wie auch die Schaltsicherheit erhöht, z.B. erhöht sich die Standard-Ansprechzeit von 10 ms auf 100 ms

bei einer Auswertetiefe von 10.

Die Auswertetiefe kann für jeden Ausgang gesondert (abweichend) eingestellt

werden

Belichtung Zeitdauer für die das vom zu detektierenden Objekt reflektierte Licht auf den

CMOS-Empfänger trifft.

Datei Über die Bedienoberfläche am PC oder in der Steuerung abspeicherbarer oder auf-

rufbarer Aufgabensatz.

Display Anzeige-/Bedienfeld direkt am Sensor.

Erfassungsbereich (Field of view - FOV) Der Erfassungsbereich wird per Parametriersoftware definiert. Ohne Änderung des vordefinierten Bereichs verläuft dieser trapezförmig entsprechend den Angaben

zum maximalen Erfassungsbereich.

Wird zur Lösung der Applikationsaufgabe nicht der maximale Erfassungsbereich benötigt, so empfiehlt es sich diesen Bereich auf ein Minimum zu reduzieren.

Inspektionsaufgabe (Inspection Task)

Die Zusammenfassung aller Einstellungen, welche zur Lösung einer Applikation benötigt werden. Der LRS erlaubt das Arbeiten mit bis zu 16 einzelnen Inspektionsaufgaben, die jeweils bis zu 16 voneinander unabhängig parametrierbare und sich beliebig überlappende AWs enthalten können. Das bedeutet, dass jede Inspection Task eine komplette Sensorparametrierung beinhaltet: Bis zu 16 AW mit den zugehörigen Parametern, die Zuordnung der AW-Stati zu den Schaltausgängen, sowie Parameter wie Betriebsmodus, Aktivierungseingang, Kaskadierung, Erfassungsbereich (FOV) u.a. (siehe Kapitel 9.4 "Parametereinstellungen/Reiter Parameters").

Inspektionsaufgabe (Inspection task)

In der Parametriersoftware werden alle Einstellungen für die Applikation vorgenommen und in bis zu 16 Inspektionaufgaben (Inspection Tasks) abgespeichert. Durch Umschaltung der Inspektionsaufgabe lassen sich leicht Anpassungen für verschiedene Aufgabenstellungen vornehmen.

IP-Adresse Adresse im Netzwerk

Kaskadierung Getriggerte Reihenschaltung mehrerer Sensoren. Ein Mastersensor übernimmt die

Ansteuerung (Synchronisation) von bis zu 9 Slaves.

Kombinationstabelle (AW combination table)

Kombinationstabelle für die Auswertefenster

Bearbeitungsfenster in der Parametriersoftware LRSsoft, in dem die Aktivierung und Invertierung des Ausgangs, die Eingabe der Auswertetiefe und vor allem auch die Zuordnung der AW-Stati zu den binären Schaltausgängen OUT 1 bis Out 4 erfolgt. Hierbei ist pro Schaltausgang die logische UND-Verkünpfung mehrerer AW-Stati zu einem Zwischenergebnis und zusätzliche ODER-Verknüpfung von bis zu

4 Zwischenergebnissen möglich.

Messzeit Zeit zwischen zwei einzelnen Messungen.

Objekt Vom Sensor zu detektierendes Medium.

Objektpunkte (Hit Points) Anzahl der Bildpunkte eines Objekts, die sich im Auswertefenster (AW) befinden.

Offline LRSsoft wird ohne Sensor betrieben
Online LRSsoft wird mit Sensor betrieben

Profil Distanz- und Positionsverlauf einer oder mehrerer Messungen, Koordinaten des Profildaten ieweiligen X/Z-Wertes beim Durchlaufen des Laserstrahls auf der X-Achse.

2D-Ansicht Grafische Darstellung der X/Z-Koordinatenwerte eines Objektes im Erfassungsbe-

reich.

Trigger Auslösen eines oder mehrerer Messvorgänge mit exakter zeitlicher Zuordnung.

UDP Standardisiertes verbindungsloses Ethernet-Protokoll, Schicht 4.

16.2 Revision History / Feature list

16.2.1 Firmware

Firmware	Funktionsumfang	Bedeutung	erforderliche Parametriersoftware
ab V01.10	mehrere Inspection Tasks	bis zu 16 verschiedene Paramet-	LxSsoft V1.20 (LPSsoft V1.20,
	beim LPS 36	rierungen im Sensor speicherbar	LRSsoft V1.04)
		und per Befehl umschaltbar	
ab V01.20	optimiertes Encoder-	LPS 36/EN:	LxSsoft V1.20 (LPSsoft V1.20,
	Interface	auch einkanalige Encoder wer-	LRSsoft V1.10)
		den unterstützt, Encoderopti-	
		onen, neue Werkseinstellungen	
	Deaktivierung Datenaus-	LPS 36:	
	gabe X-Koordinaten	Reduktion der Datenmenge	
		(sinnvoll bei SPS-Auswertung)	
	Verlängerung der Über-	LPS 36:	
	tragungspause zwischen	Verbessertes Einlesen von	
	den Z- und X-Datenpake-	Datenpakten (sinnvoll bei SPS-	
	ten	Auswertung)	
	Ethernet Trigger	Reduktion der Datenmenge	
		(sinnvoll bei SPS-Auswertung),	
		Reduktion des Verkabelungsauf-	
		wands	
ab V01.25	Unterstützung von	zusätzliche Gerätevariante	LxSsoft V1.30 (LPSsoft V1.30,
	PROFIBUS	LRS 36/PB mit PROFIBUS	LRSsoft V1.20)
	Ethernet-Sensoraktivie-	Aktivierung nun über Ethernet	
	rung	möglich. Reduktion des Verka-	
		belungsaufwands	
	Werkseinstellung Aus-	LRS 36: Mit dieser Einstellung	
	wertetiefe 1 bei LRS 36	lässt sich die maximale Erken-	
		nungsrate erreichen.	
ab V01.30	Unterstützung von	zusätzliche Gerätevarianten	LxSsoft V1.40 (LPSsoft V1.33,
	LES 36	LES 36/PB mit PROFIBUS und	LESsoft V1.10, LRSsoft V1.20)
		LES 36/VC mit Analogausgang	
ab V01.40	Unterstützung von	zusätzliche Geratevariante	LXSsoft V2.00 (LPSsoft V2.00,
	LPS 36HI/EN	LPS 36HI/EN	LESsoft V1.10, LRSsoft V1.20)
	Neuer Befehl "Ethernet	Einschalten von Laser über	
	Activation"	Ethernet-Befehl	
	Neue Befehle "Get/Set	Parameteranpassung über	
	Single Inspection Task Parameter"	Ethernet-Befehle ohne LPSsoft	
	Anzeige von Fehlernum-	schnelle Erkennung der Fehler-	
	mern auf Display	ursache	
	Erweiterung der maxima-	maximale Leitungslänge 50 m	
	len Leitungslängen		

Tabelle 16.1: Revision History - Firmware

ab V01.41	Erweiterung der Bedien-	Auswahl der Inspection Tasks	LXSsoft V2.30 (LPSsoft V2.20,
	möglichkeit am Sensor	über das Bedienfeld am Sensor	LESsoft V2.30, LRSsoft V2.20)
	Unterstützung von	zusätzliche Geratevarianten	
	LES 36/VC6,	LES 36/VC6, LES 36HI/VC6	
	LES 36HI/VC6		
	Relative Fensterpositio-		
	nierung von LES		

Tabelle 16.1: Revision History - Firmware

16.2.2 Parametriersoftware

Version	Funktionsumfang	Bedeutung
LxSsoft V1.20 (LPSsoft V1.20,	Installer für LPSsoft und LRSsoft	einfache Installation,
LRSsoft V1.04)		"Accept"-Button bei LRSsoft
LPSsoft V1.30, LRSsoft V1.10	Triggerbetrieb wird von auch bei	LRS 36, LPS 36:
	laufender Parameteriersoftware	optimierte Diagnose im Triggerbetrieb
	unterstützt	
	Anzeige Encoder-Zählerstand	LRS 36/EN: Visualisierung Encoder
	Neu: Encoder Parameters	LRS 36/EN:
		Parmetrierung Encoder Interface:
		ein-/mehrkanalige Encoder, Überlauf-
		werte, Drehrichtungsumkehr
LxSsoft V1.30 (LPSsoft V1.30,	Unterstützung der zusätzlichen	Parametrierung von PROFIBUS Einstel-
LRSsoft V1.20)	Gerätevariante LRS 36/PB mit	lungen und LRS 36/PB
	PROFIBUS	
LxSsoft V1.40 (LPSsoft V1.33,	Unterstützung der zusätzlichen	Parametrierung von LES 36 Gerätevari-
LESsoft V1.10, LRSsoft V1.20)	Gerätevarianten LES 36/PB mit	anten
	PROFIBUS und LES 36/VC mit	
	Analogausgang	
LxSsoft V1.41 (LPSsoft V1.33,	Installer für Windows 7	Software läuft unter 32 und 64Bit Version
LESsoft V1.10, LRSsoft V1.20)		von Windows 7
LXSsoft V2.00 (LPSsoft V2.00,	Unterstützung der zusätzlichen	Parametrierung von LPS 36Hi/EN
LESsoft V1.10, LRSsoft V1.20)	Geratevariante LPS 36Hi/EN	
LXSsoft V2.30 (LPSsoft V2.20,	Import Inspection Task	Einstellungen einzelner Inspection Tasks
LESsoft V2.30, LRSsoft V2.20)		können aus einem gespeicherten LRS
		Projekt importiert werden
LXSsoft V2.31 (LPSsoft V2.31,	Dokumentationen aktualisiert	
LESsoft V2.31, LRSsoft V2.31)		

Tabelle 16.2: Revision History - Parametriersoftware

Index		F Fehlerbehebung 102	
Newsoniae		Fehlergrenzen 107	
Numerics		Fehlermeldung 61	
2D-Profildaten	14	Fehlerursachen 102	
A		Firewall 77	
Abschattung	15		
Aktivierung	21	G	
	40, 66	gegenseitige Beeinflussung 22	
Anschlussbelegung X1	40	GSD-Datei 92, 94	
Anschlussbelegung X2	41		
Anschlussbelegung X3	42, 43		
Anschlussbelegung X4	116	Inbetriebnahme 20, 54	
Anzeigen	107	Instandhaltung 106	
Aufwärmzeit	52	IP-Adresse 53	
Auslieferungszustand	51	ITEM-Profil 31	
Ausrichthilfe	33, 45		
Ausrichtung	32	K	
		Kaskadierungsausgang 41, 66	
В		Koordinatensystem 33	
Befehlsmodus	77		
Befestigungsnut	29	L	
Befestigungsteile	112	LAN-Verbindung 53	
Belichtungeinstellung	66	Laserabschattung 15, 16	
Belichtungsdauer	66	Laseraustrittsöffnung 12	
Bestimmungsgemäßer Gebrauch 10		Laserklasse 2M 11	
Blendung	20	Laserstrahlung 11, 32	
Biolidang		Leistungsmerkmale 18	
C		Leitungen für den Encoderanschluss 115	
•	41	Leitungen für den PROFIBUS Anschluss 116	
CAT 5 Leitung	41	Leitungen zur Spannungsversorgung 112	
_		Line Profile Sensor 20	
E	40		
Einsatzgebiete	10	M	
Elektrische Daten	107	Mechanische Daten 108	
Elektrischer Anschluss	34	Mechanischer Aufbau 20	
Empfängerabschattung	15, 16	Menü-Navigation 50	
Empfangsoptik Encoderzählerstand	14 79	Menüstruktur 47	
	106	Messbereich 109	
Entsorgen		Messdaten auswerten 73	
Entsorgung von Verpackungsmaterial Erfassungsbereich	67	Mindestobjektgröße 17	
Erkennungsmodus	77	Modul 94	
Ethernet-Leitungsbelegung	41	Montageort 32	
Ethernet-Schnittstelle	113		
Ethernet-Verbindung	62	0	
Linemet-verbindung	02	OLED-Display 44	
		Optische Daten 107	
		Optisone Daten 107	

Port 9008 52 Zeitverhalten 107	P		z	
Adressvergabe 93 Ausgänge 94 Ausgangsdaten 95 Eingänge 94 Eingangsdaten 96 GSD-Datei 92, 94 Messfrequenz 100 Messrate 101 Modul 94, 98 Parameter 94 Slave 92 R Reinigen 33, 106 Reparatur 10, 106 S Schirmung 36, 41 Schnittstellenausführung 35 Sicherheitsnorm 11 Stangenbefestigung 30 Steckerbelegung 34 Steckverbinder 115 Stromversorgung 40 Systemarforderungen 55 Systemarforderungen 55 Systemvariable 61 T Terminierung 116 Triaggereitpunkt 21 Typenschild 12, 28 Typenübersicht 108 Umgebungsvariable 61 W Wartung 106 Wartung 106 W Wartung 106	Port 9008	52	Zeitverhalten	107
Ausgänge 94 Ausgangsdaten 95 Eingänge 94 Eingangsdaten 96 GSD-Datei 92, 94 Messfrequenz 100 Messrate 101 Modul 94, 98 Parameter 94 Slave 92 R Reinigen 33, 106 Reparatur 10, 106 S Schirmung 36, 41 Schnittsellenausführung 35 Sicherheitsnorm 11 Stangenbefestigung 30 Steckerbelegung 34 Steckverbinder 115 Stromversorgung 40 Systemanforderungen 55 Systemvariable 61 T Terminierung 116 Triangulationsprinzip 14 Triggereitpunkt 21 Typenschild 12, 28 Typenübersicht 111 U U UDP 52 Umgebungsdaten 108 Umgebungsvariable 61 W Wartung 106	PROFIBUS	92		
Ausgangsdaten 95 Eingånge 94 Eingånge 94 Eingångsdaten 96 GSD-Datei 92, 94 Messfrequenz 100 Messrate 101 Modul 94, 98 Parameter 94 Slave 92 R Reinigen 33, 106 Reparatur 10, 106 S Schirmung 36, 41 Schnittstellenausführung 35 Sicherheitsnorm 11 Stangenbefestigung 30 Steckerbelegung 34 Steckerbelegung 34 Steckerbelegung 40 Systemvariable 61 T Terminierung 116 Triangulationsprinzip 14 Triagereingang 40, 66 Triggerzeitpunkt 21 Typenübersicht 111 U U UDP 52 Umgebungsdaten 108 Umgebungsdaten 108 Umgebungsvariable 61 W Wartung 106	Adressvergabe	93		
Eingänge 94 Eingangsdaten 96 GSD-Datei 92, 94 Messfrequenz 100 Messrate 101 Modul 94, 98 Parameter 94 Slave 92 R Reinigen 33, 106 Reparatur 10, 106 S Schirmung 36, 41 Schnittstellenausführung 35 Sicherheitsnorm 11 Stangenbefestigung 30 Steckerbelegung 34 Steckverbinder 115 Stromversorgung 40 Systemanforderungen 55 Systemvariable 61 T Terminierung 116 Triangulationsprinzip 14 Triggereingang 40, 66 Triggerzeitpunkt 21 Typenschild 12, 28 Typenübersicht 108 Umpebungsvariable 61 W Wartung 106	Ausgänge	94		
Eingangsdaten 96 GSD-Datei 92, 94 Messfrequenz 100 Messrate 101 Modul 94, 98 Parameter 94 Slave 92 R Reinigen 33, 106 Reparatur 10, 106 S S Schirmung 36, 41 Schnittstellenausführung 35 Sicherheitsnorm 11 Stangenbefestigung 30 Steckerbelegung 34 Steckevebinder 1115 Stromversorgung 40 Systemanforderungen 55 Systemvariable 61 T Terminierung 116 Triangulationsprinzip 14 Triggereingang 40, 66 Triggerzeitpunkt 21 Typenschild 12, 28 Typenübersicht 108 UUDP 52 Umgebungsdaten 108 Umgebungsdaten 108 Umgebungsdaten 108 Umgebungsvariable 61 W Wartung 106	Ausgangsdaten	95		
GSD-Datei 92, 94 Messfrequenz 100 Messrate 101 Modul 94, 98 Parameter 94 Slave 92 R Reinigen 33, 106 Reparatur 10, 106 S Schirmung 36, 41 Schnittstellenausführung 35 Sicherheitsnorm 11 Stangenbefestigung 30 Steckerbelegung 34 Steckerbinder 115 Stromversorgung 40 Systemanforderungen 55 Systemvariable 61 T Terminierung 116 Triangulationsprinzip 14 Triggereingang 40, 66 Triggerzeitpunkt 21 Typenschild 12, 28 Typenübersicht 111 U U UDP 52 Umgebungsdaten 108 Umgebungsvariable 61 W Wartung 106	Eingänge	94		
Messrate 100 Messrate 101 Modul 94, 98 Parameter 94 Slave 92 R Reinigen Reparatur 10, 106 S Schirmung Schirmung 35 Sicherheitsnorm 11 Stangenbefestigung 30 Steckerbelegung 34 Steckerbelegung 34 Steckerbelegung 40 Systemanforderungen 55 Systemvariable 61 T Terminierung 116 Triangulationsprinzip 14 Triggereingang 40, 66 Trygenschild 12, 28 Typenübersicht 111 U UDP UDP 52 Umgebungsdaten 108 Umgebungsvariable 61				
Messrate 101 Modul 94, 98 Parameter 94 Slave 92 R Reinigen Reparatur 10, 106 S Schirmung Schiritstellenausführung 35 Sicherheitsnorm 11 Stangenbefestigung 30 Steckerbelegung 34 Steckerbelegung 34 Steckerbinder 115 Stromversorgung 40 Systemanforderungen 55 Systemvariable 61 T Terminierung Triangulationsprinzip 14 Triggereingang 40, 66 Triggerzeitpunkt 21 Typenschild 12, 28 Typenübersicht 111 UDP 52 Umgebungsdaten 108 Umgebungsvariable 61 W Wartung				
Modul 94, 98 Parameter 94 Slave 92 R 8 Reinigen 33, 106 Reparatur 10, 106 S Schirmung Schirmung 36, 41 Schirmung 35 Sicherheitsnorm 11 Stangenbefestigung 30 Steckerbelegung 34 Steckerbelegung 34 Stromversorgung 40 Systemanforderungen 55 Systemvariable 61 T Terminierung 116 Triangulationsprinzip 14 Triggereingang 40, 66 Triggereitpunkt 21 Typenschild 12, 28 Typenübersicht 111 U UDP UDP 52 Umgebungsdaten 108 Umgebungsvariable 61				
Parameter Slave 94 Slave 92 R Reinigen 33, 106 Reparatur 10, 106 S Schirmung 36, 41 Schnittstellenausführung 35 Sicherheitsnorm 11 Stangenbefestigung 30 Steckerbelegung 34 Steckerbinder 115 Stromversorgung 40 Systemanforderungen 55 Systemvariable 61 T Terminierung 116 Triangulationsprinzip 14 Triggereingang 40, 66 Triggerzeitpunkt 21 Typenschild 12, 28 Typenübersicht 111 U UDP Umgebungsdaten 108 Umgebungsvariable 61 W Wartung				
Slave 92				
R Reinigen 33, 106 Reparatur 10, 106 S Schirmung 36, 41 Schirmung 35 Sicherheitsnorm 11 Stangenbefestigung 30 Steckerbelegung 34 Steckverbinder 115 Stromversorgung 40 Systemanforderungen 55 Systemvariable 61 T 116 Triangulationsprinzip 14 Triggereingang 40, 66 Triggerzeitpunkt 21 Typenschild 12, 28 Typenübersicht 111 U U UDP 52 Umgebungsdaten 108 Umgebungsvariable 61 W Wartung				
Reinigen 33, 106 Reparatur 10, 106 S S Schirmung 36, 41 Schnittstellenausführung 35 Sicherheitsnorm 11 Stangenbefestigung 30 Steckerbelegung 34 Steckverbinder 115 Stromversorgung 40 Systemanforderungen 55 Systemvariable 61 T Terminierung Triangulationsprinzip 14 Triggereingang 40, 66 Triggerzeitpunkt 21 Typenschild 12, 28 Typenübersicht 111 U 52 Umgebungsdaten 108 Umgebungsvariable 61 W Wartung	Slave	92		
S Schirmung 36, 41 Schnittstellenausführung 35 Sicherheitsnorm 11 Stangenbefestigung 30 Steckerbelegung 34 Steckverbinder 115 Stromversorgung 40 Systemanforderungen 55 Systemvariable 61 T Terminierung 116 Triangulationsprinzip 14 Triggereingang 40, 66 Triggerzeitpunkt 21 Typenschild 12, 28 Typenübersicht 111 U UDP 52 Umgebungsdaten 108 Umgebungsvariable 61 W W Wartung 106	R			
S Schirmung 36, 41 Schnittstellenausführung 35 Sicherheitsnorm 11 Stangenbefestigung 30 Steckerbelegung 34 Steckverbinder 115 Stromversorgung 40 Systemanforderungen 55 Systemvariable 61 T Terminierung 116 Triangulationsprinzip 14 Triggereingang 40, 66 Triggerzeitpunkt 21 Typenschild 12, 28 Typenübersicht 111 U UDP 52 Umgebungsdaten 108 Umgebungsvariable 61 W W Wartung 106	Reinigen	33, 106		
Schirmung 36, 41 Schnittstellenausführung 35 Sicherheitsnorm 11 Stangenbefestigung 30 Steckerbelegung 34 Steckverbinder 115 Stromversorgung 40 Systemanforderungen 55 Systemvariable 61 T Terminierung 116 Triangulationsprinzip 14 Triggereingang 40, 66 Triggerzeitpunkt 21 Typenschild 12, 28 Typenübersicht 111 U U UDP 52 Umgebungsdaten 108 Umgebungsvariable 61 W Wartung 106				
Schirmung 36, 41 Schnittstellenausführung 35 Sicherheitsnorm 11 Stangenbefestigung 30 Steckerbelegung 34 Steckverbinder 115 Stromversorgung 40 Systemanforderungen 55 Systemvariable 61 T Terminierung 116 Triangulationsprinzip 14 Triggereingang 40, 66 Triggerzeitpunkt 21 Typenschild 12, 28 Typenübersicht 111 U UDP 52 Umgebungsdaten 108 Umgebungsvariable 61 W Wartung	•	,		
Schnittstellenausführung 35 Sicherheitsnorm 11 Stangenbefestigung 30 Steckerbelegung 34 Steckverbinder 115 Stromversorgung 40 Systemanforderungen 55 Systemvariable 61 T Terminierung 116 Triangulationsprinzip 14 Triggereingang 40, 66 Triggerzeitpunkt 21 Typenschild 12, 28 Typenübersicht 111 U UDP 52 Umgebungsdaten 108 Umgebungsvariable 61 W Wartung	-			
Sicherheitsnorm 11 Stangenbefestigung 30 Steckerbelegung 34 Steckverbinder 115 Stromversorgung 40 Systemanforderungen 55 Systemvariable 61 T Terminierung 116 Triangulationsprinzip 14 Triggereingang 40, 66 Triggerzeitpunkt 21 Typenschild 12, 28 Typenübersicht 111 U 52 Umgebungsdaten 108 Umgebungsvariable 61 W Wartung Wartung 106				
Stangenbefestigung Steckerbelegung 34 Steckverbinder 115 Stromversorgung 40 Systemanforderungen 55 Systemvariable 61 T Terminierung 116 Triangulationsprinzip 14 Triggereingang 40, 66 Triggerzeitpunkt 21 Typenschild 12, 28 Typenübersicht 111 U UDP 52 Umgebungsdaten 108 Umgebungsvariable 61 W Wartung 106	_			
Steckerbelegung 34 Steckverbinder 1115 Stromversorgung 40 Systemanforderungen 55 Systemvariable 61 T Terminierung 116 Triangulationsprinzip 14 Triggereingang 40, 66 Triggerzeitpunkt 21 Typenschild 12, 28 Typenübersicht 111 U UDP 52 Umgebungsdaten 108 Umgebungsvariable 61 W Wartung 106				
Steckverbinder 115 Stromversorgung 40 Systemanforderungen 55 Systemvariable 61 T Terminierung 116 Triangulationsprinzip 14 Triggereingang 40, 66 Triggerzeitpunkt 21 Typenschild 12, 28 Typenübersicht 111 U U UDP 52 Umgebungsdaten 108 Umgebungsvariable 61 W Wartung 106				
Stromversorgung 40 Systemanforderungen 55 Systemvariable 61 T Terminierung Triangulationsprinzip 14 Triggereingang 40, 66 Triggerzeitpunkt 21 Typenschild 12, 28 Typenübersicht 111 U 52 Umgebungsdaten 108 Umgebungsvariable 61 W Wartung				
Systemanforderungen 55 Systemvariable 61 T Terminierung 116 Triangulationsprinzip 14 Triggereingang 40, 66 Triggerzeitpunkt 21 Typenschild 12, 28 Typenübersicht 111 U UDP 52 Umgebungsdaten 108 Umgebungsvariable 61 W Wartung 106				
T Terminierung 116 Triangulationsprinzip 14 Triggereingang 40, 66 Triggerzeitpunkt 21 Typenschild 12, 28 Typenübersicht 111 U UDP 52 Umgebungsdaten 108 Umgebungsvariable 61 W Wartung 106				
T Terminierung 116 Triangulationsprinzip 14 Triggereingang 40, 66 Triggerzeitpunkt 21 Typenschild 12, 28 Typenübersicht 111 U UDP 52 Umgebungsdaten 108 Umgebungsvariable 61 W Wartung 106				
Terminierung 116 Triangulationsprinzip 14 Triggereingang 40, 66 Triggerzeitpunkt 21 Typenschild 12, 28 Typenübersicht 111 U UDP 52 Umgebungsdaten 108 Umgebungsvariable 61 W Wartung 106	Systemvanable	01		
Triangulationsprinzip 14 Triggereingang 40, 66 Triggerzeitpunkt 21 Typenschild 12, 28 Typenübersicht 111 U UDP 52 Umgebungsdaten 108 Umgebungsvariable 61 W Wartung 106	T			
Triggereingang 40, 66 Triggerzeitpunkt 21 Typenschild 12, 28 Typenübersicht 111 U UDP 52 Umgebungsdaten 108 Umgebungsvariable 61 W Wartung 106	Terminierung	116		
Triggerzeitpunkt 21 Typenschild 12, 28 Typenübersicht 111 U UDP 52 Umgebungsdaten 108 Umgebungsvariable 61 W Wartung 106				
Typenschild 12, 28 Typenübersicht 111 U UDP 52 Umgebungsdaten 108 Umgebungsvariable 61 W Wartung 106				
Typenübersicht 111 U UDP 52 Umgebungsdaten 108 Umgebungsvariable 61 W Wartung 106				
U UDP 52 Umgebungsdaten 108 Umgebungsvariable 61 W Wartung 106				
UDP 52 Umgebungsdaten 108 Umgebungsvariable 61 W Wartung 106	Typenübersicht	111		
Umgebungsdaten 108 Umgebungsvariable 61 W Wartung 106	U			
Umgebungsdaten 108 Umgebungsvariable 61 W Wartung 106	UDP	52		
Umgebungsvariable 61 W Wartung 106	Umgebungsdaten	108		
Wartung 106	0 0	61		
Wartung 106	w			
		106		