Optical Distance Sensors ODSL 30

Technical description / Software description

Sales and Service

Sales Region North Phone 07021/573-306 Fax 07021/9850950

Postal code areas 20000-38999 40000-53999 54000-55999 56000-65999 97000-97999

Worldwide

ES (Spain)
Leuze electronic S.A.
Tel. Int. $+3493 / 4097900$ Fax Int. +34 93/4905820

Fl (Finland)

SKS-automaatio Oy
Tel. Int. +358 (0) 9/852661
Fax Int. + 358 (0) 9/8526820
FR (France)
Leuze electronic sarl.
Tel. Int. +33 (0) 1/ 60051220
Fax Int. +33 (0) $1 / 60050365$
GB (United Kingdom)
Leuze Mayser electronic Ltd.
Fax Int. + 44 (0) 14 80/403808

GR (Greece)

UTECO A.B.E.E
Tel. Int. + 30 (0) $211 / 1206900$ Fax Int. + 30 (0) 211/1206999
HK (Hong Kong)
Sensortech Company
Fel. int. + 852/ 2651038

HU (Hungary)

Kvalix Automatika Kft
Tel. Int. +36 (0) 1/ 2722242
Fax Int. +36 (0) 1/2722244
IL (Israel)
Galoz electronics Ltd.
Tel. Int. + 972 (0) 3/9023456
Fax Int. + 972 (0) 3/9021990

IN (India)

Global Tech (India) Pvt. Ltd.
Tel. Int. + 91 (0) $20 / 24470085$ Fax Int. + 91 (0) 20/24470086
IR (Iran)
Tavan Ressan Co. Ltd.
Tel. Int. +98 (0) $21 / 2606766$
Fax Int. +98 (0) 21/2002883
IT (Italy)
Leuze electronic S.r.I.
Tel. Int. + 3902 /26110643
Fax Int. +39 02/26110640

JP (Japan)
C. Illies \& Co., Ltd.

Tel. Int. + 81 (0) $3 / 34434111$ Fax Int. + 81 (0) $3 / 34434118$

KR (South Korea)

Leuze electronic Co., Ltd.
Tel. Int. + 82 (0) 31/3828228
Fax Int. + 82 (0) 31/3828522

MX (Mexico)

Leuze Lumiflex México, S.A. de C.V Tel. Int. + 52 (0) 81/83 718616 Fax Int. +52 (0) 81/83 718588

MY (Malaysia)

Ingermark (M) SDN.BHD
Tel. Int. + $60(0) 3 / 60342788$ Fax Int. + 60 (0) 3/60342188

NL (Netherlands)
Leuze electronic B.V.
Tel. Int. + 31 (0) $418 / 653544$ Fax Int. + 31 (0) 418/653808

NO (Norway)

Elteco AS
Tel. Int. + 47 (0) $35 / 562070$
Fax Int. +47 (0) $35 / 562099$

PL (Poland)

Balluff $\mathrm{Sp} . \mathrm{z}$ o. o.
Tel. Int. +48 (0) 71/3384929
Fax Int. +48 (0) $71 / 3384930$

PT (Portugal)

LA2P, Lda.
Tel. Int. + 351 (0) 21/4447070 Fax Int. + 351 (0) 21/4447075

RO (Romania)

O'Boyle s.r.I.
Tel. Int. + 40 (0) $56 / 201346$
Fax Int. + 40 (0) $56 / 221036$
RU (Russian Federation)
All Impex
Tel. Int. + 74959645164
Fax Int. +74956031312
SE (Sweden)
Leuze SensorGruppen AB
Tel. +46 (0) 8 /7315190 Fax +46 (0) $8 / 7315105$

Sales Region East

Phone 035027/629-106
Fax 035027/629-107

Postal code areas
01000-19999
39000-39999
98000-99999

Sales Region South

Phone 07021/573-307
Fax 07021/9850911
Postal code areas 66000-96999

SG + PH + ID (Singapore + Philippines + Indonesia)
Balluff Asia Pte. Ltd.
Tel. Int. + 65 / 62524384
Fax Int. $+65 / 62529060$
SI (Slovenia)
Tipteh d.o.o.
Tel. Int. + 386 (0) 1/2005150 Fax Int. +386 (0) 1/2005151
SK (Slovakia)
Schmachtl SK s.r.o
Tel. Int. + 421 (0) 2/ 58275600
Fax Int. + 421 (0) $2 / 58275601$

TH (Thailand)

Industrial Electrical Co. Ltd. Tel. Int. + 66 (0) 2/ 642-6700 Fax Int. + 66 (0) 2/6 42-4249

TR (Turkey)
Balluff Sensör Ltd. Sti.
Tel. Int. + 90 (0) $212 / 3200411$
Fax Int. + 90 (0) 212/3200416
TW (Taiwan)
Great Cofue Technology Co., Ltd.
Tel. Int. + 886 (0) $2 / 29838077$
UA (Ukraine)
Beverly-Foods Ltd
Tel. Int. + 38 044/ 5255927
Fax Int. +38 044/5257807
US + CA (United States +
Leuze Lumiflex Inc.
Tel. Int. + 1 (0) 248/ 4864466
Fax Int. + 1 (0) 248/486 6699
ZA (South Africa)
Countapulse Controls (PTY.) Ltd.
Tel. Int. + 27 (0) $11 / 6157556$
Fax Int. +27 (0) 11/6157513
© All rights reserved, especially the rights of production, distribution and translation. Copying or reproductions in any form require the written consent of the manufacturer.
Product names are used without warranty of unrestricted applicability.
Changes reflecting technical improvements may be made
1 General Information 4
1.1 Explanation of symbols 4
1.2 Important Terms 4
1.3 Declaration of Conformity 5
2 Safety Notices 6
2.1 Safety Standards 6
2.2 Intended Use 6
2.3 Working Safely 7
2.4 Organisational measures 8
3 Description ODSL 30 9
3.1 General description 9
3.2 Typical Areas of Application for the ODSL 30 10
3.2.1 Continuous Distance Measurement. 10
3.2.2 Positioning Tasks 10
3.2.3 Collision prevention 11
3.3 Mounting 12
3.4 ODSL 30 Variants 13
3.4.1 ODSL 30/V... with Analogue Output 14
3.4.2 ODSL 30/24 \ldots with three switching outputs 18
3.4.3 ODSL 30/D... with Serial Output 19
3.5 Operation ODSL 30 27
3.5.1 LED indicators ODSL 30 27
3.5.2 Switching on 28
3.5.3 Adjustment of the display contrast 28
3.5.4 Reset to factory settings 28
3.5.5 Querying the device software version 29
3.5.6 Referencing the device 29
3.6 Configuration ODSL 30 30
3.6.1 Configuration / Menu Structure ODSL 30/V... (Analogue) 31
3.6.2 Configuration / menu structure ODSL 30/24/V... (3 switching outputs) 33
3.6.3 Configuration / menu structure ODSL 30/D 232... (digital RS 232) 36
3.6.4 Configuration / menu structure ODSL 30/D 485... (digital RS 485) 40
3.6.5 Operating example 44
3.7 Advanced Menu (for software versions V01.10 and newer) 47
3.7.1 Setting an Offset/Preset Value - Compensating for Mounting Tolerances 47
3.7.2 Reduction in Measurement Time to as Little as 30 ms 49
3.7.3 Changing the Display Resolution 50
4 Technical Data ODSL 30 51
4.1 Optical data 51
4.2 Electrical Data, Installation Data 52
4.2.1 ODSL 30/V-30M-S12 52
4.2.2 ODSL 30/24-30M-S12 52
4.2.3 ODSL 30/D 232-30M-S12 53
4.2.4 ODSL 30/D 485-30M-S12 53
4.3 Mechanical Data, Environmental Data 54
4.4 Dimensioned and Connection Drawings 55
4.5 Accessories 57
5 Installation 58
5.1 Storage, Transportation 58
5.2 Mounting 58
5.3 Teach-in 59
6 Software 61
6.1 Connection to a PC 61
6.1.1 Connection of the ODSL 30 to a PC 61
6.2 Installation of the ODS 96 configuration software 62
6.3 Starting the Program 62
6.3.1 Description of the Menu Commands 64
6.3.2 Measurement 65
Figure 2.1: \quad Stick-on label with warning notices 8
Figure 3.1: Application example Positioning of Elevating Platforms 10
Figure 3.2: Application example "Collision Prevention" 11
Figure 3.3: ODSL 30 with BT 30 12
Figure 3.4: Dimensioned drawing BT 30 12
Figure 3.5: Characteristic output curve ODSL 30/V... with positive gradient 14
Figure 3.6: Characteristic output curve ODSL 30/V... with negative gradient. 14
Figure 3.7: Behaviour of the switching outputs ODSL 30/24... (PNP output active high) 18
Figure 3.8: Serial transmission formats ODSL 30/D 20
Figure 3.9: Voltage divider for the RS 485 bus termination 26
Figure 3.10: Indicator and operating elements ODSL 30 27
Figure 3.11: ODSL 30 measurement values with a uniqueness range of 9.8 m 50
Figure 4.1: Dimensioned drawing ODSL 30 variants 55
Figure 4.2: Electrical Connection ODSL 30/V. 56
Figure 4.3: Electrical Connection ODSL 30/24 56
Figure 4.4: Electrical Connection ODSL 30/D 232 56
Figure 4.5: Electrical Connection ODSL 30/D 485 57
Figure 5.1: View through a chase 58
Figure 6.1: Connection of the ODSL 30 to a PC via the programming terminal UPG 5 61
Figure 6.2: Installation directory 62
Figure 6.3: Device selection 63
Figure 6.4: Start menu before measurement. 63
Figure 6.5: Display of the current measurement values of the ODSL 30 connected 65

1 General Information

1.1 Explanation of symbols

The symbols used in this technical description are explained below.

Attention

Pay attention to passages marked with this symbol. Failure to heed this information may lead to injuries to personnel or damage to the equipment.

Attention Laser Radiation

This symbol warns of possible danger through hazardous laser radiation.

Notice

This symbol indicates text passages containing important information.

1.2 Important Terms

Phase measurement

Distance measuring procedure, which determines the distance of an object by the shift of the phase angle of the light reflected from the object.

Uniqueness range

Due to the periodicity of the sinusoid, the phasing of the signals received by the ODSL 30 limits the determination of unique measurement values to within a specific interval. The length of this interval is called the uniqueness range. A large uniqueness range is equivalent to high background suppression (see chapter 3.7.2).

Absolute measurement accuracy

Shows the possible divergence of the measurement value from the anticipated value through changes in the environmental conditions during the measuring process.
Higher accuracy is given at constant environmental conditions.

Repeatability

Measuring distance change with repeated measurement at the same output signal (observe the same peripheral conditions as with resolution).

Resolution

The smallest possible distance change of the measured object, which causes a definite change in the output signal.

Reference measurement

Device function of the ODSL 30... for the compensation of a possible temperature drift. A reference measurement should be carried out before each exact measurement. The reference measurement is activated via a separate device input and is automatically carried out once after the device is switched on.

Diffuse reflection

Return and/or degree of reflection of the radiated light.

Measurement time

The measurement time is dependent on the selected uniqueness range and the luminosity coefficient of the object (see chapter 3.7.2).

Delay before start-up

The delay before start-up indicates the point in time when the first valid measurement can be obtained after switching on.

Light switching/Dark switching

Specifies the behaviour of the switching output: light switching if an object is located within the configured distance range, dark switching if an object is located outside of the configured distance range.

Insensitivity towards extraneous light

Indicates the insensitivity of the measurement result towards extraneous light. The ODSL 30 is reliably measuring even with extraneous light intensity of 5 kLux . Typical light intensity in a work place is only 1 kLux .

1.3 Declaration of Conformity

The optical distance sensors of the ODSL 30 series have been manufactured observing current European standards and guidelines.

Notice

The corresponding declaration of conformity can be requested from the manufacturer.

The manufacturer of the product, Leuze electronic GmbH + Co KG in D-73277 Owen/Teck, possesses a certified quality assurance system in accordance with ISO 9001.

2 Safety Notices

2.1 Safety Standards

The optical distance sensors of the ODSL 30 series have been developed, manufactured and tested, observing current safety standards. They correspond to the state of the art.

2.2 Intended Use

Attention

The protection of personnel and the device cannot be guaranteed if the device is operated in a manner not corresponding to its intended use.

Optical distance sensors of the ODSL 30 series are intelligent, adjustable sensors with CCD element for distance measuring.
In particular, unauthorised use includes:

- rooms with explosive atmospheres (zones 0, 1, 20, 21).
- operation for medical purposes

Areas of application

The optical distance sensors of the ODSL 30 series have been designed for the following areas of application:

- distance measurement
- contour determination
- positioning of side-tracking skates, cranes, lifting devices
- filling level measurement

2.3 Working Safely

Attention Laser Radiation!

The optical distance sensors ODSL 30 operate with a red light laser of class 2 acc. to EN 60825-1.If you look into the beam path over a longer time period, the retina of your eye may be damaged!

Never look directly into the beam path!
Do not point the laser beam of the ODSL 30 at persons!
When mounting and aligning the ODSL 30, take care to avoid reflections of the laser beam off reflective surfaces!

The use of operating and adjusting devices other than those specified in this technical description, carrying out of differing procedures, or improper use of the optical laser distance sensor may lead to dangerous exposure to radiation!

The use of optical instruments or devices in combination with the device increases the danger of eye damage!

Adhere to the applicable legal and local regulations regarding protection from laser beams acc. to EN 60825-1 in its latest version.

The ODSL 30 uses a laser diode with low power in the visible red light range with an emitted wavelength of about 655 nm .

The glass optics cover is the only opening through which the laser radiation can escape from the device. The housing of the ODSL 30 is sealed and has no parts that need to be adjusted or maintained by the user. The device must not be tampered with and must not be changed in any way! The destruction of the seal voids the warranty!

Notice!

It is important that you attach the sticky labels supplied to the device (notice signs and laser emission symbol)! If the signs would be covered due to the installation situation of the ODSL 30, attach them close to the ODSL 30 such that reading the notices must not lead to looking into the laser beam!

Figure 2.1: Stick-on label with warning notices

Attention

Access and changes to the device, except where expressly described in this operating manual, are not authorised.

2.4 Organisational measures

Documentation

All entries in this operating manual must be heeded, in particular those in section 2.
Carefully store this technical description. It should be accessible at all times.

Safety regulations

Observe the locally applicable legal regulations and the rules of the employer's liability insurance association.

Qualified personnel

Mounting, commissioning and maintenance of the device must only be carried out by qualified personnel.
Electrical work must be carried out by a certified electrician.

Repair

Repairs must only be carried out by the manufacturer or an authorised representative.

3 Description ODSL 30

3.1 General description

The ODSL 30 is a laser distance measuring device with a large area of application. The equipment is available in different versions with analogue outputs, digital outputs, or switching outputs. The distance measurement uses the phase measurement principle. The measurement range lies between $0.2 \ldots 30 \mathrm{~m}$.
Integrated in the device are a keypad and a two-line LCD display which can be used to program the ODSL 30. During measurement operation, the display shows the current measurement value. The switching point of the switching outputs can easily be set via a teach input on all variants.

Remarks

Moving objects into the measurement beam from the side may lead to incorrect measurement values.

By carrying out the integrated reference measurement function before a measurement, the sensor's accuracy can be improved. To achieve this, the active input (Pin 2) can be configured via the menu to act either as an activation input with referencing, or as a pure referencing input. While the referencing function is carried out (duration about 0.3s), no measurement can be taken.

If the device is used in areas subject to electrostatic charges, it is recommended to connect the housing of the ODSL 30 to a common potential.

Accessories

The ODSL 30 ships with the mounting device BT 30 for easy mounting and alignment (further accessories see chapter 4.5).

3.2 Typical Areas of Application for the ODSL 30

3.2.1 Continuous Distance Measurement

All ODSL 30 variants with analogue/digital or switching output can be used for continuous distance measuring. The menu-guided configuration via key pad and LC display on the device without additional software permits the adaptation to a large number of applications. Depending on position or settings of the ODSL 30, various applications are possible:

- Positioning of side-tracking skates, cranes, lifting devices
- Contour determination through controlled passing movement of an object through the beam of the ODSL 30.
- Volume measuring by taking measurements on two levels during the concurrent movement of the object.
- Determination of the diameter, e.g., on paper rolls.
- Measuring the thickness of planks with two opposing sensors and a differential of the two measured values.

3.2.2 Positioning Tasks

The ODSL 30 variants with analogue output and/or up to three teachable switching outputs are ideally suited for basic positioning tasks, such as the height/level adjustment of elevating platforms and rising floors.
The ODSL 30 is mounted in a way to enable positioning in the direction of the measuring beam.

Figure 3.1: Application example Positioning of Elevating Platforms

3.2.3 Collision prevention

The ODSL 30 is ideally suited to be used as collision prevention device:

- Distance regulation via the analogue output of the ODSL 30
- Collision prevention via the switching outputs of the ODSL 30

Figure 3.2: Application example "Collision Prevention"

3.3 Mounting

The ODSL 30 ships with the mounting device BT 30 that permits the easy mounting and alignment of the ODSL 30.

Figure 3.3: ODSL 30 with BT 30
Dimensioned drawing BT 30

Figure 3.4: Dimensioned drawing BT 30

Notice
With the help of the two aiming notches on the upper side of the device, you can carry out a coarse alignment of the ODSL 30 even before commissioning.

3.4 ODSL 30 Variants

Variants

The ODSL 30 is available in four variants:

- as a laser distance sensor with 2 analogue outputs $1 \ldots 10 \mathrm{~V}$ and $4 \ldots 20 \mathrm{~mA}$ and 1 universally configurable switching output measurement range between $0.2 \ldots 30 \mathrm{~m}$
- as a laser distance sensor with 3 universally configurable switching outputs measurement range between 0.2 30 m
- as a laser distance sensor with serial interface RS 232 and $\mathbf{2}$ universally configurable switching outputs, measurement range between $0.2 \ldots 30 \mathrm{~m}$
- as a laser distance sensor with serial interface RS 485/RS 422 and 2 universally configurable switching outputs, measurement range between $0.2 \ldots 30 \mathrm{~m}$

3.4.1 ODSL 30/V... with Analogue Output

Analogue Output ODSL 30/V...

Figure 3.5: Characteristic output curve ODSL 30/V... with positive gradient

Figure 3.6: Characteristic output curve ODSL 30/V... with negative gradient

Behaviour of the analogue outputs of the ODSL 30/V...

The ODSL 30/V... has an analogue output with linear behaviour. A current output ($4 \ldots 20 \mathrm{~mA}$) and a voltage output ($1 \ldots 10 \mathrm{~V}$) are available to the user. In order to achieve the highest resolution possible, the range of the analogue output should be set as small as the application allows. The analogue output can be adjusted within the measurement range by configuration via the key pad and LCD display (adaptation of the characteristic output curve). The parameter Col. Ano. Gut.fut determines whether the calibration is to be carried out for the current or voltage output. The characteristic output curve can be configured with a positive or negative gradient. For this purpose, the two distance values Fos for min. val and Fos for max. vol for the minimum and maximum analogue output value are set accordingly in the range between 200 mm and $30,000 \mathrm{~mm}$ (see figure 3.5 and figure 3.6).

Object distance	$\begin{array}{c}\text { Current output }{ }^{1)} \\ \text { with positive } \\ \text { gradient }\end{array}$		$\begin{array}{c}\text { Voltage output }{ }^{2} \text {) } \\ \text { with negative } \\ \text { gradient }\end{array}$	
with positive				
gradient				

gradient\end{array}\right]\)

1) The typical values only apply if the current output is calibrated.
2) The typical values only apply if the voltage output is calibrated.

Teach-in of the characteristic output curve

In addition to the edge-controlled teach-in (slope control) of the switching outputs, teachin of the characteristic output curve is also possible via a teach line for devices with software version V01.10 and newer (see chapter 3.5.5). The following steps are required for the line teach-in of the analogue characteristic curve:

1. Activation of the analogue line teach function via the key pad and menu.

Activate Infut. Menus -> Teach Mode -> Teach Mode time control.
2. Position the measured object at the desired distance.
3. The respective teach function is activated by applying the active level (default $+U_{B}$) to the teach input "Teach Q1" (pin 5). The teach event is indicated by the flashing of the LEDs and on the display.

Teach function	Duration of teach signal	LED green	LED yellow
Upper switching point switching output Q1	$2 \ldots 4 \mathrm{~s}$	flash synchronously	
Distance value for analogue output $1 \mathrm{~V} / 4 \mathrm{~mA}$	$4 \ldots 6 \mathrm{~s}$	continuous light	flashing
Distance value for analogue output $10 \mathrm{~V} / 20 \mathrm{~mA}$	$6 \ldots 8 \mathrm{~s}$	flashing	continuous light

4. To finish the teach event, disconnect the teach input from the teach signal after the desired time.
5. A successful teach event is signalled by the end of the flashing of the LEDs. The menu entries can be used to check that the teach values are properly accepted and to make any changes.

Error messages

Rapid flashing of the green LED following a teach event indicates an unsuccessful teach event. The sensor remains ready for operation and continues to function with the old values.
Remedy:

- Repeat teach event or
- Activate teach input for more than 8 s or
- Disconnect sensor from voltage to restore the old values.

Behaviour of the switching output of the ODSL 30/V...

Additionally, a switching output with two switching points (switching window) is available with the ODSL 30/V... with analogue output. The upper switching point can be taught using a teach line. By configuring within the measurement range, it is possible to set the lower and upper switching points, the switching hysteresis, the switching behaviour (light/dark switching), and the type of switching output (PNP high active or NPN low active or PNP/NPN push-pull).
Teaching always takes place towards the upper switching point (see figure 3.7 on page 17). The lower switching point is set to 199 mm by default.

Object distance	Light switching output Q1	Dark switching output Q1
No object (no signal)	off	on
$<200 \mathrm{~mm}^{1)}$	on	off
< teach value	on	off
> teach value	off	on

1) Only if a received signal is available that can still be evaluated, otherwise same as "no object"

3.4.2 ODSL 30/24... with three switching outputs

Switching outputs ODSL 30/24...

Figure 3.7: Behaviour of the switching outputs ODSL 30/24... (PNP output active high)
Behaviour of the switching outputs of the ODSL 30/24...
The ODSL $30 / 24 \ldots$ is equipped with three independent switching outputs, each with 2 switching points (switching windows). The upper switching points can be taught using a teach line. By configuring within the measurement range, it is possible to set the lower and upper switching points, the switching hysteresis, the switching behaviour (light/dark switching), and the type of switching output (PNP high active or NPN low active or PNP/NPN push-pull).
Teaching always takes place towards the upper switching point (see figure 3.7). Each of the lower switching points is set to 199 mm by default.

Object distance	Light switching			Dark switching		
	output Q1	output Q2	output Q3	output Q1	output Q2	output Q3
No object (no signal)	off	off	off	on	on	on
$<200 \mathrm{~mm}^{1)}$	on	on	on	off	off	off
< teach value	on	on	on	off	off	off
> teach value	off	off	off	on	on	on

1) Only if a received signal is available that can still be evaluated, otherwise same as "no object"

3.4.3 ODSL 30/D... with Serial Output

Transmission formats

The ODSL 30/D... has 2 digital switching outputs and one serial interface which is implemented either as an RS 232 interface or as an RS 485/RS 422 interface. The transmission rate can be set to between 600 and 115200 baud.

The serial transmission is carried out with 1 start bit, 8 data bits and 1 or 2 stop bits without parity.
For the transmission of the measurement values, 6 different transmission modes may be configured (see figure 3.8):

- ASCII measurement value (7 bytes, measurement range $0 \ldots 30 \mathrm{~m}$, resolution 1 mm$)^{1 \text {) }}$
- ASCII measurement value 0.1 mm
(7 bytes, measurement range $0 \ldots 30 \mathrm{~m}$, resolution 0.1 mm$)^{1)}$
- 14 bit measurement value (2 bytes, measurement range $0 \ldots 15 \mathrm{~m}$, resolution 1 mm$)^{1)}$
- 16 bit measurement value $(3 \text { bytes, measurement range } 0 \ldots 30 \mathrm{~m} \text {, resolution } 1 \mathrm{~mm})^{1)}$
- 20 bit measurement value (4 bytes, measurement range $0 \ldots 30 \mathrm{~m}$, resolution 0.1 mm$)^{1)}$
- Remote Control Operation (Remote Control) ${ }^{2)}$
The output format is activated by configuration with the key pad and menu.

Notice!

Selecting an output resolution of 0.1 mm does not change the internal measurement system of the ODSL 30 and does not increase its accuracy. For this reason, measurement values with a resolution of 0.1 mm may vary in successive measurements depending on the application.

[^0]

Figure 3.8: Serial transmission formats ODSL 30/D...

Measurement value output for various transmission types

Object distance	Measurement value output for transmission type							
	ASCII 5 bytes	ASCII 6 bytes	14 bit	16 bit	20 bit	Remote 4 bytes	Remote 5 bytes	Remote 6 bytes
No object (no signal)	65535	655350	16383	65535	655350	9999	65535	655350
<200 mm ${ }^{1}$)	Distance value in mm	Distance value in $1 / 10 \mathrm{~mm}$	Distance value in mm	Distance value in mm	Distance value in $1 / 10 \mathrm{~mm}$	Distance value in mm	Distance value in mm	$\begin{gathered} \hline \text { Distance } \\ \text { value } \\ \text { in } 1 / 10 \mathrm{~mm} \end{gathered}$
$200 \mathrm{~mm} . . .9900 \mathrm{~mm}$	Distance value in mm	Distance value in $1 / 10 \mathrm{~mm}$	$\begin{aligned} & \text { Distance } \\ & \text { value } \\ & \text { in } \mathrm{mm} \end{aligned}$	Distance value in mm	Distance value in $1 / 10 \mathrm{~mm}$	Distance value in mm	Distance value in mm	$\begin{aligned} & \text { Distance } \\ & \text { value } \\ & \text { in } 1 / 10 \mathrm{~mm} \end{aligned}$
9901 mm ... 16000mm	Distance value in mm	Distance value in $1 / 10 \mathrm{~mm}$	$\begin{aligned} & \text { Distance } \\ & \text { value } \\ & \text { in } \mathrm{mm} \end{aligned}$	Distance value in mm	Distance value in $1 / 10 \mathrm{~mm}$	9901	Distance value in mm	Distance value in $1 / 10 \mathrm{~mm}$
16001 mm ... 65000 mm	Distance value in mm	Distance value in $1 / 10 \mathrm{~mm}$	16001	Distance value in mm	Distance value in $1 / 10 \mathrm{~mm}$	9901	Distance value in mm	Distance value in $1 / 10 \mathrm{~mm}$
> 65000 mm	65001	650010	16001	65001	650010	9901	65001	650010
$\begin{gathered} \text { Object distance + Offset } \\ >65000 \mathrm{~mm} \\ \text { (Offset Direction neg.) } \end{gathered}$	65001	650010	16001	65001	650010	9901	65001	650010
Object distance - Offset $<0 \mathrm{~mm}$ (Offset Direction pos.)	0	0	0	0	0	0	0	0
Device error	0	0	0	0	0	0	0	0

1) Only if a received signal is available that can still be evaluated, otherwise same as "no object"

Commands for remote control operation

For remote control operation (parameter Remote Control), a device address between $0 \ldots 14$ can be set. In this operating mode, the ODSL 30/D... reacts only to commands from the controller. The following control commands are available:

Commands for the asynchronous measurement

Query of 4-digit measurement value (ODS 96 compatible, bus operation ODSL 30/D ...):

	Byte No.									Response time
	0	1	2	3	4	5	6	7	8	
Command	Sensor address 0×00 through $0 x 0 \mathrm{E}$	-	-	-	-	-	-	-	-	
Sensor response	$\begin{gathered} " * " \\ (0 \times 2 A) \end{gathered}$	ASC tens	dress ones	ASCII thousands	stance hundreds		value ones	$\begin{gathered} \text { "\#" } \\ (0 \times 23) \end{gathered}$	-	$\begin{gathered} \text { max. } \\ 120 \mathrm{~ms} \end{gathered}$

Asynchronous query of 5-digit measurement value (bus operation ODSL 30/D ...):

	Byte No.									Response time
	0	1	2	3	4	5	6	7	8	
Command	$\begin{gathered} " * " \\ (0 \times 2 A) \end{gathered}$	$\begin{gathered} \text { ASCII } \\ \text { address } \\ \text { "0...9", } \\ \text { "A...D" } \end{gathered}$	$\begin{gathered} \text { "M" } \\ (0 \times 4 \mathrm{D}) \end{gathered}$	$\begin{gathered} \text { "\#" } \\ (0 \times 23) \end{gathered}$	-	-	-	-	-	
Sensor response	$\begin{gathered} " * " \\ (0 \times 2 A) \end{gathered}$	ASCII address "0...9", "A...D"	$\begin{aligned} & \text { A! } \\ & \text { ten thou- } \\ & \text { sands } \end{aligned}$	II-dista thousands	measu hundreds	ment valu tens	ones	Status	$\begin{gathered} \text { "\#" } \\ (0 \times 23) \end{gathered}$	$\begin{gathered} \text { max. } \\ 120 \mathrm{~ms} \end{gathered}$

Asynchronous query of 6-digit measurement value (bus operation ODSL 30/D ...):

											Response
	0	1	2	3	4	5	6	7	8	9	
Command	$\begin{gathered} " * " \\ (0 \times 2 A) \end{gathered}$	ASCII address "0...9", "A..D"	$\begin{gathered} \text { "m" } \\ (0 \times 73) \end{gathered}$	$\begin{gathered} \text { "\#" } \\ (0 \times 23) \end{gathered}$	-	-	-	-	-	-	
Sensor response	$\begin{gathered} " \star " \\ (0 \times 2 A) \end{gathered}$	ASCII address "0.....D"	ten thousands		stance hun- dreds	tens	ones	tenths	Status	$\begin{gathered} \text { "\#" } \\ (0 \times 23) \end{gathered}$	$\begin{gathered} 30 \\ \ldots \\ 100 \mathrm{~ms} \end{gathered}$

The two following synchronous measurement commands "S" (5-digit measurement value, resolution 1 mm) or "s" (6-digit measurement value, resolution 0.1 mm) enable the start of a measurement at a precise time.
If a synchronous measurement value is requested via remote control operation:

- this command immediately switches on the laser and triggers the measurement.
- following the measurement cycle, the laser is switched off.
- the measured value is transmitted following this measurement cycle (default: 100 ms).

Notice!

Prerequisite for the function of the synchronous measurement value query is that the sensor be deactivated (laser off)!

For this purpose:

- the active/reference input (pin 2) must be connected to the inactive state (default: 0V) or it must be open.
- the active/reference input (pin2) must be configured as an activation and referencing input:
Infut Menu -> Infut activiref -> infut activiref Activation + Ref

Commands for the synchronous measurement

Synchronous query of 5-digit measurement value, res. 1 mm (bus operation ODSL 30/ D ...):

Synchronous query of 6-digit measurement value, res. 0.1 mm (bus operation ODSL 30/D ...):

1) Depending on the configuration of the measurement time, see chapter 3.7 "Advanced Menu (for software versions V01.10 and newer)", duration of data transmission not included.

Notice!

To make the laser beam visible for adjustment purposes and to view measurement values on the display, the

- active/reference input (pin 2) can be connected to the active state (default: 24 V) or
- the sensor can be activated with the command "A" (see page 23) or
- the active/reference input (pin 2) can be temporarily configured via the menu as a reference input:
Infut Menu-> Infut activiref -> Infut activiref Referencing

Possible errors and their causes

Instead of a synchronous measurement, an asynchronous measurement is performed. Possible causes of the error: the synchronous measurement command was set by the activated, i.e. the measuring, sensor. Instead of the synchronous measurement, an asynchronous measurement was performed (corresponds to the commands "M" and "m").

Further commands
Activation of referencing (bus operation for ODSL 30/D ...):

	Byte No.									Response time
	0	1	2	3	4	5	6	7	8	
Command	$\begin{gathered} " * " \\ (0 \times 2 A) \end{gathered}$		$\begin{gathered} \text { "R" } \\ (0 \times 52) \end{gathered}$	$\begin{gathered} \text { "\#" } \\ (0 \times 23) \end{gathered}$	-	-	-	-	-	
Sensor response	$\begin{gathered} " \star " \\ (0 \times 2 A) \end{gathered}$	ASCII address "O....D",	Status	$\begin{gathered} \text { "\#" } \\ (0 \times 23) \end{gathered}$	-	-	-	-	-	350 ms

Sensor activation ${ }^{1)}$ (bus operation for ODSL 30/D ...):

	Byte No.									Response time
	0	1	2	3	4	5	6	7	8	
Command	$\begin{gathered} " \star \text { " } \\ (0 \times 2 A) \end{gathered}$	$\begin{gathered} \text { ASCII } \\ \text { address } \\ \text { "0...9", } \\ \text { "A...D" } \end{gathered}$	$\begin{gathered} \text { "A" } \\ (0 \times 41) \end{gathered}$	$\begin{gathered} \text { "\#" } \\ (0 \times 23) \end{gathered}$	-	-	-	-	-	
Sensor response	$\begin{gathered} " * " \\ (0 \times 2 A) \end{gathered}$	$\begin{gathered} \text { ASCII } \\ \text { address } \\ \text { "0...9", } \\ \text { "A...D" } \end{gathered}$	Status	$\begin{gathered} \text { "\#" } \\ (0 \times 23) \end{gathered}$	-	-	-	-	-	$\begin{gathered} \text { max. } \\ 120 \mathrm{~ms} \end{gathered}$

Deactivating the sensor ${ }^{1)}$ (bus operation for the ODSL 30/D ...):

					No.					Response
	0	1	2	3	4	5	6	7	8	
Command	$\begin{gathered} " * " \\ (0 \times 2 A) \end{gathered}$	$\begin{aligned} & \text { ASCII } \\ & \text { address } \\ & \text { "0...9", } \\ & \text { "A...D" } \end{aligned}$	$\begin{gathered} \text { "D" } \\ (0 \times 44) \end{gathered}$	$\begin{gathered} \text { "\#" } \\ (0 \times 23) \end{gathered}$	-	-	-	-	-	
Sensor response	$\begin{gathered} " * " \\ (0 \times 2 A) \end{gathered}$	$\begin{gathered} \text { ASCII } \\ \text { address } \\ \text { "0...9", } \\ \text { "A...D" } \end{gathered}$	Status	$\begin{gathered} \text { "\#" } \\ (0 \times 23) \end{gathered}$	-	-	-	-	-	$\begin{gathered} \max . \\ 120 \mathrm{~ms} \end{gathered}$

Status byte (bitwise processing):

Bit number	Value	Meaning
$7(\mathrm{MSB})$	0×80	always $=0$ (reserved)
6	0×40	$1=$ other error, $0=$ OK
5	0×20	always $=1$, if the status is 0×20, the sensor functions flawlessly
4	0×10	always $=0$ (reserved)
3	0×08	always $=0$ (reserved)
2	0×04	$1=$ sensor deactivated, $0=$ sensor activated
1	0×02	$1=$ no signal or signal too low, $0=$ signal OK
$0(\mathrm{LSB})$	0×01	$1=$ Laser defective, $0=$ Laser OK

1) The sensor is activated by default and in this case cannot be deactivated via the control command. The control command is only effective if the input activ/ref is configured as an activation and referencing input. In this case, the following applies: The sensor is activated if the input activ/ref is at active level or if the sensor is activated via control command. The sensor is deactivated if the input activ/ref is not at active level and the sensor is deactivated via control command.

Behaviour of the switching outputs of the ODSL 30/D...

In addition, the ODSL 30/D... with serial output also has two switching outputs. The position within the measuring range at which the switching outputs become active can be set arbitrarily via a teach line or via configuration. In addition to the switching points, it is also possible to configure the switching hysteresis, the switching behaviour (light/dark switching), and the type of switching output (PNP high active or NPN low active or PNP/NPN push-pull). Generally, teaching always takes place towards the switching point (see figure 3.7 on page 17).

Object distance	Light switching		Dark switching	
	output Q1	output Q2	output Q1	output Q2
No object (no signal)	off	off	on	on
$<200 \mathrm{~mm}^{1)}$	on	on	off	off
< teach value	on	on	off	off
> teach value	off	off	on	on

1) Only if a received signal is available that can still be evaluated, otherwise same as "no object"

Notes regarding the termination of the data lines of the ODSL 30/D 485...

The ODSL 30/D 485... features a combined transmitter and receiver component that can transmit serial data according to the RS 485 and RS 422 standard (see TIA/EIA-485-A or DIN66259, Part 3).
These standards define some basic rules that should be followed in order to achieve the most reliable data transmission:

- The data lines A and B (which correspond to the ODSL 30 pins Tx+ and Tx-) are connected to an intrinsic impedance of $Z_{0} \approx 120 \Omega$ via a 2-wire twisted pair cable.
- The end of the data line (and the beginning in case of RS 485) is terminated using a 120Ω resistor. The ODSL 30/D 485... does not have an internal bus termination.
- The RS 485 bus participants are wired in an in-line bus topology, i.e., the data line is fed from one bus participant to the next. Cable stubs are to be avoided or to be kept as short as possible.
- The RS 485 specification assumes an inactive potential difference of $U_{A B} \geq 200 \mathrm{mV}$ between the data cables. A bus termination in the form of a voltage divider should be implemented in order to maintain this level. Usually, it is connected to the RS 485 coupling module of the PLC.
The RS 485 specification permits transmission rates in the megabit range for up to 32 participants. The ODSL 30/D 485... is designed for a data transmission rate of typically 9600 Baud (600 ... 115200 Baud may be configured). In practice, this means that the strict requirements regarding the bus termination and the cabling are "softened" for a few bus participants.

However, it is important to maintain the bus idle levels ($U_{A B} \geq 200 \mathrm{mV}$). If the PLC coupling module does not include a bus termination with voltage divider, the following circuit may be used.

Figure 3.9: Voltage divider for the RS 485 bus termination
The RS 422 connection does not require a bus termination for cable lengths up to about 20 m and data transmission rates less than 9600 Baud.

Further information:

- RS 422: Electrical Specification acc. to DIN 66259, Part 3
- ISO 8482: Abstract

Specifies the physical medium characteristics for twisted pair multipoint interconnections in either 2-wire or 4-wire network topology, a binary and bi-directional signal transfer, the electrical and mechanical design of the endpoint system branch cables and the common trunk cable which may be up to 1200 m in length, the component measurements of the integrated type generators and receivers within the endpoint system, the applicable data signalling rate up to $12.5 \mathrm{Mbit} / \mathrm{s}$.

3.5 Operation ODSL 30

Indicator and operating elements

Figure 3.10: Indicator and operating elements ODSL 30

3.5.1 LED indicators ODSL 30

LED	Colour	Display when	
		Sensor operation	activated teach-in characteristic output curve ${ }^{1)}$
PON	green permanent light	ready	Teach-in procedure
	green flashing	-	Teach-in procedure
	green off	no voltage	
$\begin{aligned} & \text { Q1, } \\ & \text { Q2, } \\ & \text { Q3 } \end{aligned}$	yellow permanent light	object inside teach-in measurement distance	Teach-in procedure
	yellow flashing	-	Teach-in procedure
	yellow off	object outside teach-in measurement distance or no signal present	

1) The teach-in process is described in detail in section 3.4.1 and section 5.3

Notice

The 3 yellow LEDs Q1, Q2 and Q3 for the status display of the up to 3 switching outputs are additionally located in the optical window of the ODSL 30. Only the LEDs for those switching outputs that are actually available in the respective device version have a function.

3.5.2 Switching on

After power-on and error-free initialisation of the device, the green LED PON lights up continuously, the ODSL 30 is measurement mode. The display lighting remains switched off.

```
Leuze electronic
Dist. [mm@] 10687
```

In measurement mode, the LCD display shows the current measurement value in millimetres. If no object is detected or if the signal is too weak, the notice HO SIGHAL appears on the display.

Notice

After an operating time of 30 min ., the device has reached the operating temperature required for an optimal measurement and should be referenced then.

3.5.3 Adjustment of the display contrast

While switching the device on, press both arrow keys of the ODSL 30 simultaneously.

```
contrast: 160
```

After releasing the keys, you can decrease or increase the contrast of the LCD display with the arrow keys (value range $0 \ldots 255$). By pressing ENTER, the adjusted contrast value is applied and you get to the configuration menu of the ODSL 30.

3.5.4 Reset to factory settings

By pressing ENTER while switching the device on, you can reset the configuration of the ODSL 30 to the state upon delivery.
A safety prompt appears.

```
Iefoult Setting?
Press & for OK
```

By pressing ENTER again, all parameters are reset to factory settings. All settings made previously are permanently lost. By pressing an arrow key, the ODSL 30 returns to measurement operation without resetting the parameters.

3.5.5 Querying the device software version

You can query the device software version in the menu for configuring the ODSL 30. To do this, select the following menu item in the Service Ment:

```
SN Y01.20 YYNMDD
Val: 31024
```


3.5.6 Referencing the device

The ODSL 30 is equipped with a referencing function for internally calibrating the sensor. By carrying out the integrated reference measurement function before a measurement, the sensor's accuracy can be improved.
A referencing operation is performed

- when switching on the device (Power-On).
- by means of a signal at the activation/referencing input (PIN 2).
- by means of a command in remote control operation (ODSL 30/D... only).

Notice

In particular, the referencing function should be performed for changing environmental conditions.

While the referencing function is carried out (duration about 350ms), no measurement can be taken.

3.6 Configuration ODSL 30

Configuration / navigation in the menu
By pressing an arbitrary key, the LCD display illumination is switched on, and the configuration menu of the ODSL 30 appears.
${ }^{4}$) You can scroll through the menu items using the arrow keys.
¢ You can select the individual menu items by pressing ENTER.
↔ If a value or parameter can be changed, a cursor flashes. You can change this value or parameter by using the arrow keys. You apply the setting by pressing ENTER.
${ }^{4}$ Via the menu item "Return", you return to the parent level in the menu structure.
${ }^{4}$) Via the menu item "Exit from Menu", you return to the measurement mode.

Notice

Values that can be toggled or edited are shown in red (PDF file) or grey (b/w print of the manual) in the menu structure.

If no key is pressed for 60s in the configuration menu, the device automatically returns to the measurement mode.

The device can be protected against unauthorised configuration change by activating the password query. The password is always set to "165".

3.6.1 Configuration / Menu Structure ODSL 30/V... (Analogue)

Level 1	Level 2	Level 3	Level 4	Explanation / Notes	Default
Output Q Menu	Q1 Function sel.	$\begin{aligned} & \text { Q1 UpFer SW. Pt. } \\ & \text { Value: } \\ & \text { Q01000 } \end{aligned}$	Q1 UpFer Sh. Pt. act value: baloga	Upper switching point of output Q1 in millimetres	1000
		Q1 Lower SW. Ft. Value: Q00199	Q1 Lower Sw. Ft. act Volue: b00199	Lower switching point of output Q1 in millimetres	199
		Q1 Hysteresis Value: Q00020	Q1 Husteresis act Value: 100020	Switching hysteresis of output Q1 in millimetres	20
		Q1 lisht/dark light switching	Q1 lisht/dark liaht switching	Q1 is active if an object is present in the switching range	X
			Q1 lisht/dark dark Ewitching	Q1 is active if no object is present in the switching range	
		Q1 Driver PHP hish active	Q1 Driver PHP hish active	Q1 is high-side output (PNP)	X
			Q1 Driver NFH low active	Q1 is low-side output (NPN)	
			Q1 Driver FHP:HPN FUShFull	Q1 is push-pull output	
		Return		Return to level 2	
	Return			Return to level 1	
Analosue Out Menus	Cal. Ano. Dutfut. Current 4-20mA	Cal. Ana. Dutput. Current 4-20mA		Current output calibrated, Voltage output uncalibrated	X
		Cal. Ana. Dutput Voltase 1-104		Voltage output calibrated, Current output uncalibrated	
	Pos for max. val Value: 005000	Fos for max. val act Value: 05000		Distance [mm], at which the max. analogue value is output	5000
	Pos for min, val value: 000200	Pos for min. yal act Value: 00200		Distance [mm], at which the min . analogue value is output	200
	Return			Return to level 1	
Service Mend	Password Check inactive	Password Check inactive		Password for menu access not active	X
		Password Check activated		Password for menu access active, password: 165 (can not be changed)	
	$\begin{aligned} & \text { ODSL 308erial Ho } \\ & \text { Val:99999 } \end{aligned}$			Display of serial number, no changes possible	
	$\begin{aligned} & \text { SW V01.26YYMMIDI } \\ & \text { Val:31024 } \end{aligned}$			Display of software version, no changes possible	
	ParameteryMMMDD Val:31024			Display of parameter version, no changes possible	
	Interface-TyPe Analogue Inter- face			Display of the interface type, no changes possible	
	Return			Return to level 1	
Exit from Menu				Return to measurement mode	

3.6.2 Configuration / menu structure ODSL 30/24/V... (3 switching outputs)

Level 1	Level 2	Level 3	Level
Afplic. Param.	$\begin{aligned} & \text { Tmeas Bend Rem. } \\ & 100 \mathrm{~ms} \text { 150m 6-90\% } \end{aligned}$	Tmeas Band Rem. 100 ms 150 m 6-90\%	
Notice The functions under ApFlic. Parom. are not available until the Advanced Menu is activated (see chapter 3.7)		$\begin{array}{\|c} \text { Tmeas Bend Remn } \\ \text { 80ms } \\ 39 \mathrm{~m} \\ 6-90 \% \end{array}$	
		Tmeas Bend Rem. 70ms 9.8m 6-90\%	
		Tmeas Bond Rem. 50 ms 150 兹 $50-90 \%$	
		Tmeas Band Rem. 40ms 39 m 50-90\%	
		Tmeas Band Rem. 30 ms 9.8 m 50-90\%	
	DisF: Resolution $\begin{array}{r}\text { 1mm }\end{array}$	Disp: Resolution $\begin{array}{r}\text { 1mmin }\end{array}$	
		DisF. Resolution	
	Offset/Preset.	Offeet. Direction ... Fositive	Offeet Direction .". Fositive
			Offeet. Direction ... hegative
		Offsetvalue [mm] Value: 000000	Offsetvalue [mm] oct Yol. 000000
		Presetvalue [mm] value: 100060	Presetualue [mm] act Val. 000000
		Preset Calculate ." inoctive	Freset Calculate ... active
	Return		
InFut Menut	InF: teach Q1/02 Teach Dut Q1/02	InF: teach Q1/Q2 Teach Out 01/02	
		InF, teach Q1/02 Infut disabled	
	Infut activiref Referencing	Infut activiref Referencing	
		Infut activiref Activation + Ref	
		Infut activiref Infut disabled	
	InF: teach QS Teach output Q3	InF. teach 03 Teach Dutput QS	
		InF: teoch QS Infut disabled	
	Infut Polarity active HIGH +24 V	Infut Polority active HIGH +24 V	
		Infut Polority active LON EV	
	Return		

Explanation / Notes

Measurement time / uniqueness range / object reflectivity

Display resolution 1 mm
Display resolution 0.1 mm
Offset sign positive
Offset sign negative
Offset value, entry in mm

Preset value, entry in mm Trigger of the preset function

Return to level 1
Teach input is activated
Teach input is deactivated

Input is referencing input
Input is activation and referencing input

Input activ is deactivated
Teach input is activated
Teach input is deactivated
All inputs are active high
X
All inputs are active low
Return to level 1

Level 1
Output Q Menus

Level 2 Level 3		Level 4
Q1 Function sel.	Q1 Uffer Sw. Pt. Volue: 001000	Q1 UpFer Sw. Pt. act Volue: 001000
	$\begin{aligned} & \text { Q1 Lower SH: Pta } \\ & \text { Value: } \end{aligned}$	Q1 Lower Sw. P'. act Value: 000199
	$\begin{aligned} & \text { Q1 Hesteresis } \\ & \text { Volue: } \end{aligned}$	Q1 Hysteresis act Value: 00020
	Q1 lisht/dark light switching	Q1 lisht/dark light switching
		Q1 lisht/dark dark switching
	Q1 Iriver PHP high active	Q1 Driver PHP high active
		Q1 Driver HFH low active
		Q1 Driver PFPINPN FUShFull

Return

Ret.urn

03 Driver PHF hish active	03 Driver PNF hish active
	QS Driver WPH low active
	03 Driver PNF:NPN FUshFull

Return

Explanation / Notes
Upper switching point of output Q1 in millimetres
Lower switching point of output Q1 in millimetres

Switching hysteresis of output Q1 in millimetres

Q1 is active if an object is present in the switching range
Q1 is active if no object is present in the switching range

Q1 is high-side output (PNP)
Q1 is low-side output (NPN)
Q1 is push-pull output

Return to level 2
Upper switching point of output Q2 in millimetres
Lower switching point of output Q2 in millimetres

Switching hysteresis of output Q2 in millimetres

Q2 is active if an object is present in the switching range
Q2 is active if no object is present in the switching range

Q2 is high-side output (PNP)
Q2 is low-side output (NPN)
Q2 is push-pull output

Return to level 2
Upper switching point of output Q3 in millimetres

Lower switching point of output 199
Switching hysteresis of output Q3 in millimetres

Q3 is active if an object is present in the switching range Q3 is active if no object is present in the switching range

Q3 is high-side output (PNP)
Q3 is low-side output (NPN)
Q3 is push-pull output

Return to level 2

Return to level 1
Password Check inactive
Password Check activated

OnSL 30 Serigl	No
Val:	
9999	

SW Y01.20 YYMMDD	
Yol:	31024

Parometer YYMMDD
Val: 31024
Interface-TyFe
3 Dutp. Q1-02-03
Return
Exit from Menu

Level 4

Explanation / Notes
Default
Password for menu access not X active
Password for menu access active,
password: 165 (can not be changed)

Display of serial number, no changes possible

Display of software version, no changes possible

Display of parameter version, no changes possible

Display of the interface type, no changes possible

Return to level 1

Return to measurement mode

3.6.3 Configuration / menu structure ODSL 30/D 232... (digital RS 232)

Level 1
Level 2

Output Q Menu	Q1 Function sel.	Q1 UfFer Sh. Pt. Value: 001001	Q1 UpFer Sw. Pt. act Value: a 010 0 0
		Q1 Lower Sh. Pt.	Q1 Lower Sw. Ft. act Volue: 000199
		Q1 Hysteresis	Q1 Husteresis act Volue: 00020
		Q1 lisht/dark lisht Switching	Q1 lisht/dark lisht switching
			Q1 lisht/dark dark switching

Q1 Driver	
FHP high active	Q1 Driver PHP high active
	Q1 Driver
HPN low active	
	Q1 Driver
FHP/HFN FushFull	

Return

Q2 Function sel.	$\begin{aligned} & \text { Q2 UpFer Sw. Pt: } \\ & \text { Volue: } \end{aligned}$	Q2 Upfer Sh. Pt. act Volue: 001500
	Q2 Lower Sk. Pt, Volue:	Q2 Lower Sw. Pt. act Volue: 000199

Q2 Hesteresis	02 Hysteresis
Volue:	g00020
oct Volue: b0020	

Q2 light/dark light Switching	Q2 light/dark light switching
	Q2 lisht/dark dark Switoching

Q2 Driver PHP high active	Q2 Driver PHP high active
	Q2 Driver HPN low active
	02 Driver FHFiNPN FushFull

Explanation / Notes
Default
Upper switching point of output
Q1 in millimetres
Lower switching point of output Q1 in millimetres

Switching hysteresis of output Q1 in millimetres

Q1 is active if an object is present in the switching range Q1 is active if no object is present in the switching range

Q1 is high-side output (PNP)
Q1 is low-side output (NPN)
Q1 is push-pull output
Return to level 2
Upper switching point of output Q2 in millimetres
Lower switching point of output Q2 in millimetres

Switching hysteresis of output Q2 in millimetres

Q2 is active if an object is present in the switching range
Q2 is active if no object is present in the switching range

Q2 is high-side output (PNP)
Q2 is low-side output (NPN)
Q2 is push-pull output

Return to level 2
Return to level 1
Return Return

Level 1	Level 2	Level 3
Serial com Menu	Com Function sel ASCII Distance	com Function sel ASCII Distance
		Com Function sel ASCII Dist.: 1 mm
		Com Function sel Distance 14 bit.
		col Function sel Distance 16 bit.
		Com Function sel Distance 20bit.
		com Function sel Remote Control
		Com Function sel Switched OFF
	Wade Address Value: 100	Hode Address act Value: 100
	Boudrate CoM Boudrate 9600	Boudrate Com Boudrate 9600
		Boudrate COH Boudrate 19200
		Boudrate Com Boudrate 28900
		Boudrate COM Boudrate 38400
		Boudrate Com Boudrate
		Boudrate COM Boudrate 115200
		Boudrate Com Boudrate 600
		Boudrate COM Boudrate 1200
		$\begin{array}{\|l} \hline \text { Boudrate Com } \\ \text { Boudrate } 2400 \end{array}$
		Boudrate Com Boudrate 4800
	Storbits com	Stopbits com 1
		${ }_{2}^{5} \text { topbits com }$
	Return	
Service Menu	Fassword Check inactive	Fassword Check inactive
		Fassword Check activated
	OnSL 30 Serial HO Wal: 99999	
	SW V01.20 YMMMDD Val: 31024	
	Parameter YYMMDI Vol: 31024	
	Interface-TyFe RS 232 Interface	
	Return	
Exit from Menu		

Level 4

Explanation / Notes
Serial transmission, output in ASCII, 5 bytes, resolut. 1 mm
Serial transmission, output in ASCII, 6 bytes, resolut. 0.1 mm
Serial transmission, 2 bytes, 15 m meas. range, res. 1 mm Serial transmission, 3 bytes, 30 m meas. range, res. 1 mm
Serial transmission, 4 bytes, 30 m meas. range, res. 0.1 mm
Remote control activated,
RS 232 no bus operation
Serial data transmission deactivated

Node address 0 ... 14

Baud rate 9600 bit/s
Baud rate 19200 bit/s
Baud rate 28800 bit/s
Baud rate 38400 bit/s
Baud rate 57600 bit/s
Baud rate 115200 bit/s
Baud rate 600 bit/s
Baud rate 1200 bit/s
Baud rate 2400 bit/s
Baud rate 4800 bit/s

Number of stop bits: 1
Number of stop bits: 2
Return to level 1
Password for menu access not active
Menu access password active, password: 165 (n . changeable)

Display of serial number, no changes possible

Display of software version, no changes possible

Display of parameter version, no changes possible

Display of the interface type, no changes possible

Return to level 1

Return to measurement mode

Default

3.6.4 Configuration / menu structure ODSL 30/D 485... (digital RS 485)

Level 1 Level 2		Level 3	Level 4
Apflic. Farom.	Tmeas Band Rem. 100 ms 150m 6-90\%	Tmeas Band Rem. 100 ms 150m 6-90\%	
Notice		$\begin{gathered} \text { Tmeas B9nd Remn } \\ \text { 70ms } 9.8 \mathrm{~m} \text { 6-90\% } \end{gathered}$	
The functions under AFFlic: Param. are not available until the Advanced Menu is activated (see chapter 3.7)		Tmeas Bend Rem. 50 ms 150兹 50190\%	
		Tmeas Bend Rem. 40ms 39m 50-90\%	
		Tmeas Band Rem. 30ms 9.8 m $50-90 \%$	
Disf: Resolution 1mm		Disfa Resolution $\begin{array}{r}\text { 1mmen }\end{array}$	
		DisF: Resolution $\begin{array}{r}\text { Q.1mm }\end{array}$	
Offset/Preset.		$\begin{gathered} \text { Offset Direction } \\ \text { ". } \end{gathered}$	Offset. Direction ... Fositive
			Offset Direction ... nesative
		$\begin{aligned} & \text { Offsetvalue [mm] } \\ & \text { Value: } 000000 \end{aligned}$	Offsetvalue [mm] act Val. 000000
			Presetvalue [mm] act Yal. 000000
		Preset Calculate .". inoctive	Preset Calculate ... active
	Return		
Infut Menus InF. teach Q Teach Out Q1		InF: teach Q1/Q2 Teach Out Q1/02	
		InF: teach Q1/Q2 Infut disabled	
	Infut activiref Referencing	Infut activiref Referencing	
		Infut activiref Activation + Ref	
		Infut activiref Infut disabled	
	Infut Polority active HIGH +24 V	Infut Polarity active HIGH +24 V	
		Infut Polarit.y active LOW 0V	
	Return		

Explanation / Notes

Measurement time / uniqueness range / object reflectivity
Measurement time / uniqueness range / object reflectivity

Measurement time / uniqueness range / object reflectivity
Measurement time / uniqueness range / object reflectivity
Measurement time / uniqueness range / object reflectivity
Measurement time / uniqueness range / object reflectivity

Display resolution 1 mm
Display resolution 0.1 mm

Offset sign positive
Offset sign negative

Offset value, entry in mm

Preset value, entry in mm Trigger of the preset function

Return to level 1

Teach input is activated
Teach input is deactivated

Input is referencing input
Input is activation and referencing input

Input activ is deactivated

All inputs are active high

All inputs are active low

Return to level 1

X

Level 1
Output Q Ment

Level 2 Level 3		Level 4
Q1 Function sel.	$\begin{aligned} & \text { Q1 Upper Sw. Pt: } \\ & \text { Value: } \end{aligned}$	Q1 UpFer Sw. Pt. act Value: 001000
	$\begin{aligned} & \text { Q1 Lower Sw. Pt: } \\ & \text { Volue: } \end{aligned}$	Q1 Lower Sw. Ft. act Volue: 000199
	Q1 Hesteresis Volue: 000020	Q1 Hysteresis act Value: 00020
	Q1 lisht/dark light switching	Q1 lisht/dark lisht switching
		Q1 light/dark dork switchine
	```Q1 Driver FHF high active```	Q1 Driver PHP high active
		Q1 Driver WFN low active
		Q1 Iriver   FHF:/WFH FUSGPUll
	Return	
Q2 Function sel.	$\begin{aligned} & \text { Q2 UpFer S4. Pt. } \\ & \text { Volue: } \end{aligned}$	Q2 UpFer Sw: Pt. act Value: 001500
	Q2 Lower Sw. Pt. Value: Q00199	Q2 Lower Sh. Pt. act Value: 000199
	02 Hesteresis Value: 000020	Q2 Hesteresis act Value: 00020
	02 light/dark light switching	Q2 light/dark lisht switohing
		Q2 light/dark dark switching
	Q2 Driver PHP hish active	Q2 Driver PHP high active
		Q2 Driver   HFN low active
		Q2 Driver   PHFINPH Fushpull
	Return	
Return		

Explanation / Notes
Upper switching point of output Q1 in millimetres
Lower switching point of output 199
Q1 in millimetres
Q1 in millimetres
Switching hysteresis of output Q1 in millimetres

Q1 is active if an object is present in the switching range
Q1 is active if no object is present in the switching range
Q1 is high-side output (PNP) $\quad \mathbf{X}$

Q1 is low-side output (NPN)
Q1 is push-pull output

Return to level 2
Upper switching point of output Q2 in millimetres
Lower switching point of output Q2 in millimetres

Switching hysteresis of output Q2 in millimetres

Q2 is active if an object is present in the switching range
Q2 is active if no object is present in the switching range Q2 is high-side output (PNP) X Q2 is low-side output (NPN) Q2 is push-pull output Return to level 2

Return to level 1

Level 1
Level 2
Level 3


ODSL 30 Serial NO   Val:   99999	
$\begin{aligned} & \text { SW V01.20 } \\ & \text { Val: } \end{aligned}$	$\begin{array}{r} Y Y / 1 \mathrm{MDII} \\ 31024 \end{array}$
Parometer Val:	$\begin{array}{r} Y Y 1 / 1 / 10 I D \\ 31024 \end{array}$
Interface-TuFe RS 485 Interface	
Return	

Level 4
Explanation / Notes
Serial transmission, output in ASCII, 5 bytes, resolut. 1 mm
Serial transmission, output in ASCII, 6 bytes, resolut. 0.1 mm
Serial transmission, 2 bytes, 15 m meas. range, res. 1 mm
Serial transmission, 3 bytes, 30 m meas. range, res. 1 mm
Serial transmission, 4 bytes, 30 m meas. range, res. 0.1 mm
Remote control activated via bus commands
Serial data transmission deactivated

Node address 0 ... 14

Baud rate 9600 bit/s
Baud rate 19200 bit/s
Baud rate 28800 bit/s
Baud rate $38400 \mathrm{bit} / \mathrm{s}$
Baud rate 57600 bit/s
Baud rate 115200 bit/s
Baud rate 600 bit/s
Baud rate 1200 bit/s
Baud rate 2400 bit/s
Baud rate 4800 bit/s

Number of stop bits: 1
Number of stop bits: 2

Return to level 1
Password for menu access not active
Menu access password active, password: 165 ( n . changeable)

Display of serial number, no changes possible

Display of software version, no changes possible

Display of parameter version, no changes possible

Display of the interface type, no changes possible

Return to level 1

Return to measurement mode

### 3.6.5 Operating example

The following values are to be configured for an ODSL 30/V... :

- calibrated current output 4 ... 20 mA , characteristic curve with positive gradient and measurement range $500 \ldots 3500 \mathrm{~mm}$.
- upper switching point for output Q1 at 3000 mm and lower switching point for output Q1 at 2000 mm .

The device is set to factory settings and is in measurement mode.
Configuring the calibrated current output


Action	Display	Explanation / Notes
Select menu item with the ENTER key.	Anologue Dut Menus	Menu level 1.
Press the keys $\square$ and $\square$ to change to the menu item "Exit from Menu".	Exit from Menu	This menu item exits the configuration menu.
Select menu item with the $\underbrace{\text { ENTER }}$ key.	Leuze electronic Dist. [mm] 10687	The device has returned to measurement mode

## Configuring the switching points Q1

## Action

Press an arbitrary key $\triangle, \square$, or ENTER.
Press the keys $\triangle$ and $\nabla$ to change to the menu item "Outplet. Q Menu".

Select menu item with the ENTER key.

Select menu item with the ENTER key.

Press the ${ }^{\text {ENTER }}$ key to edit the value.
Press the $\Delta$ and $\square$ keys to change the
present value to " 3000 ".

Apply the new value by pressing the ${ }^{\text {ENTER }}$ key.

Save the new value by pressing the ENTER key.
Press the keys and $\triangle$ to change to the menu item
"Q1 Lower Sw. Pt.".
Press the ${ }^{\text {ENTER }}$ key to edit the value.
Press the $\triangle$ and $\nabla$ keys to change the present value to "2000".

Apply the new value by pressing the ENTER key.

Save the new value by pressing the $\underbrace{\text { ENTER }}$ key.

Display


Q1 UfFer Sw. Ft,
new Value->003000

t.o store fress ,
hew
Yol.


Q1 UfFer Sw. Pt,	
Volue:	Q03000

$$
\begin{aligned}
& \text { Q1 Lower Sw. Pt. } \\
& \text { Volue: }
\end{aligned}
$$

$$
\begin{array}{|l|}
\hline \text { Q1 Lower Sw. Pt. } \\
\text { act Value: } 000199
\end{array} \quad \text { Ready for editing. }
$$

$$
\begin{array}{|l|}
\hline \text { Q1 Lower Sw. Ft. } \\
\text { new Value->002000 }
\end{array}
$$

to store fress .is
new
Val.:

[^1]This menu item configures the switching outputs.

Menu item for the configuration of the switching output Q1.

This menu item configures the upper switching point for output Q1.

New value has been edited.

This menu item configures the lower switching point for output Q1.

New value has been edited.

## Explanation / Notes

You get to the configuration menu for the ODSL 30...
pplying.

Saving.


### 3.7 Advanced Menu (for software versions V01.10 and newer)



## Notice!

For information on querying the device software version, see chapter 3.5.5.

In addition to the described functions, additional, new functions are available in the Advanced Menu:

- Setting an offset/preset value to compensate for mounting tolerances
- Reduction in measurement time to as little as 30 ms
- Changing the display resolution

Also available in the Advanced Menu is the menu item AfFlic. Faram.. This can be used to change the measurement value output of the ODSL 30.


## Notice!

To protect against unintentional access, the Advanced Menu is hidden from view by default and must first be activated by the user.

## Attention!

Please be certain to read the following notices before you activate the advanced mode and change parameters in the menu item AFFlic. Forom. .

## Activation of the advanced mode

${ }^{4}$ ) Hold down the entef button during measurement operation for longer than 5 s .
The Advonced Menu? til tort 'rEs. display appears.
${ }^{4}$ ) Press the $\Delta$ or $\nabla$ button to cancel activation of the Advanced Menu.
4) Confirm Yes by pressing the bural button.

The Advanced Menu is activated now display appears briefly.
The menu item Aprlic. Forom. is now also available in menu level 1.

### 3.7.1 Setting an Offset/Preset Value - Compensating for Mounting Tolerances

Deviations which occur during mounting of the ODSL 30 can be compensated for with the offset or preset parameter:

- For offset, a fixed value and sign are specified.
- For preset, a nominal measurement value is specified; a measurement is then performed using an object located at the desired nominal distance.


## Attention!

If the offset or preset results in negative measurement values, zero is output at the interface and on the display.

## Setting the offset

Configuration is performed using the key pad and display:
AFFlic. Foram. -> OffsetiFreset.
The following can be entered:

- Dffset Direction Selection.". Fositive or nan hegutive, i.e. specifies whether the offset value is added to or subtracted from the measurement value.
- DffEetuolue [mm] Enter the offset value.

The set offset value is subtracted from the calculated (digital) measurement value of the sensor if negative was set for the Offeet Direction.

## Example:

Measurement value of the ODSL 30: 1500 mm ,

Input:

Output on the display and at the interface: 1400 mm

## Setting the preset

Configuration is performed using the key pad and display:
AFFlic. Faromn -> OffEetiPreset.
Procedure for setting a preset value:

- Enter nominal value -> Presetwalue [mm]
- In menu item Freset calculate, select the option ". " active
- Press the entrer button to confirm.

A measurement is made, the preset is stored and the ODSL 30 is ready.
The offset value is automatically calculated from the measurement value and nominal measurement value (preset value) and entered as the offset in the configuration. A preset is deactivated by entering an offset value of zero.

## Example:

Input:
Object dist. 1300 mm in front of ODSL 30 :

Object distance 1300 mm :
Object distance 1400 mm :

Preset value: 1400 mm ,
Preset Calculation ...active, trigger measurement, an offset of +100 mm is automatically stored

Output on display and at interface: 1400 mm
Output on display and at interface: 1500 mm

### 3.7.2 Reduction in Measurement Time to as Little as 30 ms

## Definition of uniqueness range

Due to the periodicity of the sinusoid, the phasing of the signals received by the ODSL 30 limits the determination of unique measurement values to within a specific interval. The length of this interval is called the uniqueness range. A large uniqueness range is equivalent to high background suppression.

## Relationship between uniqueness range - luminosity coefficient - measurement time

In the default setting (uniqueness range 150 m , measurement on both light as well as dark objects with luminosity coefficients of $6 \ldots 90 \%$ ), the measurement time is 100 ms .
By limiting the uniqueness range and the luminosity coefficient (measurements on only light objects with luminosity coefficients of $50 \ldots 90 \%$ ), the measurement time can be reduced to as little as 30 ms .
Configuration is performed using the key pad and display:
AfFlic. Foram. -> Tmeas Eend Rem.

Changes to these variables yield measurement times as shown in the following table:

Measurement time [ms]	Uniqueness range [m]	Object luminosity coefficient [\%]	Setting in the menu item   Tmeas Eand Rem.
30	9.8	$\begin{gathered} 50 \ldots 90 \\ \text { (light objects) } \end{gathered}$	30ms 9.8m 50-90\%
40	39		40 ms 39m 50-90\%
50	150		50 ms 150m 50-90\%
70	9.8	$6 \ldots 90$(light and dark objects)	70 ms 9.8m 6-90\%
80	39		80ms 39m 6-90\%
$100{ }^{1)}$	150		100ms 150m 6-90\%

1) Default setting


## Notice!

By using the cooperative target CTS 100x 100 (Part No. 501 04599), you ensure that the luminosity coefficient on the surface being measured is 50 ... $90 \%$.

## Attention!

If an object is located at a distance greater than the preselected uniqueness range, incorrect measurements will result (provided the reception signal is sufficiently high)!

## Example:

With a uniqueness range of 9.8 m , an object is located at a distance of 1 m . The sensor outputs a correct measurement value of 1 m .

If the object is located at a distance of 10.8 m or 20.6 m or 30.4 m etc. from the sensor, the sensor outputs an incorrect measurement value of 1 m , i.e. a correct measurement value is only output for objects located within the uniqueness range.


Figure 3.11: ODSL 30 measurement values with a uniqueness range of 9.8 m

### 3.7.3 Changing the Display Resolution

On delivery, the measurement resolution of the ODSL 30 (display) is 1 mm . In the advanced mode, the resolution of the display can be increased to 0.1 mm by configuring with the key pad and display:
AFFlic. Forom. $->$ DisF: Resolution Quimm.

## 

Notice!
This menu item refers only to the display. Changing this parameter has no direct effect on the output at the serial or analogue interfaces.

If you would like to transmit measurement data with a resolution of 0.1 mm using the ODSL 30/D... with serial interface, this can be configured at a different location (see chapter 3.4.3).

For the ODSL 30/V..., the measurement range is to be restricted by appropriately configuring the analogue output.

The configuration of a resolution of 0.1 mm is useful when performing measurements on objects with high diffuse reflection and when the measurement data are processed further (e.g. averaging).

## 4 Technical Data ODSL 30

### 4.1 Optical data

	ODSL 30
Optical data	
Measurement range ${ }^{11}$	$\left.0.2 \ldots 30 \mathrm{~m}^{2}\right)$
Resolution	1 mm
Light source	laser (modulated light)
Wavelength	655 nm (visible red light)
Light-spot diameter	divergent, $\varnothing 6 \mathrm{~mm}$ at a distance of 10 m
Minimum object size	$50 \times 50 \mathrm{~mm}^{2}$ at a distance of 10 m (6 .. 90\% diffuse reflection)
Error limits ${ }^{3}$	
Absolute measurement accuracy ${ }^{1)}$	$\pm 5 \mathrm{~mm}$ ( $6 \ldots 90 \%$ diffuse reflection),   $\pm 2 \mathrm{~mm}$ ( $90 \%$ diffuse reflection) after referencing
Repeatability ${ }^{4}$	$\pm 2 \mathrm{~mm}$ ( $6 \ldots 90 \%$ diffuse reflection)
Temperature drift	typ. $0.5 \mathrm{~mm} / \mathrm{K}$ (without referencing)
Timing	
Measurement time	100ms (90\% diffuse reflection)
Delay before start-up	$\leq 1 \mathrm{~s}$

1) Reflectance factor $6 \% \ldots 90 \%$, over the whole temperature range, measured object $\geq 50 \times 50 \mathrm{~mm}^{2}$
2) ODSL 30/D... up to 65 m , luminosity coefficient $50 \ldots 90 \%$
3) After an operating time of 10 min ., the device has reached the operating temperature required for an optimal measurement.
4) Same object, measured object $\geq 50 \times 50 \mathrm{~mm}^{2}$

### 4.2 Electrical Data, Installation Data

### 4.2.1 ODSL 30/V-30M-S12

	ODSL 30/V-30M-S12
Electrical data	
Operating voltage $U_{B}$	18... 30VDC (incl. residual ripple)
Residual ripple	$\leq 15 \%$ of $\mathrm{U}_{\mathrm{B}}$
Power consumption	$\leq 4 \mathrm{~W}$
Switching output ${ }^{1 /}$	1 PNP transistor output, HIGH active (default), NPN transistor or push-pull through configuration
Signal voltage high/low	$\geq\left(\mathrm{U}_{\mathrm{B}}-2 \mathrm{~V}\right) / \leq 2 \mathrm{~V}$
Output current	max. 100mA per transistor output
Analogue output	$\begin{gathered} 1 \text { voltage output } 1 \ldots 10 \mathrm{~V}\left(R_{\mathrm{L}} \geq 2 \mathrm{kOhm}\right) \\ 1 \text { current output }{ }^{2)} 4 \ldots 20 \mathrm{~mA}\left(\mathrm{R}_{\mathrm{L}} \leq 500 \mathrm{hm}\right) \end{gathered}$
Error limits	
Absolute measurement accuracy ${ }^{3}$ )	$\begin{gathered} \pm 5 \mathrm{~mm} \text { ( } 6 \ldots 90 \% \text { diffuse reflection), } \\ \pm 2 \mathrm{~mm} \text { ( } 90 \% \text { diffuse reflection) after referencing } \end{gathered}$
Repeatability ${ }^{3)} 4$ )	$\pm 2 \mathrm{~mm}$ (6 ... $90 \%$ diffuse reflection)

1) LC display and key pad at the device for configuration
2) The current output is calibrated
3) Minimum value is dependent on the configuration of the analogue output
4) Same object, identical environmental conditions, measurement object $\geq 50 \times 50 \mathrm{~mm}^{2}$

### 4.2.2 ODSL 30/24-30M-S12

	ODSL 30/24-30M-S12
Electrical data	$10 \ldots 30 \mathrm{VDC}$ (incl. residual ripple)
Operating voltage $\mathrm{U}_{\mathrm{B}}$	$\leq 15 \%$ of $\mathrm{U}_{\mathrm{B}}$
Residual ripple	$\leq 4 \mathrm{~W}$
Power consumption	3 PNP transistor outputs, HIGH active (default),   NPN transistor or push-pull through configuration
Switching outputs 1$)$	$\geq\left(\mathrm{U}_{\mathrm{B}}-2 \mathrm{~V}\right) / \leq 2 \mathrm{~V}$
Signal voltage high/low	max. 100mA
Output current	per transistor output

1) LC display and key pad at the device for configuration

### 4.2.3 ODSL 30/D 232-30M-S12

	ODSL 30/D 232-30M-S12
Electrical data	
Operating voltage $\mathrm{U}_{\mathrm{B}}$	$10 \ldots$ 30VDC (incl. residual ripple)
Residual ripple	$\leq 15 \%$ of U
Power consumption	$\leq 4 \mathrm{~W}$
Switching outputs 1$)$	
Signal voltage high/low	2 PNP transistor outputs, HIGH active (default),   NPN transistor or push-pull through configuration
Output current	$\geq\left(U_{\mathrm{B}}-2 \mathrm{~V}\right) / \leq 2 \mathrm{~V}$
Serial interface	max. 100mA
	per transistor output

1) LC display and key pad at the device for configuration

### 4.2.4 ODSL 30/D 485-30M-S12

	ODSL 30/D 485-30M-S12
Electrical data	
Operating voltage $\mathrm{U}_{\mathrm{B}}$	$10 \ldots 30 \mathrm{VDC}$ (incl. residual ripple)
Residual ripple	$\leq 15 \%$ of $\mathrm{U}_{\mathrm{B}}$
Power consumption	$\leq 4 \mathrm{~W}$
Switching outputs 1$)$	
Signal voltage high/low	2 PNP transistor outputs, HIGH active (default),   NPN transistor or push-pull through configuration
Output current	$\geq\left(U_{\mathrm{B}}-2 \mathrm{~V}\right) / \leq 2 \mathrm{~V}$
Serial interface	max. 100mA
	per transistor output

1) LC display and key pad at the device for configuration

### 4.3 Mechanical Data, Environmental Data

	ODSL 30
Mechanical data	
Housing	metal
Optics cover	glass
Weight	650 g
Connection type	M12 connector, 8-pin
Environmental data	
Ambient temp.	
(operation/storage)	$0 \ldots+45^{\circ} \mathrm{C} /-40 \ldots+70^{\circ} \mathrm{C}$
Extraneous light limit	$\leq 5 \mathrm{kLux}$
Protective circuit 1 )	2,3
VDE safety class ${ }^{\text {}}$ 2)	II, all-insulated
Protection class	IP 65
Standards applied	IEC 60947-5-2

1) 2=polarity reversal protection, $3=$ short-circuit protection for all outputs
2) Rating voltage 250 VAC

### 4.4 Dimensioned and Connection Drawings

All ODSL 30 variants


Figure 4.1: Dimensioned drawing ODSL 30 variants

ODSL 30/V... (analogue output)


Figure 4.2: Electrical Connection ODSL 30/V...
ODSL 30/24... (3 switching outputs)


Figure 4.3: Electrical Connection ODSL 30/24...
ODSL 30/D 232... (digital output RS 232)


Figure 4.4: Electrical Connection ODSL 30/D 232...

ODSL 30/D 485... (digital output RS 485)


Figure 4.5: Electrical Connection ODSL 30/D 485...

### 4.5 Accessories

The following accessories are available for the ODSL 30:

Designation	Order No.	Short descriptions
K-D M12A-8P-2m-PUR	50104591	Connection cable M12, 8-pin, axial, length 2m
K-D M12A-8P-5m-PUR	50104590	Connection cable M12, 8-pin, axial, length 5m
UPG 5 ${ }^{1)}$	50039627	Programming adaptor for ODSL 8/ODSL 30/   ODS 96
ODS 96 configuration software ${ }^{2)}$	Download at www.leuze.de	
CTS 100x100		50104599
Cooperative target, luminosity coefficient   $50 \ldots 90 \%$		

1) Required for the visualisation of the measurement values via the ODS 96 configuration software.
2) With the ODSL 30 ..., this can only be used exclusively for the visualisation of measurement values on the PC; configuration is not possible!

Notice
In connection with the ODSL 30, the configuration software can only be used for the display of measurement values, but not for the configuration of the device.

## 5 Installation

### 5.1 Storage, Transportation

## Unpacking

${ }^{4}$ Check the packaging for any damage. If damage is found, notify the post office or shipping agent as well as the supplier.
4) Check the delivery contents using your order and the delivery papers:

- delivered quantity
- device variant and model as indicated on the nameplate
- accessories
- operating manual
${ }^{4}$ Save the original packaging for later storage or shipping.
If you have any questions concerning your shipment, please contact your supplier or your local Leuze electronic sales office.
(4) Observe the local regulations regarding disposal of packaging material.


### 5.2 Mounting



## Notice

The mounting device BT 30 is already included in the delivery package of the ODSL 30.

## View through a chase



Figure 5.1: View through a chase
If the ODSL 30 has to be installed behind a cover, the chase has to have at least the size of the optical glass cover. Otherwise, a correct measurement is not possible or can not be guaranteed.

### 5.3 Teach-in

You can adjust the upper switching points by means of teach-in; with the ODSL 30/V..., you can also set the characteristic output curve of the analogue output by means of teach-in. For teach-in, there are differences among the various device variants:

## Teach procedure for ODSL 30/V... (1 switching output)

${ }^{4}$ Position the measured object at the desired distance. Connect the teach input teach Q1 for $\geq 2$ sec. to $+U_{B}$. After that, connect the teach input to GND. The switching output is taught.

Teaching takes place towards the switching point.
These default values are preset:

- Function characteristics of the switching output: "light switching"
- Lower switching point: 199 mm
- Upper switching point: 1000 mm
- Hysteresis: 20 mm

You can change these values using the key pad and LCD display.

## Teach-in of the characteristic output curve of the ODSL 30/V...

In addition to the edge-controlled teach-in (slope control) of the switching outputs, teachin of the characteristic output curve is also possible via a teach line for devices with software version V01.10 and newer (see chapter 3.5.5). The following steps are required for the line teach-in of the analogue characteristic curve:

1. Activation of the analogue line teach function via the key pad and menu.

Activate Infut. Menu -> Teach Mode -> Teach Mode time control.
2. Position the measured object at the desired distance.
3. The respective teach function is activated by applying the active level (default $+U_{B}$ ) to the teach input "Teach Q1" (pin 5). The teach event is indicated by the flashing of the LEDs and on the display.

Teach function	Duration of teach   signal	LED green	LED yellow
Upper switching point   switching output Q1	$2 \ldots 4 \mathrm{~s}$	flash synchronously	
Distance value for   analogue output $1 \mathrm{~V} / 4 \mathrm{~mA}$	$4 \ldots 6 \mathrm{~s}$	continuous   light	flashing
Distance value for   analogue output $10 \mathrm{~V} / 20 \mathrm{~mA}$	$6 \ldots 8 \mathrm{~s}$	flashing	continuous   light

4. To finish the teach event, disconnect the teach input from the teach signal after the desired time.
5. A successful teach event is signalled by the end of the flashing of the LEDs. The menu entries can be used to check that the teach values are properly accepted and to make any changes.

## Error messages

Rapid flashing of the green LED following a teach event indicates an unsuccessful teach event. The sensor remains ready for operation and continues to function with the old values.

Remedy:

- Repeat teach event or
- Activate teach input for more than 8 s or
- Disconnect sensor from voltage to restore the old values.


## Teach procedure for ODSL 30/D... (2 switching outputs)

$\Leftrightarrow$ Position the measured object at the first desired distance. Connect the teach input teach Q1/Q2 for $\geq 2$ sec. to $+U_{B}$. The LEDs are flashing simultaneously. Reconnect the teach input to GND. The first switching output is taught.
${ }^{4}$ ) Now, position the measured object at the second desired distance. Connect the teach input teach Q1/Q2 for $\geq 2$ sec. to $+U_{B}$. The LEDs now flash alternately. Reconnect the teach input to GND. The second switching output is taught. In non-operational mode, the teach input is connected to GND.

Teaching takes place towards the switching points.
These default values are preset:

- Function characteristics of the switching outputs: "light switching"
- Lower switching point Q1: 199 mm , lower switching point Q2: 199 mm
- Upper switching point Q1: 1000 mm , upper switching point Q2: 1500 mm
- Hysteresis: 20 mm each

You can change these values using the key pad and LCD display.

## Teach procedure for ODSL 30/24... (3 switching outputs)

${ }^{4}$ ) Switching outputs Q1/Q2: Teach procedure is the same as for ODSL 30/D...
${ }^{4}$ ) Switching output Q3: Teach procedure is the same as for ODSL 30/V... via teach input teach Q3

Teaching takes place towards the switching points.
These default values are preset:

- Function characteristics of the switching outputs: "light switching"
- Lower switching point Q1: 199 mm , lower switching point Q2: 199 mm , lower switching point Q3: 199 mm
- Upper switching point Q1: 1000 mm , upper switching point Q2: 1500 mm , upper switching point Q3: 2000 mm
- Hysteresis: 20 mm each

You can change these values using the key pad and LCD display.

## 6 Software

## General description

The ODS 96 configuration software can be used with a connected ODSL 30 to display measurement values.
The software is available via download from www.leuze.de.


Notice
In connection with the ODSL 30, the ODS 96 configuration software can only be used for the display of measurement values, but not for the configuration of the device. For this purpose, the left arrow key (up arrow) on the key pad must be pressed while the device is switched on. After that, the ODSL 30 is in PC configuration mode.

### 6.1 Connection to a PC

### 6.1.1 Connection of the ODSL 30 to a PC

The ODSL 30 is connected to a PC via the programming terminal UPG 5. The terminal is simply inserted between the ODSL 30 and the connection cable. The UPG 5 is connected to the PC via the serial interface cable that ships with the UPG 5.


Figure 6.1: Connection of the ODSL 30 to a PC via the programming terminal UPG 5
Notice
The measurement values of the ODSL 30 can visualised on the PC using the ODS 96 configuration software. However, a configuration of the device via the ODS 96 configuration software is not possible. Visualisation of the measurement values is only possible up to 15m!

### 6.2 Installation of the ODS 96 configuration software

Requirements for the installation of the configuration software:

- Windows 95/98/NT/2000/XP,
- 486 processor or faster,
- 4 MByte RAM,
- 2 MByte free disk space
- and a CD-ROM drive.


## Starting the Installation File

4) Insert the installation CD into your CD drive.
( ) Choose Start $\rightarrow$ Run. Insert drive and name of the installation file (e.g.: d:Isetup.exe) and hit OK.
${ }^{4}$ In the following window, define the path for the installation directory and confirm with End.


Figure 6.2: Installation directory
${ }^{4}$ ) Follow the installation routine.

### 6.3 Starting the Program

After successful installation and restart of the computer, the configuration software is ready to use.
${ }^{4}$ ) Choose the ODS 96 configuration software icon from the program group.

Without connected ODSL 30, the following window appears after the program start, letting you choose a device:

## Additional window without connected ODSL 30



Figure 6.3: Device selection
If an ODSL $30 \ldots$ is connected, the following window appears:


Figure 6.4: Start menu before measurement
The software automatically recognises the connected sensor with its default settings.

### 6.3.1 Description of the Menu Commands

## Menu item "File"

Under menu item File you can switch to configuration mode or quit the program.

## Menu item "Type!"

The menu item Type! is used for the default setting of parameters and the generation of parameter files without an ODS being connected. It lets you choose a device variant that you wish to configure.

## Menu item "Options"

The following three possibilities are offered under Options:

- Language selection to choose the language for dialog.
- Interface to choose the port to which the cable to the ODSL 30 is connected (standard: COM 1). The configuration software automatically recognises the interface used. Choosing a different port could become necessary if more than one sensor is connected.
- Change password: first enter your old, then your new password and confirm with OK.


## Menu item "?"

Choose About..., for information on ODS 96 configuration software (product, program, device version, as well as for the address of Leuze electronic).

### 6.3.2 Measurement

By clicking the button Start measurement, the current measurement data of the connected ODSL 30 are transmitted and plotted in the adjacent diagram as a function of time.


Figure 6.5: Display of the current measurement values of the ODSL 30 connected
By clicking the button Stop Measurement, you terminate the transmission of the measurement values from the ODSL 30 and freeze the measurement diagram.
With a subsequent click on the button Print, the diagram is output on your standard Windows printer.


[^0]:    1) Continuous measured value output in a 100 ms grid. For the ODSL 30/D 485..., the transfer is carried out in RS 422 mode, i.e., with permanent transmission on the Tx+ and Tx- lines.
    2) For the ODSL 30/D $485 \ldots$, the transfer is carried out in RS 485 mode, i.e., the Tx+ and Txlines are switched to receive. This permits several ODSL $30 / \mathrm{D} 485 \ldots$ to be connected onto a single bus. In this case, the device addresses of the individual devices must differ from each other.
    The ODSL 30/D 232... can also be operated via remote control, however, only as a point-to-point-connection between the ODSL 30 and the controller.
[^1]:    Q1 Lower Sw. Pt. Value: 002000

    Saving.

