▲ Leuze electronic

the sensor people

604130 – 2009/02 Technische Änderungen vorbehalten

Über die Anschluss- und Betriebsanleitung

Diese Anschluss- und Betriebsanleitung enthält Informationen über den bestimmungsgemäßen Gebrauch und den Einsatz COMPACT*plus* / PROFIsafe

Alle Angaben der Anschluss- und Betriebsanleitung, insbesondere die Sicherheitshinweise müssen unbedingt beachtet werden.

Sicherheits- und Warnhinweise sind mit dem Symbol 🖄 gekennzeichnet.

Hinweise zu wichtigen Informationen sind mit dem Symbol (i) gekennzeichnet.

Diese Anschluss- und Betriebsanleitung ist sorgfältig aufzubewahren. Sie muss während der gesamten Einsatzdauer des COMPACT*plus /* PROFIsafe verfügbar sein.

Die Leuze electronic GmbH + Co. KG haftet nicht für Schäden, die durch unsachgemäße Benutzung entstehen. Zur sachgerechten Verwendung gehört auch die Kenntnis dieser Anschluss- und Betriebsanleitung.

© Nachdruck und Vervielfältigung, auch auszugsweise, nur mit ausdrücklicher Genehmigung durch

Leuze electronic GmbH + Co. KG Liebigstraße 4 D-82256 Fürstenfeldbruck Telefon +49 (0) 8141 5350-0 Telefax +49 (0) 8141 5350-190 info@leuze.de www.leuze.com

Inhaltsverzeichnis

1	Allg	emeines					
	1.1	Zertifizierungen					
	1.2	Symbole und Begriffe					
2	Sich	erheitshinweise	7				
	2.1	Gefahren bei Nichtbeachtung der Sicherheitshinweise	7				
	2.2	Einsatzbedingungen und bestimmungsgemäßer Gebrauch	7				
	2.3	Organisatorische Maßnahmen	8				
		2.3.1 Dokumentation	8				
		2.3.2 Sicherheitsvorschriften	8				
		2.3.3 Qualifiziertes Personal	8				
		2.3.4 Reparatur	8				
		2.3.5 Entsorgung	8				
3	Syst	emaufbau und Einsatzmöglichkeiten	9				
	3.1	PROFIBUS DP	9				
	3.2	PROFIsafe	10				
	3.3	COMPACT <i>plus</i> /PROFIsafe	11				
4	Fun	xtion	12				
	4.1	I Zyklischer Datenaustausch					
		4.1.1 Zyklische Eingangsdaten	12				
		4.1.2 Zyklische Ausgangsdaten	15				
	4.2	Azyklischer Datenaustausch – Lesen von Einzelstrahldaten	17				
	4.3	Proxy – Funktionsbaustein LG_PROXY					
	4.4	Identification & Maintenance Funktionen	22				
	4.5	Alarme	23				
5	Anze	eigenelemente	24				
	5.1	Anzeige am Empfänger	24				
		5.1.1 LEDs24					
		5.1.2 7-Segment-Anzeige	24				
	5.2	SafetyLab Software	25				
6	Mon	tage und Anschluss					
7	Eins	tellen der F-CPU	28				
	7.1	Einstell-Werte	28				
		7.1.1 Ansprechzeit	28				
		7.1.2 GSD-Datei	29				
		7.1.3 F-Parameter	29				
	7.2	Konfigurieren	30				
	7.3	Programmieren	31				
	7.4	Diagnosedaten					

8	Inbe	triebnahme					
	8.1	Projekt	ier-Beispiele				
		8.1.1	Plug and Play				
		8.1.2	Parameter-Speicherung über Proxy-FB34				
		8.1.3	Parameter-Umschaltung				
		8.1.4	Verwaltung mehrerer Proxy-FBs				
		8.1.5	Auslesen von Einzelstrahldaten				
	8.2	Szenar	ien mit Proxy-FB				
		8.2.1	Erstinbetriebnahme				
		8.2.2	Parameter-Änderung im Empfänger				
		8.2.3	Parameter-Umschaltung durch die F-SPS				
		8.2.4	Gerätetausch				
9 10	9 Prüfungen						
11	Tech	nische	Daten41				
	11.1	Allgem	eine Systemdaten des PROFIsafe – Empfängers41				
	11.2	1.2 PROFIsafe - Dienste					
	11.3	Maße, (Gewichte, Ansprechzeiten42				
		11.3.1	Sicherheits-Lichtvorhänge				
		11.3.2	Mehrstrahl-Sicherheits-Lichtschranken43				
		11.3.3	Muting-Transceiver				
12	12 Anhang 44						
	12 1	lieferu	mfang A/				
	12.2	Bestell	hinweise Zubehör 44				
	12.3	12.3 FG-Konformitätserklärung					
	12.3 EG-NOMORMITALSERKIARUNG						

1 Allgemeines

COMPACT*plus* Sicherheits-Lichtvorhänge, Mehrstrahl-Sicherheits-Lichtschranken und Muting-Transceiver sind Aktive Opto-elektronische Schutzeinrichtungen (Active Opto-electronic Protective Devices, AOPDs) Typ 4 gemäß EN/IEC61496-1 und (pr)EN/IEC61496-2 sowie SIL3 gemäß IEC61508. COMPACT*plus*/PROFIsafe ist die PROFIBUS-DP-Version dieses Gerätes mit sicherer Ankopplung entsprechend dem PROFIsafe-Profil. Nachfolgend wird der Begriff "Empfänger" gleichzeitig synonym für "Transceiver" verwendet, da alle PROFIBUS-Funktionen im Transceiver denen des Empfängers entsprechen. Auf den Sender wird hier nicht weiter eingegangen, da er keinerlei PROFIBUS-Funktionalitäten hat und in beliebiger Anschlussversion verwendet werden kann (siehe Anschluss- und Betriebsanleitung zum Funktionspaket, Kapitel 7).

1.1 Zertifizierungen

Leuze electronic GmbH & Co. KG in D-82256 Fürstenfeldbruck besitzt ein zertifiziertes Qualitäts-Sicherungssystem gemäß ISO9000:2000. COMPACT*plus*/PROFIsafe wurde unter Beachtung geltender europäischer Richtlinien und Normen entwickelt und gefertigt. Die EG-Baumusterpüfung nach EN IEC 61496 Teil 1 und Teil 2 und SIL3 nach IEC61508 wurde erteilt durch:

TÜV Süddeutschland Group Zertifizierstelle Ridlerstraße 65 D-80339 München

1.2 Symbole und Begriffe

Verwendete Symbole

	Warnhinweis, dieses Zeichen weist auf mögliche Gefahren hin. Bitte beachten Sie diese Hinweise besonders sorgfältig!
(j)	Hinweis zu wichtigen Informationen.

Tabelle 1.2-1 Symbole

Verwendete Begriffe:

Anlauf-/ Wieder- anlaufsperre	Verhindert automatischen Start nach Zuschalten der Versorgungsspannung, nach Eingriff in das Schutzfeld oder Auslösen des externen Sicherheitskrei- ses
AOPD	Aktive opto-elektronische Schutzeinrichtung (Active Opto-electronic Protective Device)
BWS	Berührungslos Wirkende Schutzeinrichtung = AOPD
CPU	Central Processing Unit
CRC	Cyclic Redundancy Check, Prüfsumme in einem Daten-Telegramm
DB	Datenbaustein
Download	Übertragung von Parametern vom Master zu einem Slave
DS	Datensatz
F-Parameter	Parameter eines fehlersicheren PROFIBUS - Gerätes
FB	Funktionsbaustein
GSD	Geräte-Stammdaten-Datei, Elektronisches Gerätedatenblatt das die Kom- munikationsparameter eines Gerätes enthält
Master	Steuereinheit in einem Bussystem, verteilt das Buszugriffsrecht an Slaves
OSSD	Output Signal Switching Device (Sicherheits-relevanter Schaltausgang)
Optischer PC- Adapter	Kabelverbindung zwischen der optischen Parametrier- und Diagnose- Schnittstelle des Empfängers und der RS232-Schnittstelle eines PC
ΡΑΑ	Prozessabbild Ausgänge; Speicherbereich in der CPU aus dem PROFIBUS die zyklischen Ausgangsdaten ohne Programmierung im Anwender- programm entnimmt und in die Slaves schreibt
PAE	Prozessabbild Eingänge; Speicherbereich in der CPU in den PROFIBUS die zyklischen Eingangsdaten von den Slaves ohne Programmierung im An- wenderprogramm schreibt
PDU	Protocol Data Unit
PROFIsafe	Applikations- Profil sicherer PROFIBUS – Geräte, das durch eine sichere Software- Komponente, den PROFIsafe – Treiber, realisiert wird
Proxy-FB	Funktionsbaustein LG_PROXY in der S7 Master- Steuerung, der den auto- matischen Parameterabgleich mit dem Empfänger realisiert
SafetyLab	Diagnose- und Parametrier-Software für den Empfänger, läuft auf Windows® - PC
SFC	Systemfunktion
Slave	Dem Master kommunikationstechnisch untergeordnete Einheit, sendet auf dem Bus nur Antworten auf Anforderungen vom Master
SPS	Speicherprogrammierbare Steuerung
Schützkontrolle (EDM)	Die Schützkontrolle (External Device Monitoring) überwacht die Öffnerkon- takte nachgeschalteter zwangsgeführter Schütze bzw. Relais oder Ventile
Upload	Übertragung von Parametern von einem Slave zum Master
WE	Werkseinstellung (Wert eines Parameters bei Auslieferung ab Werk, der durch Schalter und/oder SafetyLab verändert werden kann)

Tabelle 1.2-2 Begriffe

2 Sicherheitshinweise

2.1 Gefahren bei Nichtbeachtung der Sicherheitshinweise

Entwicklung und Fertigung von Produkten der Leuze electronic erfolgen unter sorgfältiger Anwendung anerkannter Regeln der Technik. Die Schutzfunktion der Geräte kann jedoch beeinträchtigt werden, wenn sie unsachgemäß oder nicht entsprechend ihres bestimmungsgemäßen Gebrauches eingesetzt werden. In diesem Fall können Gefahrbereiche nicht oder nicht vollständig abgesichert werden. Gefahren für Leib und Leben der Personen entstehen, welche sich in der Maschinen- oder Anlagenumgebung aufhalten.

2.2 Einsatzbedingungen und bestimmungsgemäßer Gebrauch

COMPACT*plus*/PROFIsafe dienen sowohl zur Gefahrstellen-Sicherung, der Gefahrbereichs-Sicherung als auch der Zutritts- und Rundum-Sicherung. Zwischen Schutzfeld und Gefahrstelle ist ein Sicherheitsabstand einzuhalten. Er errechnet sich nach den Formeln in den spezifischen maschinenbezogenen europäischen C-Normen oder in der allgemeinen B1-Norm EN 999. COM-PACT*plus*/PROFIsafe eignen sich grundsätzlich **nicht** als Schutzeinrichtung, wenn mit dem Herausschleudern von Gegenständen oder dem Herausspritzen von heißen oder gefährlichen Flüssigkeiten gerechnet werden muss. Sie eignen sich auch nicht für Maschinen mit langen Nachlaufzeiten. Leuze electronic bietet für diese Fälle geeignete Türverriegelungen (Sicherheits- Schalter) ohne und mit Zuhaltung an.

Achtung:

∕!∖

Zu beachten ist beim Einsatz des COMPACTplus/PROFIsafe, dass sich die Ansprechzeit des Gerätes gegenüber den Angaben für die Version mit Halbleiterausgang in der Anschluss- und Betriebsanleitung zum jeweiligen Funktionspaket um 20 ms erhöht. Hinzu kommt der Einfluss der Zykluszeit von PROFIBUS und der sicheren Steuerung entsprechend den Angaben in Kapitel 7.1.1, die den notwendigen Sicherheitsabstand zur Gefahrstelle unter Umständen erheblich erhöhen.

Für den Einsatz von COMPACT*plus*/PROFIsafe gelten die einschlägigen Vorschriften der Maschinensicherheit in Europa insbesondere:

- die Maschinenrichtlinie 98/37/EG und
- die Arbeitsmittelbenutzungsrichtlinie 89/655/EWG

sowie die entsprechend umgesetzten nationalen Gesetze in den einzelnen Mitgliedsstaaten. Für die Bundesrepublik Deutschland gelten das Gerätesicherheitsgesetz, die Arbeitmittel- Benutzungsverordnung in Verbindung mit dem Arbeitsschutzgesetz, den Unfallverhütungsvorschriften, die Sicherheitsregeln bzw. sonstige relevante Sicherheitsvorschriften und Normen.

Die Einhaltung dieser Regeln obliegen dem Hersteller und dem Betreiber der Maschine oder Einrichtung, an welche die optische Schutzeinrichtung angebaut ist. Die zuständigen örtlichen Behörden (z.B. Gewerbeaufsicht, Berufsgenossenschaft, Arbeitsinspektorat) stehen für sicherheitstechnische Fragen zur Verfügung. Generell sind die folgenden Einsatzbedingungen einzuhalten:

Anbau und elektrischer Anschluss, sowie die erforderliche Prüfung vor der ersten Inbetriebnahme und regelmäßige Prüfungen sind nur von sachkundigem Personal durchzuführen. Die Kenntnis der Sicherheitshinweise dieser Anschluss- und Betriebsanleitung ist Teil der Sachkunde. Hinweise zum elektrischen Anschluss finden sich im Kapitel 6.

COMPACT*plus*/PROFIsafe entspricht der Sicherheitskategorie 4 nach EN954-1. Um dieses Sicherheits-Niveau zu halten, müssen alle nachgeschalteten Elemente der Sicherheitskette bis zum Stillsetzen der gefahrbringenden Bewegung mindestens gemäß Sicherheitskategorie 4 aufgebaut sein. Für den Einsatz des COMPACT*plus*/PROFIsafe gelten die einschlägigen Vorschriften der Maschinensicherheit. Die zuständigen Behörden (z.B. Berufsgenossenschaften, OSHA) stehen für sicherheitstechnische Fragen zur Verfügung.

Generell sind die folgenden Einsatzbedingungen einzuhalten:

- Arbeiten an Elektroanlagen sind ausschließlich von Elektrofachkräften auszuführen.
- Ein Test der Anlage darf nur dann durchgeführt werden, wenn hieraus für Personen keine Gefährdungen resultieren.
- Inbetriebnahme, Wartung und Parametrierung sind nur von sachkundigem Personal durchzuführen. Die Kenntnis
 - der Anschluss- und Betriebsanleitung zum Funktionspaket des Empfängers
 - der Sicherheitshinweise dieser Zusatzinformationen zur Anschluss- und Betriebsanleitung
 - sowie ggf. der Bedienungsanleitung "SafetyLab"

ist Teil der Sachkunde.

Achtung:

Eingriffe und Veränderungen am COMPACTplus/PROFIsafe, können zum Verlust der Sicherheitsfunktion führen.

2.3 Organisatorische Maßnahmen

2.3.1 Dokumentation

Alle Angaben dieser Zusatzinformationen zur Anschluss- und Betriebsanleitung, müssen unbedingt beachtet werden. Bewahren Sie die Anschluss- und Betriebsanleitung sowie diese Zusatzinformationen sorgfältig auf. Sie sollte immer verfügbar sein.

2.3.2 Sicherheitsvorschriften

Beachten Sie die örtlich geltenden gesetzlichen Bestimmungen und die Vorschriften der Berufsgenossenschaften.

2.3.3 Qualifiziertes Personal

Die Montage, Inbetriebnahme und Wartung der Geräte darf nur von qualifiziertem Fachpersonal durchgeführt werden. Elektrische Arbeiten dürfen nur von Elektro-Fachkräften durchgeführt werden, die ggf. zusätzlich die notwendigen Kenntnisse der Software SafetyLab besitzen.

2.3.4 Reparatur

Reparaturen, insbesondere das Öffnen des Gehäuses, darf nur vom Hersteller oder einer vom Hersteller autorisierten Person vorgenommen werden. Eine Ausnahme macht hier die Einstellung von Parametern über die DIP- Schalter im Gerät sowie die der PROFIBUS-Adresse über die Drehschalter in der Anschlusskappe. In beiden Fällen ist lediglich die Anschlusskappe abzunehmen,

2.3.5 Entsorgung

i Hinweis:

Elektronikschrott ist Sondermüll! Beachten Sie die örtlichen Vorschriften zu dessen Entsorgung! COMPACTplus/PROFIsafe enthält keine Batterien oder andere Materialien, die vor der Entsorgung des Gerätes zu entfernen wären.

3 Systemaufbau und Einsatzmöglichkeiten

3.1 PROFIBUS DP

PROFIBUS ist ein Hersteller - unabhängiger, offener Feldbusstandard mit breitem Anwendungsbereich in der Fertigungs- und Prozessautomatisierung. Herstellerunabhängigkeit und Offenheit sind durch die internationalen Normen EN50170, IEC61158 und IEC61784 garantiert. PROFIBUS ermöglicht die Kommunikation von Geräten verschiedener Hersteller ohne besondere Schnittstellenanpassungen und ist sowohl für schnelle, zeitkritische Anwendungen, als auch für komplexe Kommunikationsaufgaben geeignet. Durch kontinuierliche technische Weiterentwicklungen ist PROFI-BUS weiterhin das zukunftssichere industrielle Kommunikationssystem.

Als Übertragungstechniken stehen je nach Anwendungsbereich RS-485, MBP-IS oder Lichtwellenleiter zur Verfügung. An PROFIBUS DP können bis zu 126 Stationen angeschlossen werden, die sich das Übertragungsmedium zeitmultiplex teilen. Die projektierbare Datenübertragungsrate beträgt 9,6 KBd bis 12 MBd, wobei die maximal erreichbare Rate von der Kabellänge begrenzt wird. Die meist benutzte RS485-Verkabelung erfordert einen Abschluss der Leitungsenden mit einer definierten Widerstands- Kombination.

Abb. 3.1-1 Funktionsprinzip PROFIBUS DP

Der Buszugriff wird über ein Master / Slave-Protokoll mit überlagertem Token Passing gesteuert. Dabei erzeugt eine Master-Station eine Anforderung an eine kommunikationstechnisch untergeordnete Slave-Station, die auf die Master-Anforderung mit einem Antwort- oder Quittungs- Telegramm reagiert. Nur der Master, der aktuell im Besitz des Tokens ist, darf Anforderungs- Telegramme erzeugen. Mit dem Token wird das Bussteuerrecht zyklisch zwischen den Master- Stationen ausgetauscht. Neben der Peer-to-Peer-Kommunikation zwischen einem Master und einem Slave kann ein Master auch sog. Broadcast-Telegramme erzeugen (Senden an Adresse 127), die zeitgleich von allen Slaves empfangen und ausgewertet, aber nicht quittiert werden. In sog. modularen Slaves können im PROFIBUS-Telegramm neben der Slave-Adresse auch Slot und Kanal angegeben werden.

PROFIBUS DP kennt zwei Arten von Mastern:

- Klasse 1-Master; ist die zentrale Komponente f
 ür das Polling-Buszugriffsverfahren zum Datenaustausch mit den Ein- Ausgabe- Ger
 äten (Slaves). Er legt die Datenrate fest, an die sich die Slaves
 üblicherweise automatisch adaptieren und steuert den Token-Austausch mit anderen Mastern. Typische Klasse 1-Master sind SPSen und Steuerungs- PCs.
- Klasse 2-Master; werden meist als Projektierungs- oder Visualisierungsgerät benutzt und dienen als Hilfsmittel beim Systemstart und der Diagnose. Mehrere Klasse 2-Master können gleichzeitig an PROFIBUS DP betrieben werden.

Der Datenaustausch zwischen Klasse 1 - Master und Slave kann zyklisch oder azyklisch erfolgen.

Zyklische Daten werden in jedem Buszyklus in den Prozessabbild- Speicher des Masters eingelesen bzw. von dort in die Slaves geschrieben. Es ist keine Programmierung sondern lediglich eine Projektierung, d.h. Zuordnung der Daten des Master-Prozessabbildes zu den korrespondierenden Daten in den PROFIBUS-Slaves nötig. Das SPS-Programm greift einfach auf die Daten im Prozessabbild- Speicher zu unabhängig davon, ob diese Daten lokal in der SPS oder über einen PROFIBUS-Slave ein- bzw. ausgegeben werden. Den automatischen zyklischen Austausch übernimmt PROFIBUS.

Azyklischer Datenaustausch kann von dem Master, der den Slave parametriert hat, mit den Funktionen "RD REC" und "WR REC" benutzt werden. Anwendung findet der azyklische Datenverkehr z.B. beim Transfer von Parametersätzen vom Master zu COMPACTplus/PROFIsafe (Download) bzw. von COMPACTplus/PROFIsafe in den Master (Upload). Unabhängig davon können azyklische Schreib- und Lese-Kommandos auch durch das Anwenderprogramm erzeugt werden.

Einen Sonderfall stellen Alarme dar. Sie werden innerhalb des zyklischen Datenverkehrs im PRO-FIBUS - Statusbyte beim Master angemeldet, der sich die eigentliche Alarm- Information mittels eines azyklischen Telegramms vom meldenden Slave holt. Diese Information wird vom Master in einen für Alarme reservierten Speicherbereich (SAP51) geschrieben und kann vom Applikationsprogramm ausgewertet werden.

Zur Projektierung jedes PROFIBUS DP Klasse 1-Masters und jedes Slaves ist eine sog. Gerätestammdaten (GSD)-Datei notwendig. Sie wird vom Hersteller des Masters bzw. des Slaves geliefert und beschreibt dessen Eigenschaften aus der Sicht von PROFIBUS.

PROFIsafe 3.2

PROFIsafe ist eine funktionale Erweiterung von PROFIBUS DP und ermöglicht es, sichere Buskomponenten gemeinsam mit nicht sicheren Standard- Komponenten am selben Bus zu betreiben. PROFIsafe-Geräte erfordern keinerlei Veränderungen in den existierenden Hardware-Komponenten und fügen sich problemlos in bestehende Anlagen ein.

Der PROFIsafe-Treiber ist eine TÜV zertifizierte Software-Komponente. Er setzt oberhalb der Kommunikationsschichten auf den PROFIBUS DP-Stack auf. Die Sicherheit der Datenübertragung wird durch eine spezielle Struktur der Nutzdaten erreicht, in die neben den eigentlichen Sicherheitsdaten u.a. ein Steuerbyte, eine laufende Nummer sowie eine weitere Prüfsumme eingebettet ist. Die sog. F-Destination-Adresse ermöglicht die eindeutige Adressierung eines PROFIsafe-Gerätes auch in Systemen mit mehreren PROFIBUS-Strängen, also mit evtl. mehrfachen Slave-Adressen für gleichartige Geräte. Nur die zyklischen Daten werden sicher übertragen, d.h. vor oder nach der Übertragung durch den PROFIsafe-Treiber verarbeitet.

Achtung:

/ Da nur das OSSD-Bit auch im Fehlerfall sicher = 0 ist, dürfen die anderen zyklischen Eingangsbits nur dann sicherheitsrelevant in der Sicherheits-SPS weiterverarbeitet werden, wenn das OSSD-Bit = 1 ist.

Azyklisch gelesene oder geschriebene Daten werden nicht sicher übertragen und dürfen deshalb nicht sicherheitsrelevant verwendet werden.

3.3 COMPACT*plus*/PROFIsafe

COMPACT*plus* sind berührungslos wirkenden Schutzeinrichtungen BWS vom Typ 4. Sie bestehen aus einer Vielzahl von miteinander synchronisierter Lichtschranken, die entweder aus je einer Sende- und einer Empfangseinheit oder aus einer Sende / Empfangseinheit (Transceiver) und einem Umlenkspiegel bestehen, so dass die Lichtschranken ein rechteckiges Schutzfeld bilden. Unterschieden werden

- Sicherheits-Lichtvorhänge mit 14 oder 30 mm Auflösung für die vertikale Gefahrstellen-Sicherung
- Sicherheits-Lichtvorhänge mit vorzugsweise 50 oder 90 mm Auflösung für die horizontale Gefahrbereichs-Sicherung
- sowie 2-, 3- und 4-strahlige Mehrstrahl-Sicherheitslichtschranke und Muting- Transceiver f
 ür die vertikale Zutritts- und Rundumsicherung

Verschiedene Funktionspakete wie

- "Blanking" für Anwendungen mit Strahlausblendung
- "Muting" für die kurzzeitige bestimmungsgemäße Überbrückung des Schutzfeldes, um z.B. Materialtransport durch die Schutzeinrichtung zu ermöglichen oder
- "Taktsteuerung" zum sicherheitsrelevanten Steuern einer Maschine

dienen der optimalen Anpassung an die jeweiligen technologischen Anforderungen.

Jeder COMPACT*plus*-Empfänger bzw. Transceiver besitzt ein Lokal-Interface für die Anbindung von Steuer-, Bedien- und Anzeige-Elementen, die sich in der Nähe der Schutzeinrichtung befinden, und ein Maschine-Interface für die Einbindung in den Abschaltkreis der Maschine. In den Anschluss- und Betriebsanleitungen zu den einzelnen Funktionspakete sind die Maschinen-Interfaces mit

- Transistorausgang
- Relaisausgang
- ASIsafe, AS-Interface Safety at Work

beschrieben.

(i) Hinweis:

Aufgrund der Komplexität des PROFIsafe-Interfaces steht die vorliegende Anschluss- und Betriebsanleitung für Empfänger mit PROFIsafe-Anschluss separat zur Verfügung und ersetzt die Beschreibung der Anschaltung an das Maschinen-Interface in Kapitel 7 der Anschluss- und Betriebsanleitungen für die jeweiligen Funktionspakete.

4 Funktion

COMPACT*plus*/PROFIsafe-Empfänger unterstützen sowohl den zyklischen als auch den azyklischen Datenverkehr. Zyklisch, also in jedem Buszyklus, werden die zyklischen Eingangs- und Ausgangsdaten zwischen sicherem Busmaster und COMPACT*plus*/PROFIsafe ausgetauscht. Die Bezeichnung Eingangs- bzw. Ausgangs-Daten bezieht sich dabei auf die Sichtweise des PROFIsafe-Masters:

- Eingangsdaten werden vom Master gelesen, sind also die Ausgangsdaten des COMPACT*plus*-Empfängers
- Ausgangsdaten werden vom Master geschrieben und sind damit Steuersignale f
 ür den COM-PACT*plus*-Empfänger

COMPACT*plus*/PROFIsafe unterstützt darüber hinaus die azyklischen Befehle RD_REC und WR_REC, um auf Anforderung durch einen Master größere Datenblöcke transportieren zu können, ohne den zyklischen Echtzeitbetrieb permanent stark zu belasten.

4.1 Zyklischer Datenaustausch

Der zyklische Datenverkehr wird nach erfolgreichem Aufbau der Verbindung mit dem Master gestartet. Die Eingangsdaten werden auf sichere Werte gesetzt, bis der Empfänger hochgelaufen ist und ggf. sein Parametersatz durch den Proxy-FB (siehe Kapitel 4.3) abgeglichen wurde.

4.1.1 Zyklische Eingangsdaten

Der Empfänger stellt dem sichern Master Eingangs-Nutzdaten der Länge 4 Byte zur Verfügung. PROFIsafe selbst benötigt weitere 4 Byte, so dass im Prozessabbild PAE 8 Byte für den Empfänger reserviert werden müssen. Das erste Byte 0 des zyklischen Telegramms hat eine feste Struktur während die Bedeutung der Bytes 1, 2 und 3 mit SafetyLab ab Version 1.1 geändert werden kann. Tabelle 4.1-1 zeigt die Werkeinstellung, die in vielen Applikationen unverändert nutzbar ist. Nicht nur der OSSD-Schaltzustand sondern alle Bits sind funktional sicher und können durch das sicherer SPS-Programm weiter verarbeitet werden, wenn das OSSD-Bit 0.1 OSSD_STATE = 1 ist. Insbesondere die Meldesignal-Bits Lx_OUT und Mx_OUT, die bei Geräten mit Transistorausgang, Relaisausgang oder ASIsafe ausschließlich als nicht-sichere Meldeausgänge benutzt werden dürfen, eröffnen neben dem direkten Zugriff auf interne Signale durch die Absicherung mit PROFIsafe viele neue Anwendungsmöglichkeiten.

Achtung:

Zur Abschaltung des Sicherheitskreises muss allerdings immer das Bit 0.1 (OSSD_STATE) verwendet werden, da nur dieses Bit auch dann sicher auf 0 gesetzt wird wenn ein Gerätefehler aufgetreten ist. Die anderen zyklischen Eingangsdaten sind deshalb nur dann als sicher anzusehen, wenn das Bit 0.1 OSSD_STATE = 1 ist. Die Diagnose-Information über einen Geräteausfall steht im nicht-sicheren Standard-Programm zur Verfügung, die sicheren zyklischen Bits werden nur passiviert.

Darüber hinaus wird durch PROFIsafe sicher gestellt, dass die Verzögerung des Wiedereinschaltens dieses Bits mindestens so groß ist wie die in der F-CPU eingestellte Watchdog-Zeit T_{wD} (Kapitel 7.1.1), auch wenn mit SafetyLab ein kleinerer Wert gewählt wurde. Das ist nötig, um sicher zu sein, dass OSSD-Abschaltungen die kürzer als die Erfassungszeit der F-CPU sind, von der F-CPU in jedem Fall erkannt werden und eine hier programmierte Wiederanlaufsperre sicher abschaltet.

Byte .Bit	Name	Bedeutung
0.0	PROXY_ REQUEST	Details siehe Kapitel 0 signalisiert dem optionalen Proxy-FB auf der F-CPU, dass ein Parameter- Abgleich nötig ist. Das Bit wird nach Beginn des Parameter-Abgleichs auf 0 gesetzt. Wenn während des Abgleichs ein Fehler auftritt, geht es wieder auf 1. Während des Parameter-Abgleichs ist das Bit 0.1 OSSD_STATE auf 0 gesetzt.
		0 Proxy-FB muss keinen Parameter-Abgleich durchführen
		1 Die Parameter müssen zwischen der F_CPU und dem Empfänger durch den Proxy-FB abgeglichen werden
0.1	OSSD_	gibt den Schaltzustand des Empfängers an
	STATE	0 Der Sicherheits-Schaltausgang OSSD ist ausgeschaltet
		1 Der OSSD ist eingeschaltet
0.2	PFF	gibt den Zustand des Schutzfeldes unter Beachtung von Strahlbereichen mit Ausblendung oder reduzierter Auflösung an
		 Das Schutzfeld ist nicht frei, d.h. Normalstrahlen ohne Ausblendung sind unterbrochen oder ausgeblendete Objekte sind nicht an der erwarteten Position oder haben nicht die erwartete Größe oder Objekte in Strahlbereichen mit reduzierter Auflösung sind zu groß
		1 Das Schutzfeld wird als frei bewertet
0.3	DIRTY	zeigt an ob mindestens ein Strahl als schwach infolge von schlechter Aus- richtung oder Verschmutzung erkannt wurde. Dazu wird das Schwachstrahl- Signal über 10 Minuten zeitgefiltert.
		0 keine Verschmutzung oder schlechte Ausrichtung
		1 mindestens ein Strahl ist schlecht ausgerichtet oder die Frontscheibe ist verschmutzt
0.4	RSI_	Anlauf- / Wiederanlaufsperre verriegelt.
	LOCKED	0 Die interne Anlauf- /Wiederanlaufsperre ist entriegelt.
		1 Die interne Anlauf- /Wiederanlaufsperre ist verriegelt.
0.5	PC_CON- NECTED	zeigt eine aktive Verbindung zu einem PC mit SafetyLab über die optische Parametrier- und Diagnose-Schnittstelle an
		0 kein PC mit SafetyLab angeschlossen
		1 PC mit SafetyLab und aktiver Verbindung zum Gerät angeschlossen
0.6	ERROR	zeigt einen Anwenderfehler an
		0 Normalbetrieb; alle angeschlossenen Sensoren, Anzeigeelemente und die Verkabelung sind fehlerfrei und entsprechend der Paramet- rierung
		1 Anwenderfehler; der Empfänger ist intakt und zeigt einen Störungs- code E xx auf seiner 7-Segment-Anzeige; der Anwender muss die Anschaltung der Sensoren und Signalelemente, die Verkabelung und die Parametrierung überprüfen
0.7	FAILURE	zeigt einen Gerätefehler an
		0 Normalbetrieb; Gerät fehlerfrei
		1 Gerätefehler; der Empfänger zeigt einen Fehlercode F xx auf seiner 7-Segment-Anzeige und muss ersetzt werden

Byte .Bit	Name	Bedeutung				
1.0 1.1 1.2	M3_OUT M4_OUT M5_OUT	 Meidesignal-Ausgange M3, M4 und M5 Durch Parametrierung wird festgelegt, welche internen Signale hier ausgegeben werden. Die Zuordnung kann mit SafetyLab geändert werden. Werkeinstellung für alle Funktionspakete ist: M3_OUT: Aktives Schutzfeld frei / Bereit zum Entriegeln, korrespondiert mit den Bits 0.2 und 0.4 M4_OUT: Störung/Fehler/Verschmutzung Sammelmeldung, entspricht den Bits 0.3, 0.6, 0.7 M5_OUT: reserviert, keine Funktion Da M3_OUT und M4_OUT durch Byte 0 bereits abgedeckt werden, kann diese Zuordnung ohne Verlust an Information mit SafetyLab geändert werden. 				
		1 Das ausgegebene Signal ist 1				
1.3 1.4	L1_IN L2_IN	logischer Signalzustand der Eingängen L1 und L2 unter Beachtung der evtl. Invertierung des physikalischen Signals eingestellt mit SafetyLab, aber ohne Zeitfilterung der Mutingsensor-Signale, Funktion abhängig vom Funktionspa- ket				
		1 Logisches Eingangssignal ist 1				
1.5	L2_OUT	Meldesignal-Ausgang L2, Keine Funktion in WE, Zuordnung eines internen Signals mit SafetyLab möglich				
		0 Das ausgegebene Signal ist 0.				
		1 Das ausgegebene Signal ist 1.				
1.6	L3_IN0	logischer Signalzustand des TriState-Eingangs L3 unter Beachtung der evtl. Invertierung des physikalischen Signals eingestellt mit SafetyLab, aber ohne Zeitfilterung der Mutingsensor-Signale, Funktion abhängig vom Funktionspa- ket				
		0 Logisches Eingangssignal ist 0				
1.7	L3_IN1	Aktivierung des TriState – Zustands von Eingang L3, nur gültig wenn die TriState-Tests aktiviert wurden (abhängig von Funktionspaket und Einstellung durch SafetyLab) 0 Eingang liegt an 24 V oder GND. 1 Eingang ist offen.				
2.0	L4_IN0	wie Bit1.6 (L3_IN0), aber für L4				
2.1	L4_IN1	wie Bit1.7 (L3_IN1), aber für L4				
2.2	L5_IN	logischer Signalzustand des Eingangs L5 unter Beachtung der evtl. Invertie- rung des physikalischen Signals eingestellt mit SafetyLab, Werkeinstellung für alle Funktionspakete ist "Eingang lokale Starttaste"0Logisches Eingangssignal ist 0.				
0.0						
2.3	L5_OUT	Meldesignal-Ausgang L5 Werkeinstellung ist abhängig vom Funktionspaket: • Blanking: Teach in Override aktiviert • Muting: Muting aktiviert • Taktsteuerung: Anzahl verbleibender Takteingriffe 0 Das ausgegebene Signal ist 0. 1 Das ausgegebene Signal ist 1				
24	FSC	Schaltzustande des zusätzlichen kontakthabaftatan Sisharhaitekraisas: Cia				
2.4	E30	nal ist log 1 wenn nicht aktiv				
		0 Das ausgegebene Signal ist 0, Sicherheitskreis ist parametriert und geöffnet.				
		1 Das ausgegebene Signal ist 1, Sicherheitskreis geschlossen oder nicht parametriert				

Byte Bit	Name	Bedeutung					
2.5	BEAM	Status	Status des internen "Strahlsignal 1" bzw. "Strahlsignal 2"				
2.6	SIGNAL1, 2	0	kein Strahl wurde mit "Strahlsignal x" parametriert oder kein Strahl mit "Strahlsignal x" – Parametrierung ist unterbrochen				
		1	mindestens ein Strahl wurde mit "Strahlsignal x" parametriert und ist unterbrochen				
2.7	UNLOCK-	Intern	e Anlauf- / Wiederanlaufsperre entriegelungsbereit				
	ABLE	0	Die interne Anlauf- / Wiederanlaufsperre ist entweder nicht aktiviert oder nicht entriegelungsbereit.				
		1	Die interne Anlauf- / Wiederanlaufsperre ist aktiviert und verriegelt. Alle Sicherheitsbedingungen zum Entriegeln sind erfüllt, d.h. • das aktive Schutzfeld ist frei (siehe Bit 0.2) • optionaler Sicherheitskreis ist geschlossen (Bit 2.4)				
3.0	OP_MODE	zeigt b	pinär kodiert die aktuell eingestellte Betriebsart an, nur im Funktionspa-				
3.1		ket "T	ket "Taktsteuerung" aktualisiert mit Werten zwischen 0 und 7, sonst 0				
3.2							
3.3	TI_REQ	Status siert, s	Status der Funktion "Einlernen", nur im Funktionspaket "Blanking" aktuali- siert, sonst 0				
		0	Einlernen ist nicht aktiviert.				
		1	Einlernen wurde aktiviert, z.B. mittels SafetyKey, Schlüsseltaster, PC und SafetyLab oder sicherer SPS über zyklisches Ausgangsbit.				
3.4	OVRD	zeigt o aktual	die Aktivierung von Einlern-Override, nur im Funktionspaket "Blanking" isiert				
		0	Einlern-Override nicht aktiviert				
		1	Einlern-Override aktiviert				
3.5	MUTING_ ACTIVE	zeigt o "Mutin	die Aktivierung von Muting oder Bypass an, nur im Funktionspaket Ig" und "Taktsteuerung" aktualisiert				
		0	Muting / Bypass nicht aktiviert				
		1	Muting / Bypass aktiviert				
3.6	MLAMP_	zeigt l	Jnterstrom am überwachten Leuchtmelder an (L5)				
	WARN	0	überwachte Muting-Leuchtmelder an L5 fehlerfrei				
		1	Unterstrom am Leuchtmelder-Ausgang L5				
3.7	MUTING_	Muting	g-Restart zum Freifahren einer Mutingstrecke				
	RESTART	0	nicht aktiviert				
		1	Muting-Restart wurde aktiviert.				

Tabelle 4.1-1 Werkeinstellung der zyklische Eingangsbits identisch für alle Funktionspakete

4.1.2 Zyklische Ausgangsdaten

COMPACT*plus*/PROFIsafe Empfänger erwarten 4 Byte Ausgangsdaten vom sicheren Master. PROFIsafe selbst benötigt weitere 4 Byte, so dass im Prozessabbild PAA 8 Byte für den Empfänger reserviert werden müssen.

Die Datenstruktur selbst ist fest; die Zuordnung dieser Steuerdaten kann bitweise mit SafetyLab ab Version 1.1 bestimmten Funktionen zugeordnet werden. Eine Ausnahme stellt das erste Byte 0 dar. Es ist die Parametersatz-Nummer, die vom Programm in der F-CPU gesetzt wird und den Empfänger auffordert, einen bestimmten während der Inbetriebnahme definierten Parametersatz zu benutzen, der im Master abgespeichert ist. Der Master kann dadurch in Verbindung mit dem Proxy-FB den kompletten Parametersatz während des Betriebes umschalten. Aus Gründen der Sicherheit muss die Umschaltung vom sicheren Master initiiert werden. Der Empfänger fordert bei erkannter Abweichung des angeforderten vom aktuell vorliegenden Parametersatz über das Eingangsbit 0.0 PROXY_REQUEST den ihm zugeordneten Proxy-FB im Master auf, den passenden Parametersatz zu senden. Die angeforderten Parametersätze müssen zuvor während der Inbetriebnahme erzeugt und im Speicherbereich des Proxy-FB auf der F-CPU abgelegt worden sein. Somit können beispielweise auf einfache Art gleichzeitig realisiert werden:

- eine Schutzfeld-Umschaltung
- die Veränderung von MultiScan-Faktoren
- die Aktivierung / Deaktivierung der internen Wiederanlaufsperre
- die Aktivierung / Deaktivierung von Sicherheitskreisen
- Veränderung von Mutingarten oder Filterzeiten
- Umschaltung von festen Taktbetriebsartern durch die übergeordnete SPS
- ... sowie alle weiteren Parameter, die über SafetyLab einstellbar sind

Steht im Ausgangsbyte 0 die Zahl 0, so erfolgt keine Umschaltung der Parameter, da dadurch der Proxy-FB deaktiviert wird; es gilt ausschließlich der eingestellte Parametersatz wie etwa der laut Werkeinstellung.

Die Bits M1_IN bis M16_IN in den Bytes 1 und 2 stehen im Empfänger für beliebige Steuerungszwecke zur Verfügung. Die Zuordnung eines Bits zu einer Steuerfunktion erfolgt mit SafetyLab ab Version 1.1. Sie dienen z.B. als

- Starttasten-Signal zum Entriegeln der internen Anlauf- / Wiederanlaufsperre
- Steuersignal für Schutzfeld-Parameter, z.B. zur programmgesteuerten Aktivierung und Deaktivierung von fester Ausblendung zur Laufzeit
- Muting Freigabesignal
- Muting-Sensorsignal M5
- Freigabesignal für den letzten Takt einer Taktsteuerung

Das letzte Byte 3 ist reserviert und hat zur Zeit keine Funktion.

Die 4 zyklischen Ausgangs-Nutzbytes des Empfängers haben folgende Struktur.:

Byte	Symbolischer Name	Bedeutung
BIL		
0.0	DATASET_NUMBER_0	Bit0 bis Bit7: Nummer des angeforderten Parametersatzes
0.1	DATASET_NUMBER_1	
0.2	DATASET_NUMBER _2	Muss bei Verwendung des Proxy-FB (Kapitel 0) mit dessen
0.3	DATASET_NUMBER _3	Eingang DATASET_NUMBER verbunden werden.
0.4	DATASET_NUMBER _4	Der Innalt dieses Bytes muss im sicheren Programm gesetzt
0.5	DATASET_NUMBER _5	weiden.
0.6	DATASET_NUMBER _6	
0.7	DATASET_NUMBER_7	
1.0	M1_IN	Steuereingänge für beliebige Funktionen im Empfänger, deren
1.1	M2_IN	Zuordnung mit SafetyLab ab Version 1.1 erfolgt
1.2	M3_IN	Werkeinstellung ist
1.3	M4_IN	M1_IN: "Eingang Starttaste Maschinen-Interface"
1.4	M5_IN	M2_IN: "Eingang Ruckfunrkreis Schutzkontrolle" M2_IN bis M16_IN: keine Steuerfunktion zugeerdnet
1.5	M6_IN	
1.6	M7_IN	
1.7	M8_IN	
2.0	M9_IN	
2.1	M10_IN	
2.2	M11_IN	
2.3	M12_IN	
2.4	M13_IN	
2.5	M14_IN	
2.6	M15_IN	
2.7	M16_IN	
3.0	reserviert, z.Z. keine Funkt	ion
3.7		

Tabelle 4.1-2 Feste Zuordnung der zyklischen Ausgangsbits identisch für alle Funktionspakete

4.2 Azyklischer Datenaustausch – Lesen von Einzelstrahldaten

Der azyklische Datenaustausch wird dann vorteilhaft verwendet, wenn relativ selten größere Datenmengen übertragen werden müssen. Die gesamte Busbelastung kann dadurch vergleichsweise klein gehalten werden, was das Echtzeitverhalten der zyklischen Telegramme sicherstellt. Für die azyklische Datenübertragung wird ein bestimmter Zeit-Slot geschachtelt mit den zyklischen Telegrammen verwendet. Hier können mit RD_REC und WR_REC-Befehlen azyklische PROFIBUS-Daten übertragen werden, um z.B. den Parametersatz automatisch abzugleichen oder Einzelstrahldaten aus dem Empfänger auszulesen.

Achtung:

Der azyklische Datenaustausch ist nicht sicher. Daten die über azyklische Telegramme eingelesen wurden, dürfen deshalb nicht sicherheitsrelevant weiterverarbeitet werden.

Azyklisches Lesen über das Anwenderprogramm im Master ist nur möglich, wenn folgende Bedingungen erfüllt sind.:

- Der Empfänger befindet sich im normalen Betriebszustand.
- Der optionale Proxy-FB hat den Datenabgleich beendet. Dazu sollte der BUSY Ausgang des Proxy-FB durch das Anwenderprogramm ausgewertet werden. Solange der Proxy-FB arbeitet, führt ein vom Anwenderprogramm erzeugtes azyklisches Kommando an diesen Empfänger zum Abbruch der Abarbeitung des Proxy-FBs mit einer Fehlermeldung. Durch das Anwenderprogramm erzeugte azyklische Kommandos müssen deshalb durch das Anwenderprogramm mit dem Proxy-FB synchronisiert werden.

Zum Auslesen der Strahlzustandsdaten des Empfängers wird Register 103 (=67hex), Slot 1 über RD_REC angesprochen: Das Antwort-Telegramm auf diesen RD_REC besitzt einen 10 Byte Header gefolgt von einer variablen Anzahl Nutzdaten-Bytes. Die Struktur des Headers ist für die Auswertung der Strahldaten uninteressant. Die darauf folgenden bis zu 31 Byte enthalten die ermittelte Strahlzahl und den Strahlzustand der bis zu 240 Strahlen des Empfängers in jeweils ein Bit pro Strahl.

Byte	Bedeutung			
10	Strahlzahl	Anzahl der tatsächlich im Gerät vorhandenen Strahlen, bei kaska-		
		dierten Geräten Summe aller Strahlen von Host und Guest		
11 n	Strahlzustände	Ein Bit pro Strahl: 0 = Strahl unterbrochen, 1 = Strahl frei		
		Beginnend mit Bit 1.0 für Strahl 1, Bit 1.7 für Strahl 8,		

Tabelle 4.2-1 Format der Nutzdaten des Telegramms zum Auslesen der Einzelstrahldaten

In den Nutzdaten ist ab Byte 1 jeder Strahl einem Bit zugeordnet. Die Anzahl benutzter Bytes n errechnet sich zu

n = Int ((Strahlzahl + 7) / 8)

Bleiben ungenutzte Bits im letzen Byte, so werden diese mit 0 gefüllt. Die korrekte Länge der gelieferten Datenbytes steht im Byte 10 (Strahlzahl) im Antwort-Telegramm.

Ein Programmierbeispiel zum Auslesen der Einzelstrahldaten findet sich in Kapitel 8.1.5.

Azyklische Lese- und Schreibbefehle werden nur akzeptiert wenn sie richtig empfangen werden. Fehlerhafte Befehle werden mit eine NRS-PDU beantwortet. Darin sind die Fehler, auch die infolge fehlerhafter Kommunikation mit dem Proxy-FB folgendermaßen codiert.

Fehler- code	Bedeutung
0xb0	unzulässiger Index (nur die den Registern zugeordneten Indizes sind erlaubt)
0xb1	unzulässige Datensatzlänge des beim Schreiben (die Länge muss genau der Länge des Registers entsprechen)
0xb2	unzulässiger Slot (nur Slot 1 ist erlaubt)
0xb3	Typ-Konflikt (falsche laufende Nummer)
0xb4	fehlerhafter Datenbereich (falsches oder nicht erwartetes Kommando z. B. Proxy- Ablauf)
0xb5	Zustandskonflikt (Gerät nicht im Parametrier-Modus)
0xb6	Zugriff verweigert (falsche Berechtigungsebene)
0xb7	unzulässiger Bereich (unzulässige Länge beim Lesen)
0xb8	unzulässiger Parameter (Werte für Register nicht erlaubt)

Fehler- code	Bedeutung
0xba	falscher CRC-Wert
0xbb	falsche PROFIsafe-Sourceadresse
0xbc	falsche PROFIsafe-Destinationadresse
0xbd	DP Slot ungleich Slotangabe in Header
0xbe	DP Index ungleich Indexangabe in Header
0xbf	unbekannter Fehler (interner Fehler)
0xc2	Ressource momentan beschäftigt (durch Einlernen oder Safetylab)
0xca	interner Fehler (I&M)

Tabelle 4.2-2 Fehlercodes in NRS-PDU

Diese Fehlermeldungen haben keinen Einfluss auf die sicheren zyklischen Daten. Es erfolgt kein Eintrag im Fehlerspeicher und es wird auch kein Diagnose-Alarm ausgelöst (siehe Kapitel 4.5). Im 7-Segment-Display wird für alle diese Fehler der Code "b9" angezeigt (siehe Kapitel 5.1.2). Die Anzeige bleibt solange erhalten bis ein fehlerfreies Telegramm geschrieben oder gelesen wurde.

4.3 Proxy – Funktionsbaustein LG_PROXY

Der Empfänger mit PROFIsafe-Interface kann mit oder ohne den Proxy-Funktionsbaustein (Proxy-FB) LG_PROXY betrieben werden. Für den sicheren zyklischen Datenaustausch genügt es, das Gerät korrekt zu adressieren und in die HW-Konfig einzubinden.

Der Proxy-Funktionsbaustein LG_PROXY arbeitet als "Stellvertreter" eines Empfängers in einer Sicherheits-SPS der Baureihe Siemens S7-300 oder S7-400. Er läuft im Standardteil des Anwenderprogramms und verwaltet den Parameter-Abgleich zwischen dem Empfänger mit PROFIsafe-Interface und der F-CPU, so dass eine automatische Parametrierung beim Austausch eines Gerätes möglich ist. Der Vorteil in Anwenderprogrammen die den Proxy-FB eingebunden haben, liegt deshalb darin, dass beim Austausch eines Gerätes die notwendige Parametrierung automatisch erfolgen kann und das Wartungspersonal deshalb lediglich die korrekte PROFIBUS-Adresse an den Hex-Schaltern in der Anschlusskappe einstellen muss.

Darüber hinaus ist eine komplette Umparametrierung des Empfängers zur Betriebszeit innerhalb von Sekunden möglich, indem die SPS einen vom Anwenderprogramm angeforderten Parametersatz (DATASET_NUMBER) in das Gerät lädt und damit z.B. Schutzfeld-Umschaltungen realisiert. Die Aufgabe des LG_PROXY ist es dabei, die Parametersätze auf der SPS zu verwalten. Dies erfolgt im nicht-sicheren Teil des SPS-Programms über azyklisches Schreiben und Lesen. Der Anwender muss über ein sicheres Auswahlverfahren im Sicherheitsprogramm die Parametersatznummer im ersten zyklische Ausgangsbyte hinterlegen. Hinweise zum Programmieren mit Distributed Safety finden sich im Handbuch "S7 Distributed Safety-Projektieren und Programmieren".

Der Parameter-Austausch ist in beiden Richtungen möglich, von der SPS zum Empfänger und umgekehrt. Abgeglichen bzw. umgeschaltet wird dabei der komplette Parametersatz, der mit der optionalen Diagnose- und Parametrier-Software SafetyLab eingestellt werden kann sowie weitere Daten, die sicherstellen dass das korrekte Gerät angeschlossen ist.

Pro Empfänger ist eine Instanz des LG_PROXY vorzusehen. Er ist für folgende CPU's einsetzbar:

- S7-315F
- S7-317F
- S7-416F

Der Proxy-FB existiert nur in einer Version, obwohl die Speichermodelle der einzelnen CPUs sehr verschieden sind. LG_PROXY überprüft in welcher CPU er läuft und stellt sich automatisch auf das Speichermodell der jeweiligen CPU ein.

(i) Hinweis:

Nicht sinnvoll ist die Einbindung des LG_PROXY, wenn der Empfänger mit DIP-Schaltern parametriert wird, da in diesem Fall die per Software geladenen Parameter nicht akzeptiert werden und der Empfänger in Störung E17 geht. LG_PROXY erzwingt das Rücksetzen der zyklischen Eingangsdaten auf Null wenn nicht alle Schalter in Position L stehen.

Bei Einsatz des Funktionsbausteins "LG_PROXY" müssen pro Parametersatz 2 remanente Merkerbytes reserviert werden. Die Startadresse der remanenten Merker wird LG_PROXY über den Eingang START_ADDR_RETENTIVITY_M mitgeteilt. Beispiel: Ermittlung des Bedarfs an remanenten Merkern

		4	Datensätze					
х		2	Merkerbytes (Remanent)					
		0	Markarhitaa (Damanant)					
= Bevor	die	8 Anzahl	der Merkerbytes (Remanent)	in die	Hardware	Konfiguration	eingetragen	wird,
muss i	noch	der Sta	rtpunkt addiert werden. z.B.:					

+	8 10	Merkerbytes (Remanent) Startpunkt	
=	18	Anzahl Merkerbytes (Remanent) ab Merkerbyte 0	

Sind mehrere COMPACT*plus*/PROFIsafe in einem PROFIBUS-System installiert und werden mehrer LG_PROXY in der F-CPU verwendet, so sollten diese miteinander synchronisiert werden, um bei gleichzeitiger Aktivierung mehrerer Parameterabgleich- Vorgänge Überläufe der Zykluszeit des Anwenderprogramms zu verhindern. Dazu können die Eingänge PROXY_START_ENABLE und die Ausgänge BUSY (der Parameterabgleich läuft) aller LG_PROXY so verknüpft werden, dass zu einem Zeitpunkt nur ein LG_PROXY freigegeben wird. (Kapitel 8.1.4)

Die Parametersätze werden in DBs gespeichert. Je nach Anzahl der zu verwaltenden Parametersätze können zwei verschieden große DB-Typen verwendet werden. Während der kleinere DB mit 16 kByte bis zu 4 Parametersätze aufnimmt und damit an das Speichermodell der S7-315F angepasst ist, kann der größere für S7-317F und S7-416F in 64 KByte bis zu 16 Datensätze speichern. Die Definition der Blockgröße erfolgt in DATASET_PER_DB.

(i) Hinweis:

Es ist zu beachten, dass dem Proxy-FB ein hinreichend großer Datenbaustein zur Verfügung steht:

- 16 KByte für S7-315F (DATASET_PER_DB = 0)
- 64 KByte für S7-317F und S7-416F (DATASET_PER_DB = 1)

Werden mehrere DBs benötigt, so müssen sich diese in einem geschlossenen Band befinden. Deren Anzahl wird dem Proxy-FB über den Eingangswert RANGE_OF_DB mitgeteilt.

LG_PROXY wird mit dem Beispielprojekt auf der CD mitgeliefert; das USER-Passwort ist in beiden Fällen (CPU und Anwenderprogramm) "cust". Wenn der LG_PROXY mit der 416F CPU verwendet wird, dürfen die Datenbausteine für die Datensätze nicht auf "UNLINKED" gesetzt sein; bei den 300er F-CPU's ist es besser, die Datenbausteine für Datensätze auf "UNLINKED" zu setzen.

LG_PROXY benutzt SFCs für die Kommunikation über PROFIBUS. Fehlermeldungen dieser SFCs sowie Fehlercodes des LG_PROXY werden über ERROR_NUMBER_FB und ER-ROR_CODE_SFC dem Anwenderprogramm zur Verfügung gestellt. Wenn der Parameter ER-ROR_CODE_SFC ungleich Null ist, kann anhand von ERROR_NUMBER_FB in der folgenden Tabelle der entsprechende SFC ermittelt werden. Die Entschlüsselung des SFC- Fehlercodes ist mit dem SIMATIC Referenzhandbuch "Systemsoftware für S7-300/400 System- und Standardfunktionen" möglich.

LG_PROXY erwartet folgende Eingangsvariablen (IN) bzw. liefert folgende Ausgangsvariablen (OUT).:

Para	meter		Deklaration	Datentyp	Anfangswert				
	Beschreib	ung		_					
DATA	ASET_NUME	BER	IN	BYTE	B#16#0				
	Eingang fü	r die Numme	er des Paramete	rsatzes (maxir	nal 255), muss immer mit dem ers-				
	ten Byte de	ten Byte der sicheren zyklischen Ausgangsdaten verbunden sein.							
	Der Wert 0	bedeutet, da	ass der Proxy-Fl	3 nicht verwen	det wird.				
PRO	XY_REQUES	ST	IN	BOOL	FALSE				
	Eingang fü schen Eing	r das Proxy_ angsbit 0.0 v	Request-Bit, wir	d direkt mit de	m entsprechenden sicheren zykli-				
PRO	XY_START_	ENABLE	IN	BOOL	FALSE				
	erlaubt das	freigeben u	nd temporäre Sp	berren des FB	"LG_PROXY", z. B. über das BUSY				
	Signal eine	s schon akti	ven FB "LG_PR	OXY". Dadurcl	n kann sicher gestellt werden, dass				
	zu einem Z	eitpunkt nur	ein LG_PROXY	arbeitet, um r	ach dem Einschalten die Zykluszeit				
	nicht zu sta	ark zu beeinf	lussen.						
	$0 = LG_PR$	IOXY gesper	rrt						
	$1 = LG_PR$	OXY freigeg	leben						
WRIT			IN	BOOL	FALSE				
	verhindert	dass Datens	ätze in der SPS	überschrieber	werden, z.B. um nachträgliche Ma-				
	nipulatione	n an den Pa	rametern des Er	nprangers nicr	it zu übernehmen.				
	0 = kein Sc	chreibschutz	iort						
DAT				POOL					
DATA	ASEI_PER_	UD							
		t weicher De	B-Typ zur Speich	erung der Par	ametersatze eingesetzt werden son				
	0 = 4 Dater1 = 17 Date	nsatze pro D	B(57-315F) DB(57-317F S	7-416E)					
EID6.		ensalze pro			W#16#0				
FING	I_DB	an aratan Da			VV#10#0				
			iat dar orate Da	s somotorootz [נפר				
DANK									
naiv		zur Vorfügu	IN na atabandan Di		D#10#0				
	$3 \text{ her} \rightarrow 3$	DB's für Dat	ensätze stehen	zur Verfügung					
STAR									
YM			IN	WORD	W#16#0				
	Grenze der	von LG PF	OXY verwendet	en remanente	n Merker: (A hex \rightarrow remanente Mer-				
	ker bis zu E	Byte 10 werd	len benutzt)						
IN_O	UT_ADDRES	SS	IN	WORD	W#16#0				
	Ein- / Ausg	angsbyte - A	dresse des Emp	ofängers im Pr	ozessabbild PAE/PAA				
	(A hex $\rightarrow D$	Der Empfäng	er schreibt die 4	zyklischen Ei	ngangs-Bytes ab PAE Adresse 10				
	und liest se	eine 4 zykliso	hen Ausgangsb	ytes ab PAA A	dresse 10)				
BUSY	Y		OUT	BOOL	FALSE				
	Anzeige üb	er den Aktiv	itäts-Zustand de	s FB´s; kann i	n Verbindung mit den Eingängen				
	PROXY_S	TART_ENAE	BLE anderer FB	s zur Steuerur	ng der Abarbeitungsreihenfolge und				
	Begrenzun	g der Zyklus	zeit verwendet v	verden					
	0 = nicht aktiv								
	1 = aktiv		1	1					
STAT	ΓE		OUT	BYTE	B#16#0				
	Anzeige üb	per den Zusta	and des Gerätes						
	Code	Beschreib	ung						
	0	kein Fehle	r						
	1	Daten ung	ültig						
	2 Daten lesen, SPS ← LG								
	3								
	4	Ablauf erfo	Igreich beendet						
	5	CRC schre	eiben, SPS \rightarrow LC	à					
	9	Timeout, 2	0s überschritten						
	10 bis 52	Fehler an F	Position xx im At	plauf					
ERRO		R FB	OUT	WORD	W#16#0				

Parar	neter		Deklaration	Datentyp	Anfangswert		
	Beschrei	ibung					
	Mit Hilfe o Wenn im die Möglio gen SEC	der nachfolgen Fehlerfall am / chkeit den rich Beschreibung	den Tabelle kan Ausgang ERRO tigen SFC zu en an nachzulesen	in der Fehlerco R_CODE_SFC mitteln und der	ode des FB entschlüsselt werden. C ein RET_VAL ansteht, besteht hier n passenden Hilfetext in den jeweili-		
	Fehler-	Decenterbarig		•			
	code	Beschreibur	ng				
	101	Fehler von S	FC 51, Fehlerme	eldung in der H	lilfe nachschauen		
	102	CPU 3xx ode	er 4xx konnte nic	ht erkannt wer	den		
	201	DATASET_N	IUMBER wurde	mit dem Wert	"0" beschrieben		
	202	Der DB Zugr	iff liegt nicht mel	hr im parametr	ierten DB Bereich		
	203	Fehler von S	FC 83, Fehlerme	eldung in der H	lilfe nachschauen		
	204	Fehler von S	FC 20, Fehlerme	eldung in der H	lilfe nachschauen		
	301	Fehler von S	FC 59, Fehlermeldung in der Hilfe nachschauen				
	401	Fehler von S	FC xx, Fehlermeldung beim Hersteller erfragen				
	402	Fehler von S	FC 58, Fehlermeldung in der Hilfe nachschauen				
	501	Fehler von S	FC 59, Fehlermeldung in der Hilfe nachschauen				
	502	Überschreibe TE_DISABLE	en der Parametersätze in der SPS nicht möglich, ("WRI- E" ist gesetzt).				
	503	Daten oder E	intscheidungsco	de ungültig, LO	G_PROXY wird beendet		
	601	Fehler im LG	a_PROXY				
	701	Fehler von S	FC 58, Fehlerme	eldung in der H	lilfe nachschauen		
	801	Fehler von S	FC 59, Fehlermeldung in der Hilfe nachschauen				
	901	Fehler von S	FC 84, Fehlerme	eldung in der H	lilfe nachschauen		
	902	Fehler von S	FC 20, Fehlerme	eldung in der H	lilfe nachschauen		
	1001	Fehler von S	FC 58, Fehlermeldung in der Hilfe nachschauen				
	1101	Fehler von S	FC xx, Fehlermeldung beim Hersteller erfragen				
	1102 Fehler von SFC 58, Fehlermeldung in der Hilfe nachschauen						
ERRO	DR_CODE	SFC	OUT	WORD	W#16#0		
	Anzeige f ermittelt v	für den RET_V werden	AL im Fehlerfall	, der richtige S	FC kann mittels der obigen Tabelle		

Tabelle 4.3.-1 Ein- und Ausgänge des Funktionsbausteins LG_PROXY

Die Aktivierung des LG_PROXY erfolgt durch Setzen des Bits PROXY_REQUEST (Bit 0.0) in den zyklischen Eingangsdaten durch den Empfänger. Da dieses Bit mit dem Eingang PRO-XY_REQUEST des LG_PROXY verbunden sein muss, startet dieser nun mit dem Parameterabgleich. Das geschieht:

- nach dem Einschalten des Empfängers, ggf. Download von der SPS nach einem Gerätetausch
- nach dem Einlernen mittels SafetyKey oder Schlüsseltaster bei Geräten mit dem Funktionspaket "Blanking", Upload des neuen Parametersatzes mit geändertem Schutzfeld
- beim Umschalten des Parametersatzes durch die SPS, Download des vom sicheren SPS-Programm angeforderten Parametersatzes

Wird durch das fehlersicher Programm der Parametersatz umgeschaltet während sich der Empfänger im Parametrier-Modus befindet (mit SafetyLab oder durch Einlernen), so werden die zyklischen Eingangsdaten auf Null gesetzt.

4.4 Identification & Maintenance Funktionen

I&M ist ein Konzept zur hersteller- und branchenunabhängigen einheitlichen Identifikation von Feldgeräten. Das Feldgerät stellt bestimmte Informationen in einem elektronischen Typschild zur Verfügung, auf die online vorrangig bei Inbetriebnahme und Wartung zugegriffen werden kann. Der Zugriff auf die Daten des Feldgerätes erfolgt über die azyklischen DP-V1 Zugriffsmechanismen RD_REC und WR_REC mit festem Index 255 und Slot 1. Das Lesen und Schreiben erfolgt jeweils auf einen I&M-Parametersatz bestehend aus 64 Bytes.

Der Empfänger unterstützt die I&M Funktionen I&M0 bis I&M4 für Master Klasse1 und 2. Die I&M Register werden azyklisch über Slot 1 und Index 255 mit WR_REC geschrieben und mit RD_REC gelesen. Der Zugriff ist nur über PROFIBUS möglich, d.h. die unten angegebenen Werte können durch den Anwender nicht mit SafetyLab eingegeben werden.

I&M0 (IM_INDEX 65000)	Bytes	Bedeutung			
Manufacturer specific	10	nicht benutzt (0)			
MANUFACTURER_ID	2	294 für Leuze elec	ctronic		
ORDER_ID	20	Bestellnummer de	es Gerätes		
SERIAL_NUMBER	16	Seriennummer de	s Gerätes		
HARDWARE_REVISION	2	Hardware-Stand d zeigt, z.B. 12	les Empfängers wie mit SafetyLab ange-		
SOFTWARE_REVISION	4	Firmware-Stand d zeigt, z.B. "V4.20"	es Empfängers wie mit SafetyLab ange-		
REVISION_COUNTER	2	zählt jede Umpara Einlernen des Sch Download durch d	umetrierung mit SafetyLab oder durch nutzfeldes, aber <u>nicht</u> den Parameter len Proxy-FB		
PROFILE_ID	2	0x3E00			
PROFILE_SPECIFIC_TYPE	2	0x0000			
IM_VERSION	2	1.0			
IM_SUPPORTED	2	I&M0 bis I&M4 (0x001e)			
I&M1 (IM_INDEX 65001)	Bytes	Bedeutung	Vorbelegung		
Manufacturer specific	10	nicht benutzt	0		
TAG_FUNCTION	32	Text	Leerzeichen		
TAG_LOCATION	22	Text	Leerzeichen		
I&M2 (IM_INDEX 65002)	Bytes	Bedeutung	Vorbelegung		
Manufacturer specific	10	nicht benutzt	0		
INSTALLATION_DATE	16	Text	Leerzeichen		
RESERVED	38	Text	Leerzeichen		
I&M3 (IM_INDEX 65003)	Bytes	Bedeutung	Vorbelegung		
Manufacturer specific	10	nicht benutzt	0		
DESCRIPTOR	54	Text	Leerzeichen		
I&M4 (IM_INDEX 65004)	Bytes	Bedeutung	Vorbelegung		
Manufacturer specific	10	nicht benutzt	0		
SIGNATURE	54	Binär	0		

Tabelle 4.4-1 Unterstützte I&M Funktionen

Das Register I&M0 kann vom Anwender nur gelesen werden, während die Register I&M1 bis I&M4 vom Anwender lesbar und beschreibbar sind. Jeder Zugriff auf diese Register erfolgt durch einen WR_REC Call mit einem darauf folgenden RD_REC Call. Erst mit dem RD_REC Call wird ein Zugriff abgeschlossen; vorher werden die Werte nicht durch den Empfänger übernommen.

Da zwei Master gleichzeitig auf die I&M-Register zugreifen können, wird sichergestellt, dass bei einem Zugriff WR_REC und RD_REC Call vom selben Master kommen; der als zweiter zugreifende Master erhält die Fehlermeldung BUSY.

Ein RD_REC Call ohne einen vorherigen WR_REC Call wird ebenso mit einer Fehlermeldung quittiert. Ein eventuell unbeendeter Zugriff wird durch einen neuen vollständigen unterbrochen. Der azyklische Datenverkehr mit dem Empfänger wird durch Zugriff auf die I&M Register nicht beeinflusst.

(i) Hinweis:

Die beschreibbaren I&M Register I&M1 bis I&M4 werden nicht durch den Proxy-FB gesichert. Nach einem Gerätetausch müssen diese Daten deshalb erneut in das Ersatzgerät geschrieben werden.

4.5 Alarme

Diagnose-Alarm

Der Diagnose-Alarm ist standardmäßig ausgeschaltet und kann bei Bedarf über die Parametrierung eingeschaltet werden.

Fehler oder Warnungen vom Empfänger werden über den PROFIBUS als Diagnose-Alarme gemeldet. Jeder neue Fehler wird als neuer kommender Alarm gemeldet. Dauerhaft anliegende Fehler werden bei stehender Verbindung nur einmal gemeldet. Bei Verbindungsunterbrechung und erneutem Übergang in den zyklischen Datenverkehr wird der letzte aufgetretene Fehler, falls er noch anliegt, erneut als kommender Alarm gemeldet. Ein kurzzeitig auftretender externer Fehler (Störmeldung Ex xx) liegt mindestens 10s an; dann erfolgt ein SoftReset (PROFIsafe läuft weiter). Liegt der Fehler nach dem SoftReset nicht mehr vor, so wird ein gehender Alarm gesendet. Schwere interne Fehler können eventuell keinen Alarm mehr auslösen. Es wird der Sequenzmode für 8 Alarme unterstützt, das heißt bis zu 8 Alarme werden im PROFIBUS-Slave zwischengespeichert, bis sie vom PROFIBUS-Master bearbeitet wurden. Die Alarm-PDU ist wie folgt codiert :

By-	В	Bitnummer							Bedeutung	
te	7	6	5	4	3	2	1	0		
1	0	0	0	0	1	1	0	1	Länge Alarm-PDU inkl. Header abhängig von Alarm	
2	0 0 0 0 0 0 1		1	Typ ist Diagnose-Alarm						
3	0	0	0	0	0	0	0	0	keine Slots (Slot 0)	
4	0 0 Sequ. Nr 1 0 0		0	keine Alarm Differenzierung, mit Quittung, SeqenzNr. 0-7						
5	х	х	х	x	x	х	х	х	Störungs- oder Fehlercode; wie angezeigt im 7-Segment - Display des Empfängers	
6	0 0 0 0 0 0 0 x		х	x=0: Byte 5 ist Störungscode Ex xx (Benutzer-/Anwendungsfehler) x=1: Byte 5 ist Feblercode Ex xx (Geräteausfall)						

 Tabelle 4.5-1
 Alarm-PDU des COMPACT*plus* Empfängers

Update-Alarm

Der Update-Alarm ist standardmäßig ausgeschaltet und kann bei Bedarf über die Parametrierung eingeschaltet werden. Wenn ein Klasse2-Master nach einem C2-Initiate erstmalig schreibend auf den Empfänger zugreift, wird dieses dem Klasse1-Master über den Update-Alarm mitgeteilt. Die Alarm-PDU ist wie folgt codiert:

By-	В	Bitnummer					_	_	Bedeutung
te	te 7 6 5 4 3 2 1 0		0						
1	0	0	0	0	0	1	0	0	Länge der Alarm-PDU (inklusive Header), 4 Byte
2	0	0	0	0	0	1	1	0	Typ ist Update-Alarm
3	0	0	0	0	0	0	0	0	keine Slots (Slot 0)
4	0	0	Se	qu.	Nr	1	0	0	keine Alarm Differenzierung, mit Quittung, Sequenznummer 0-7

Tabelle 4.5-2 Update Alarm des COMPACTplus Empfängers

5 Anzeigenelemente

5.1 Anzeige am Empfänger

5.1.1 LEDs

Zusätzlich zu den LED im Anzeigebereich des Empfängers, deren Anzeige abhängig vom Funktionspaket ist und in der Anschluss- und Betriebsanleitung zum Funktionspaket beschrieben ist, stehen in der PROFIBUS-Anschlusskappe stirnseitig zwei LEDs mit folgender Bedeutung zur Verfügung:

LED	Bedeutung
Rot	Zustand der Verbindung mit PROFIBUS
	AUS: PROFIBUS-Verbindung ist aufgebaut
	AN: Empfänger ist noch nicht bereit
	flackert (ca. 10 Hz): Empfänger wartet auf PROFIBUS – Verbindungsaufbau
	blinkt (ca. 2 Hz): Interner Fehler im Empfänger, Busbetrieb nicht möglich
Grün	Funktion des in der Anschlusskappe integrierten Busabschlusses
	AUS: Busabschluss ausgeschaltet (Werkeinstellung)
	AN: Busabschluss eingeschaltet

Tabelle 5.1-1LED in der Anschlusskappe

5.1.2 7-Segment-Anzeige

Die 7-Segment-Anzeige des PROFIBUS- Empfängers kann zusätzlich zu den in der Anschlussund Betriebsanleitung zum Funktionspaket sowie in der Bedienungsanleitung SafetyLab beschriebenen Permanent-Anzeigearten

- die Nummer des ausgewählten Parametersatz anzeigen, der über das sichere SPS-Programm und den Proxy-FB umgeschaltet werden kann.
- die PROFIBUS-Adresse anzeigen, die über 2 Hexadezimal-Schalter in der Anschlusskappe eingestellt wird.

Diese Anzeige muss in SafetyLab ab Version 1.1 als Permanent-Anzeige ausgewählt werden, um auf der 7-Segment-Anzeige dauerhaft nach dem Hochlauf zu erscheinen.

Unabhängig davon wird die PROFIBUS-Adresse kurzzeitig während des Hochlaufs unmittelbar nach dem Selbsttest (Anzeige "88") mit dem Anzeigecode "Ax xx" angezeigt, wobei "x xx" der dezimal dargestellte Wert der PROFIBUS-Adresse ist.

(i) Hinweis:

Die rot/grüne LED im Empfänger-Display für die Anzeige des Schaltzustandes des Sicherheitsausgangs OSSD ist unabhängig von der Art des Anschlusses. Während z.B. davon ausgegangen werden kann, dass in einem Gerät mit Relaisausgang bei eingeschalteter grüner LED die Relais tatsächlich eingeschaltet sind und somit der Lastkreis geschlossen ist, kann bei einem PROFIsafe-Gerät die Datenübertragung gestört sein, so dass das OSSD- Bit nicht an der F-CPU ankommt, obwohl die grüne LED den Schaltzustand "OSSD ein" signalisiert.

Derartige Störungen werden auf der 7-Segment-Anzeige mit dem Anzeigecode "b" gefolgt von einer Ziffer dargestellt. Die Auswirkung auf die zyklischen Eingangsdaten (siehe Kapitel 4.1.1), die vom Empfänger zur SPS geliefert werden, sind von der Art der Störung abhängig.

Code	Bedeutung
	Auswirkung auf zyklische Daten (OSSD)
b 1	falsche laufende Nummer oder falscher CRC2 in den zyklischen Daten
	werden passiviert
b 2	PROFIsafe Watchdog Timeout abgelaufen
	werden passiviert
b 3	Die SPS hat Failsafe Werte eingestellt.
	werden in der SPS als 0 verarbeitet
b 4	PROXY_REQUEST ist gesetzt und der Proxy-FB ist noch nicht gestartet bzw. noch nicht beendet (im Empfänger können sich noch ungültige Parameter befinden)
	werden auf 0 gesetzt
b 5	Mindestens einer der DIP-Schalter ist nicht in der linken Position L, der Download vom Proxy-FB erzeugt "E17".
	werden auf 0 gesetzt
b 6	Das Funktionspaket des vom Proxy-FB zu ladenden Parametersatzes passt nicht zu dem des angeschlossenen Empfängers.
	werden auf 0 gesetzt
b 7	Die Strahlanzahl des angeschlossenen Empfängers stimmt nicht mit der im Parameter- satz des Proxy-FBs überein.
	werden auf 0 gesetzt
b 8	Es ist kein gültiger Parametersatz im Proxy-FB, der Empfänger muss neu parametriert werden.
	werden auf 0 gesetzt
b 9	Das letzte azyklische Kommando war fehlerhaft und wurde nicht bearbeitet.
	keine

Tabelle 5.1-2 PROFIBUS-Störungscodes, -ursachen und Reaktionen

5.2 SafetyLab Software

Die SafetyLab PC-Software dient zur lokalen Diagnose sowie zur Parametrierung und verbindet sich über die opto-magnetische Schnittstelle des Empfängers oberhalb der 7-Segment-Anzeige und das mit der Software gelieferte Kabel über eine RS232- Schnittstelle. Der Kabelabgang des PC-Adapters am Empfänger zeigt dabei in Richtung Anschlusskappe. Ein starker Magnet im PC-Adapter sorgt nicht nur für mechanischen Halt sondern signalisiert dem Empfänger gleichzeitig, dass der PC-Adapter angeschlossen ist.

Alle Anzeigen und Einstellungen in Geräten ohne PROFIsafe-Interface sind auch in den entsprechenden PROFIsafe-Empfängern möglich. Darüber hinaus stehen 16 zyklische Ausgangs-Bits M1 bis M16 statt nur fünf Steuereingängen M1 bis M5 in Empfängern mit konventionellem Anschluss zur Verfügung.

Im Diagnose-Mode zeigt SafetyLab ab Version V1.1 auf einer separaten Registerkarte "PROFI-BUS" die empfangenen und gesendeten zyklischen Daten an.

Obwohl die Werkeinstellung der zyklischen Eingangsdaten so gewählt wurde, dass in vielen Fällen keine Veränderung der Datenstruktur nötig ist (Kapitel4.1.1), kann über die PROFIsafe-Parametrierung die Zuordnung der Bits in den Bytes 1 bis 3 zu internen Signalen geändert werden. Dadurch sind sehr spezifische Anpassungen an die Applikation möglich.

(i) Hinweis:

Zur Parametrierung kann nur SafetyLab ab Version V1.1 verwendet werden, da sich ältere Versionen nicht mit dem PROFIsafe-Empfänger verbinden. Eine ausführliche Beschreibung der Software finden Sie im Handbuch SafetyLab.

6 Montage und Anschluss

COMPACT*plus*/PROFIsafe-Empfänger besitzen ein integriertes PROFIsafe-Interface, d.h. alle Komponenten zur sicheren Anbindung an PROFIBUS DP sind im Gerät enthalten; eine separate Anschalteinheit ist deshalb nicht nötig. Der Anschluss an PROFIBUS erfolgt über Kabelschwänze mit M12- Stecker- Technologie. Da PROFIBUS aufgrund der hohen erreichbaren Datenrate von 12 MBd durch das Gerät geschleift werden muss, werden je eine PROFIBUS-Eingangsleitung und eine PROFIBUS-Ausgangsleitung sowie eine 24V- Versorgungsleitung benötigt.

Unberührt von der PROFIsafe-Anbindung bleibt das Lokal-Interface in seinen Ausführungen entsprechend Kapitel 7.1 der Anschluss- und Betriebsanleitung des Gerätes, an das in Abhängigkeit vom Funktionspaket die Steuer- und Meldesignale anzuschalten sind.

Die Montage über Nutensteine (Schiebemuttern) und Haltewinkel oder in eine Gerätesäule erfolgt identisch zu Geräten mit konventionellem Anschluss, ebenfalls beschrieben in den Anschluss- und Betriebsanleitungen zu den Funktionspaketen.

Vor dem Einbau des Gerätes muss die PROFIBUS–Adresse eingestellt werden. Nach dem Abnehmen der Anschlusskappe sind die beiden Hexadezimal-Schalter HexH und HexL zugänglich, mit denen die PROFIBUS-Adresse eingestellt werden kann. HexL stellt dabei die niederwertigen 4 Bit, HexH die höherwertigen 4 Bit der PROFIBUS-Adresse ein. Adressen über dezimal 126 (Hex 7E) sind nicht zulässig. Das wird dadurch verhindert, dass das höchstwertige Bit 7 nicht ausgewertet wird. Die Einstellungen 127 (Hex 7F) und 255 (Hex FF) dürfen nicht verwendet werden. Werkeinstellung ist Adresse 4.

Die eingestellte PROFIBUS-Adresse wird vom Empfänger beim Hochlauf auf seiner 7-Segment-Anzeige mit "Ax xx" angezeigt und kann optional mit SafetyLab ab Version V1.1 als Permanent-Anzeige ausgewählt werden.

Achtung:

Die für das PROFIsafe-Protokoll benötigte sog. F_Destinationaddress muss nicht separat eingestellt werden, sondern ergibt sich aus der PROFIBUS-Adresse + 1000. Der Projektierer hat deshalb dafür zu sorgen, dass in jedem der sicherheitstechnisch miteinander in Verbindung stehenden PROFIBUS-Stränge jeder Empfänger eine andere PROFIBUS-Adresse hat.

Im Engineering-Tools muss deshalb folgender Wert eingestellt werden .:

F_Dest_Add = ((HexH * 16) + HexL) + 1000

Über einen Schiebeschalter in der Anschlusskappe kann der Busabschluss eingeschaltet werden. Die eingeschaltete grüne LED an der Stirnseite der Kappe zeigt den aktivierten Busabschluss an.

a = Hexadezimalschalter HexH

b = Hexadezimalschalter HexL

c = Schiebeschalter für den PROFIBUS-Abschluss dargestellt in Position "Ein", links = Position "Aus"

Abb. 6.0-1 Adressierung und Busabschluss

Der Anschluss an PROFIBUS und die Stromversorgung erfolgt über Kabelschwänze mit M12-Anschluss-Stecker bzw. –Buchse.

a = LED rot, Diagnose der PROFIBUS-Verbindung über Blinkcodes

b = LED grün, PROFIBUS-Anzeige Busabschluss aktiviert

Abb. 6.0-2 Anschluss des PROFIsafe-Empfängers

Pin	Stecker / Buchse - Belegung					
	Stecker 1	Stecker 2	Buchse 3			
	Spannungs-	PROFIBUS-	PROFIBUS-			
	versorgung	Eingang	Ausgang			
	Länge: 0,6 m	Länge: 0,4 m	Länge: 0,2 m			
Pin 1	24 V DC +-20%	n.c.	n.c.			
Pin 2	n.c.	RXD/TXD-N	RXD/TXD-N			
Pin 3	0VDC	n.c.	n.c.			
Pin 4	n.c.	RXD/TXD-P	RXD/TXD-P			
Pin 5	FE	Schirm	Schirm			
Gewinde	n.c.	Schirm	Schirm			

Tabelle 6.0-1 Anschlussbelegung PROFIsafe-Empfängers

Über Stecker 1 ist der Empfänger mit 24VDC zu versorgen. Geeignete Kabel, optional geschirmt, finden sich im Zubehör (Kapitel 12.2).

An Stecker 2 und Buchse 3 sind geschirmte Standard-PROFIBUS-Kabel mit dem passenden bcodierten M12-PROFIBUS-Stecker / -Buchse anzuschließen. Ist der Empfänger das letzte Gerät am PROFIBUS-Strang, so ist der interne Schalter für den Busabschluss umzuschalten; die grüne LED leuchtet in diesem Fall.

7 Einstellen der F-CPU

Prinzipiell kann der Empfänger mit jeder sicheren Steuerung zusammen arbeiten, die über einen PROFIsafe-Anschluss verfügt. Die zur Einbindung in ein Anwenderprogramm nötige Projektierung und Programmierung wird nachfolgend anhand der Baureihe S7-300F und der Software STEP7 von der Fa. Siemens dargestellt. Es wird STEP7-Version V5.2 + SP2 oder höher benötigt.

Die Parametrierung des Empfängers kann folgendermaßen durchgeführt werden.:

- mittels Schaltern im Gerät; siehe Anschluss- und Betriebsanleitung zum Gerät
- mittels SafetyKey für das Funktionspaket "Blanking"; der Abgleich mit dem optionalen Proxy -Funktionsbaustein LG_PROXY erfolgt nach Abnehmen des SafetyKeys
- mit SafetyLab ab Version V1.1

Detaillierte Informationen dazu finden sich in der Anschluss- und Betriebsanleitung zum Gerät und in der Bedienungsanleitung "SafetyLab".

7.1 Einstell-Werte

7.1.1 Ansprechzeit

Die sicherheitsrelevante Ansprechzeitzeit eines Sicherheitskreises auf Basis PROFIsafe ergibt sich aus der Ansprechzeit des Empfängers und der PROFIsafe Watchdog-Zeit, die während der Projektierung entsprechend der unten dargestellten Berechnung auf der SPS einzustellen ist.

Für die Ansprechzeit des Sensors zusammen mit der F-SPS kann hier nur eine Berechnungsformel angegeben werden. Die konkreten Zeiten sind von der jeweiligen Anwendung, Aufbau und Parametrierung des Empfängers sowie der Zykluszeit der F-CPU und des Busses abhängig.

$$T_{WDmin} = 2 * MAX(T_{Interface}, T_{Master}) + 4 * T_{Bus}$$

T_{Wdmin} Minimal projektierbare PROFIsafe Watchdog-Zeit im Master

- T_{Interface} Zykluszeit des PROFIsafe-Interface des Empfängers = 20ms
- T_{Master} Zykluszeit des PROFIsafe-Programmteils auf der SPS (meist durch OB35 bestimmt)
- T_{Bus} Zykluszeit des PROFIBUS; abhängig von Baudrate, Anzahl Slaves, ...

Die auf der SPS projektierte PROFIsafe Watchdog-Zeit $T_{_{WD}}$ muss auf Werte größer $T_{_{WDmin}}$ eingestellt werden. Die Auflösung der PROFIsafe Watchdog-Zeit im Empfänger beträgt 20 ms, das heißt, dass die tatsächliche Watchdog-Zeit des Empfängers nur ganzzahlige Vielfache von 20 ms betragen kann. Zwischenwerte müssen aufgerundet werden (z.B. 41ms -> 60ms).

Die sicherheitsrelevante Ansprechzeit ergibt sich damit zu:

$$T_{sr} = T_{pf} + T_{wd}$$

- T_{SR} Sicherheitsrelevante Ansprechzeit von Schutzfeldverletzung oder Busfehlern bis das OSSD Bit in der F-CPU sicher ausgeschaltet wird
- T_{PF} Ansprechzeit der Schutzfeld-Funktion des Empfängers; abhängig von Strahlzahl und Parametrierung der Mehrfach-Abtastung in SafetyLab, Bildschirm "Mehrfachabtastung", siehe Kapitel 11.3
- T_{wp} Im Master projektierte PROFIsafe Watchdog-Zeit

Achtung:

Es ist zu beachten, dass wegen der Verlängerung der Ansprechzeit gegenüber einem Empfänger ohne PROFIBUS-Interface meist größere Sicherheitsabstände erforderlich sind. Im Gesamtsystem muss darüber hinaus auch die Ansprechzeit des Aktors und die Stopzeit der Maschine berücksichtigt werden.

7.1.2 GSD-Datei

Die GSD-Datei beschreibt die Standard-Kommunikationsparameter eines PROFIBUS - Gerätes und wird durch das Engineering-Tool STEP7 eingelesen. Ist COMPACT*plus* nicht im rechten Fenster von "HW Konfig" unter

PROFIBUS DP > Weitere FELDGERÄTE > Allgemein zu finden, so muss die GSD über das Menü

Extras > Neue GSD Datei installieren ... importiert werden.

7.1.3 F-Parameter

Die PROFIsafe Spezifikation erfordert die Festlegung der folgenden F-Parameter, die für den Empfänger innerhalb folgender Bereiche definierbar sind.

F-Parameter	Bedeutung
F_Check_SeqNr	einstellbar 0 oder 1 (default 0)
	PROFIsafe V1:
	 0 die laufende Nummer wird nicht in die CRC einbezogen
	 1 die laufende Nummer wird mit in die CRC einbezogen
	PROFIsafe V2:
	Einstellung irrelevant, da die laufende Nummer immer die CRC-Berechnung einbezogen wird
F_Check-iPar	nicht einstellbar, fest auf 0 für keine i-Parameter
F_SIL	nicht einstellbar, fest auf 2 für SIL3
F_CRC_Length	PROFIsafe V1: muss auf 1 für 2 Byte CRC gesetzt werden
	PROFIsafe V2: muss auf 0 für 3 Byte CRC gesetzt werden
F_Block_ID	nicht einstellbar, fest auf 0
F_Par_Version	PROFIsafe V1: 0
	PROFIsafe V2: 1
F_Source_Add	vorgegeben von der F-CPU, aus Sicht des Empfängers einstellbar von 1 bis 65534
F_Dest_Add	1000 bis 1126 (default 1004)
	Die F_Dest_Add wird im COMPACT <i>plus</i> Empfänger aus der PROFIBUS – Adresse + 1000 gebildet und muss im Projektier-Tool entsprechend einge- stellt worden
E WD Time	sichere Watchdog Überwachungszeit: einstellbar in Millisekunden 20 – 1000
	(default 20)
	Die F WD Time muss bei der Projektierung immer mit größeren Werten
	nach der Gleichung
	$F_WD_Time_min = 2 * max (20ms, t_{Matter}) +$
	4 * Bus_Cycle_Time
	berechnet werden. Zur Berechnung der Ansprechzeit des Systems muss zu
	der eingestellten F_WD_Time noch die Ansprechzeit der Schutzfeldfunktion
	T _{PF} des Empfängers laut Typenschild und Multiscan-Faktor bzw. Angabe in
	SafetyLab hinzu gerechnet werden (Kapitel 7.1.1)
F_Par_CRC	muss vom PROFIsafe – Projektiertool mit CRC1 für den F-Parameterblock richtig belegt werden

Tabelle 7.1-1 F-Parameter für den COMPACT plus Empfänger

(i) Hinweis:

Da sich bei Änderungen an den F-Parametern der Startwert für die CRC - Berechnung der zyklischen PROFIsafe-Daten ändert, muss danach immer das gesamte Sicherheitsprogramm neu übersetzt und geladen werden (Kapitel 7.3). Sollten bereits Parametersätze durch den Proxy-FB abgespeichert sein, so müssen diese nochmals erzeugt werden. Die F-Parameter sollten deshalb zu Beginn der Projektierung korrekt eingestellt und dann möglichst nicht mehr geändert werden.

7.2 Konfigurieren

Mit den folgenden Schritten wird ein STEP7-Projekt so angelegt und vorbereitet, dass die sicheren Eingangsdaten des Empfängers im Prozessabbild PAE einer S7-300F zur Benutzung durch ein sicheres Anwenderprogramm zur Verfügung stehen und die PAA-Ausgangsdaten in den Empfänger geschrieben werden können. Vorausgesetzt wird, dass die PROFIBUS-Adresse im Empfänger bereits eingestellt und bekannt ist.

Achtung:

Dabei ist darauf zu achten, dass die PROFIBUS-Adresse aller Empfänger im Automatisierungssystem, auch in solchen mit mehreren PROFIBUS-Strängen, nur einmal existiert. Damit wir sichergestellt, dass auch die F_Dest_Add (Kapitel 7.1.3) jedes Empfängers systemweit nur einmal vorkommt und damit eindeutig ist.

- SIMATIC Manager starten, ggf. neues Projekt mit der zur Verfügung stehenden F-CPU definieren.
- In der Baumstruktur "SIMATIC x00" auswählen und im rechten Fenster durch Doppelklick auf "Hardware" das Konfigurier-Tool "HW Konfig" aufrufen. Wechseln Sie zu "HW Konfig".
- Alle Baugruppen im Rack sowie mindestens einen PROFIBUS-Strang definieren.
- Doppelklick auf die F-CPU öffnet deren "Eigenschaften"- Fenster.
- Auf der Registerkarte "Schutz" den Radiobutton "2. Schreibschutz" wählen, ein Kennwort vergeben und die Checkbox "CPU enthält Sicherheitsprogramm" anwählen.
- Auf der Registerkarte "Weckalarme" für OB35 die gewünschte Zykluszeit des Sicherheitsprogramms eingeben, z.B. 60 ms. Dabei ist deren Einfluss auf die Ansprechzeit des Sicherheitskreises entsprechend Kapitel 7.1.1 zu beachten.
- Auf der Registerkarte "Remanenz" mindestens die vom Proxy-FB benötigte Anzahl remanenter Merker entsprechend Kapitel 0 festlegen, falls der Proxy-FB benutzt werden soll.
- Aus dem rechtem Fenster von "HW Konfig" aus "PROFIBUS DP > Weitere Feldgeräte > Allgemein" COMPACT*plus* auf den PROFIBUS ziehen. Wenn COMPACT*plus* hier nicht vorhanden ist, dann über das Menü "Extras > Neue GSD installieren ..." hier verfügbar machen.
- Pro Empfänger die PROFIBUS Adresse in "HW Konfig" so festlegen, dass sie mit der Einstellung per Hex-Schalter in der Anschlusskappe übereinstimmt. Dazu über Doppelklick auf das Symbol des Empfängers das Fenster "Eigenschaften DP-Slave" öffnen. Dort über die Schaltfläche "PROFIBUS..." und Registerkarte "Parameter" die Adresse einstellen. Fenster über Schaltfläche "OK" schließen.
- Empfänger durch Einfach-Klick auswählen und in der Tabelle im unteren Teil des Fensters von "HW Konfig" auf die entsprechende Zeile für Steckplatz 1 doppelklicken. Auf der Registerkarte "Adresse/Kennung" den Start der zyklischen Bytes in PAE (Eingang) und PAA (Ausgang) so festlegen, dass sie nicht mit dem Speicherbereich anderer Geräte überlappen. Der Empfänger belegt je 8 Byte Ein- und Ausgangsdaten. Auf der Registerkarte "PROFIsafe" Doppelklick auf F_Dest_Add und im geöffneten Fenster den Wert auf "HW-Adresse" + 1000 einstellen, also z.B. 1007 wenn per Hex-Schalter die Adresse "07" eingestellt wurde. Die Watchdog-Zeit F_WD_Time auf einen hinreichend großen Wert entsprechend der Berechnungsformel in Kapitel 7.1.1 einstellen, z.B. 150 ms. Bei der Einstellung der Zykluszeit des F_Programms ist auch die Ansprechzeit der lokalen Baugruppen und weiterer PROFIsafe-Geräte zu beachten. Fenster mit Schaltfläche "OK" schließen.
- Über das Menü "Station > Speichern und übersetzen" wird die Programmstruktur festgelegt und der Programm-Container generiert.
- Über das Menü "Zielsystem > Laden in Baugruppe.." oder die entsprechende Schaltfläche im Toolbar die Hardware-Konfiguration in die F-CPU laden. Nach Download und Neustart der CPU dürfen keine Busfehler diagnostiziert werden → die roten LEDs BF 1 und BF 2 auf der F-CPU sind aus.

7.3 Programmieren

Um die sicheren zyklischen Daten vom Empfänger auszuwerten bzw. zu erzeugen um zum Empfänger geschrieben zu werden, muss sich in der F-CPU ein sicheres Programm befinden. Es kann in der SIMATIC Umgebung nur über ein spezielles Menü erzeugt und geladen werden und wird üblicherweise über den Weckalarm OB35 gestartet. Für ein einfaches Programm, das zunächst nur zur Anzeige der zyklischen Daten in einer Variablentabelle dient, sind nach Abschluss des Konfigurierens folgende Schritte nötig.:

- Im SIMATIC Manager in der Baumstruktur auf ...\S7 Programm > Bausteine" gehen, auf eine freie Stelle im rechten Fenster mit rechter Maustaste klicken und "Neues Objekt einfügen > Or-ganisationsbaustein > OB35" auswählen. Dementsprechend auch OB56, OB82, OB83 ... OB88 anlegen. Die letzteren sind Fehler-OBs, die dafür sorgen dass die CPU bei Auftreten bestimmter Fehler und Störungen nicht unmittelbar in den Stop-Zustand geht. Stattdessen wird der entsprechende Fehler-OB aufgerufen und ein Diagnose-Alarm ausgelöst. In vielen Fällen wird dadurch der Fehler abgefangen ohne die CPU zu stoppen. Das ist insbesondere interessant, wenn die CPU z.B. mehrere unabhängige Fertigungslinien steuert und der Ausfall eines Gerätes in einer Linie die Funktion der anderen Linien nicht beeinflussen soll.
- Bausteine markieren und über Menü: "Zielsystem > Laden" in die F-CPU laden.
- Funktionsbaustein f
 ür das Sicherheitsprogramm definieren. Dazu "Neues Objekt einf
 ügen > Funktionsbaustein" auswählen. Funktionsbaustein definieren, z.B. FB110 und evtl. symbolischen Namen vergeben. Als Erstellungssprache ist eine F-Sprache auszuwählen, beispielsweise F-FUP.
- Funktion erstellen, die zyklisch mit der eingestellten Zykluszeit im OB35 aufgerufen wird. Dazu "Neues Objekt einfügen > Funktion " auswählen. Funktion definieren als FC1 mit der Erstellungssprache "F-CALL"..
- Im SIMATIC Manager den KOP/AWL/FUP Editor für OB35 durch Doppelklick öffnen und zumindest ein Netzwerk definieren mit dem Unterprogramm-Aufruf

CALL FC1

- Speichern und neu definierte Bausteine markieren und in die F-CPU laden.
- Menü "Extras > Sicherheitsprogramm bearbeiten" aufrufen. Im geöffneten Fenster die Schaltfläche "Ablaufgruppen.." betätigen und Kennwort eingeben. Im nächsten Fenster nun der Funktion FC1 den FB mit dem Sicherheitsprogramm (z.B. FB110) und einen Datenbaustein (z.B. DB110) zuordnen bzw. diesen zunächst anlegen. Fenster mit "OK" schließen.
- Schaltfläche "Generieren" betätigen; das jetzt gestartete Generieren des Rahmens für das Sicherheitsprogramm kann etwas dauern. Danach müssen die beiden CRC im oberen Teil des Fensters identisch sein.
- Schaltfläche "Laden" betätigen um den gerade erstellten Rahmen für das Sicherheitsprogramm in die F-CPU zu laden.
- Im SIMATIC Manager auf FC1 doppelklicken und prüfen ob FB1 aufgerufen wird
- FB mit dem Sicherheitsprogramm (z.B. FB110) öffnen und pro Empfänger ein Netzwerk für die Wiedereingliederung nach einem Fehler definieren (ACK_REQ → ACK_REI). Dazu über einen UND-Block das Eingangssignal ...ACK_REQ vom Empfänger auf den Ausgang ...ACK_REI schalten. Das kann wie dargestellt für Sensoren automatisch erfolgen, da das sichere OSSD-Signal ja vor der Ausgabe an einen Aktor über eine im Sicherheitsprogramm implementierte Wiederanlaufsperre geführt wird, so das der Aktor nicht automatisch anläuft.

Netzwerk 3: 1=ACKNOWLEDGEMENT REINTEGRATION

Abb. 7.3-1 Reintegration des PROFIsafe-Empfängers

- SIMATIC Manager Menü "Extras > Sicherheitsprogramm" zuerst Schaltfläche "Generieren", anschließend wenn fehlerfrei übersetzt in F-CPU "Laden".
- Im SIMATIC Manager in der Baumstruktur auf ...\S7 Programm > Bausteine" gehen. Auf eine freie Stelle im rechten Fenster mit rechter Maustaste klicken und "Neues Objekt einfügen > Variablentabelle" auswählen. Hier über Menü "Einfügen > Bereich" zumindest das erste zyklische Eingangs-Byte des PAE des Empfängers auswählen. Die Variablen-Tabelle über Menü "Variable > Beobachten" oder durch Anklicken des entsprechenden Symbols im Toolbar animieren.

Bei Unterbrechen und Freigeben des Schutzfeldes muss nun mindestens das Bit Ex.2 (PFF) wechseln; bei Betrieb ohne Wiederanlaufsperre zusätzlich das Bit Ex.1 (OSSD_STATE), siehe Kapitel 4.1.1.

Für weitere Informationen sind die entsprechenden Unterlagen zur sicheren Programmierung in STEP7 heranzuziehen.

7.4 Diagnosedaten

Zur Überprüfung des Status' der Verbindung zwischen F-CPU und Empfänger kann das Diagnose-Telegramm ausgewertet werden. Die Diagnosedaten werden als Status-PDU geliefert, in der nach den ersten 6 Bytes Standard-Diagnose folgende 5 Bytes geliefert werden.:

Byte	Bi	Bitnummer							Bedeutung	
	7	7 6 5 4 3 2 1 0		0						
7	0	0	0	0	0	1	0	1	Länge der Status-PDU ist 5 (inklusive Header)	
8	1	0	0	0	0	0	0	1	Typ ist Status-Message	
9	0	0	0	0	0	0	0	0	keine Slots	
10	0	0	0	0	0	0	0	0	keine Status Differenzierung	
11	х	x	х	х	х	х	x	х	Fehler in F-Parametern (Fehlernummer)	

Tabelle 7.4-1 Diagnosedaten in Status-PDU des COMPACTplus Empfängers

Fehlernummern für Fehler in F-Parametern (Byte 11):

- 0 Kein Fehler
- 64 Fehler bei F_Destination Address
- 65 Falsche F_Destination Address
- 66 Falsche F_Source Address
- 67 Falsche F_Watchdog Time Einstellung
- 68 Falsche SIL Einstellung
- 69 Falsche CRC Länge
- 70 Falsche F_Block_ID oder F_ParVersion
- 71 Falsche CRC1 über die F-Parameter

Sollte einer der oben genannten Fehler auftreten, so wird der Verbindungsaufbau abgelehnt.

Zu Diagnosezwecken werden die oben genannten Fehlernummern auch im Empfänger abgelegt, so dass sie über SafetyLab ab Version 1.1 auf der Registerkarte "PROFIBUS", Zeile "PROFIBUS Diagnose" angezeigt werden können.

Fehler in den Standard-Parametern sind nur in der SPS-Diagnose oder mit einem Busmonitor zu erkennen, nicht aber mit SafetyLab.

8 Inbetriebnahme

8.1 Projektier-Beispiele

Anhand einiger Beispiele werden nachfolgend die Schritte zur Inbetriebnahme verschieden komplexer Systeme erläutert. Dazu sollte das zur verwendeten F-CPU passende Projekt von der CD-ROM dearchiviert werden. Falls der Proxy-FB verwendet werden soll, so kann er einfach aus dem passenden Beispielprojekt in das eigene Projekt kopiert werden.

8.1.1 Plug and Play

In einfachen Anwendungen kann auf den Proxy-FB verzichtet werden. Es wird ausschließlich der zyklische Datenverkehr genutzt um die sicheren Signale zu übertragen. Nachdem die PROFIBUS – Adresse am Empfänger eingestellt, der Empfänger an PROFIBUS angeschlossen und das SPS-Programm entsprechend Kapitel 7.2 und 7.3 vorbereitet ist, muss der sichere Programmteil lediglich durch die passenden Funktionsbausteine ergänzt werden. Das sei anhand von 2 typischen Applikationen erläutert.

Beispiel 1:

Einem Lichtvorhang mit dem Funktionspaket "Blanking" werden über einen bereits in Werkeinstellung an L1 und L2 vorgesehenen 2-kanaligen Schlüsseltaster zur Laufzeit verschiedene Schutzfelder eingelernt. Nach einem Gerätetausch wird das benötigte Schutzfeld erneut eingelernt oder das Parameter-Steckmodul in das Ersatzgerät gesteckt, so dass eine Parameter-Speicherung über den Proxy-FB nicht nötig ist. An L3 und L4 ist ein Sicherheits-Türschalter angeschlossen (S6=R), mit dem der Zutritt zum Rückraum der Maschine abgesichert wird. Dieser Sicherheitskreis wirkt bereits durch die interne Verknüpfung im Empfänger auf dessen OSSD-Bit und muss deshalb im F-Programm nicht mehr in die Abschaltlogik einbezogen werden. Der Lichtvorhang läuft ohne interne Wiederanlaufsperre (S3=L), da diese durch das sichere Programm auf der F-CPU realisiert wird. Die Not-Aus-Taster werden verteilt in der Anlage über ET200S eingelesen und zu einem zentralen Abschalt-Signal verUNDet, das mit in den Abschaltkreis der abzusichernden Maschine einbezogen wird. Die Schützkontrolle EDM wird ebenfalls durch die F-CPU realisiert, da sie das Abschaltsignal generiert. Dargestellt ist eine statische Schützkontrolle über eine elektrische Serienschaltung mit dem Quittiertaster "Acknowledgement_Button". Deshalb ist kein separater Eingang für die Rückführkontakte der Schütze vorgesehen.

In das Sicherheitsprogramm zusätzlich aufzunehmen ist der folgende Programmteil.:

Abb. 8.1-1 Sicherer Programmteil mit Wiederanlaufsperre

Beispiel 2:

Eine Verpackungsmaschine, z.B. ein Wickler, hat einen Abschaltkreis – den Hauptantrieb des Wicklers und je einen Paletteneinlauf- und einen Auslaufbereich. Beide Bereiche werden durch je einen Muting-Transceiver mit Umlenkspiegel abgesichert. Jeder Transceiver hat neben der kompletten Muting-Funktionalität seine interne Wiederanlaufsperre aktiviert, um ein Freifahren nach einer Störung mit der lokalen Starttaste zu ermöglichen, während das sichere Programm nur die EDM-Funktion realisiert. Die beiden OSSD-Signale müssen deshalb in der F-CPU lediglich zu einem Steuersignal für den Hauptantrieb "Wrapper_Enable" verUNDet werden. Zusätzlich ist die EDM-Funktion zu programmieren, die hier nicht dargestellt wird.

Abb. 8.1-2 Sicherer Programmteil ohne Wiederanlaufsperre

8.1.2 Parameter-Speicherung über Proxy-FB

Sollen die Parameter des Empfängers mit SafetyKey eingelernt oder mit SafetyLab eingestellt werden und diese bei einem Gerätetausch automatisch in ein Ersatzgerät geladen werden, so ist die Einbindung des Proxy-FB "LG_PROXY" in den Standardteil des SPS-Programms notwendig. Damit der Empfänger die Daten vom Proxy-FB akzeptiert, müssen sich alle DIP-Schalter im Gerät in der Werkauslieferungs-Stellung L befinden. Zur Einbindung des Proxy-FB in Ihr SPS-Programm gehen Sie folgendermaßen vor.:

- Beispiel-Bibliothek von der mitgelieferten CD-ROM einbinden über Menü Datei > Dearchivieren, Speichern unter Step7 > S7LIBS.
- Beispielprojekt öffnen, LG_PROXY kopieren und im Zielprojekt einfügen (z.B. als FB10).
- Im Standardprogramm OB1 öffnen, neues Netzwerk einfügen und aus "FB Bausteine" in das Netzwerk ziehen
- Instanz-DB definieren (z.B. DB10) und dabei die Checkbox "unlimited" anwählen.
- Doppelklick auf den DB und als Typ ARRAY[0..16383] f
 ür den kleinen Speicherbereich mit 4 Parametersätzen pro DB und darunter BYTE angeben; f
 ür gro
 ßen Block f
 ür bis zu 16 Parametersätzen ARRAY[0..65535].w
 ählen
- Im sicheren Programm (z.B. in FB110) Ausgangsbyte DATASET_NUMBER fest auf 1 setzen. Damit steht für den Empfänger genau ein Parametersatz zur Verfügung.

- Im Standard-Programm vor dem Aufruf des Proxy-FB einige Eingangsbits vorbereiten:
 - SET

= M 1000.0
 CLR
 = M 1000.1
 CLR
 = M 1000.2

• Den Proxy-FB in OB1 aufrufen:

CAL

L	"LG_PROXY" , DB10	
	DATASET_NUMBER	:=AB0
	PROXY_REQUEST	:=E0.0
	PROXY_START_ENABLE	:=M1000.0
	WRITE_DISABLE	:=M1000.1
	DATASET_PER_DB	:=M1000.2
	FIRST_DB	:=W#16#64
	RANGE_OF_DB	:=B#16#1
	START_ADDR_RETENTIVITY_M	:=W#16#14
	IN_OUT_ADDRESS	:=W#16#0
	BUSY	:="LG_PROXY BUSY"
	STATE	:="LG_PROXY STATUS"
	ERROR_NUMBER_FB	:="LG_PROXY ENBR FB"
	ERROR_CODE_SFC	:="LG_PROXY ECODE FC"

Für den o.a. FB-Aufruf wird angenommen, dass die zyklischen Bytes ab Adresse 0 im PAE bzw. PAA beginnen → im ersten Ausgangsbyte AB0 steht die Nummer des ausgewählten Parametersatzes, das PROXY_REQUEST Bit befindet sich im zyklischen Eingangsbit E0.0.

Wird die Parametrierung des Empfängers durch Einlernen mittels SafetyKey oder mit SafetyLab verändert, so wird der neue Parametersatz automatisch durch den Proxy-FB auf der F-CPU gespeichert. Dazu signalisiert der Empfänger über das PROXY_REQUEST Bit dem Proxy-FB dass neue Daten zur Abholung bereit stehen. Dieser liest sie dann transparent für den Benutzer aus dem Empfänger aus und speichert und sichert den Parametersatz.

8.1.3 Parameter-Umschaltung

Um den Parametersatz während der Laufzeit umzuschalten, muss der Proxy-FB entsprechend Kapitel 8.1.2 eingebunden werden und zusätzlich in Abhängigkeit vom aktuellen Bearbeitungsschritt die Nummer des auszuwählenden Parametersatzes

- über den Eingang DATASET_NUMBER des Proxy-FB
- und damit gleichzeitig über das sichere zyklische Ausgangsbyte 0 (Kapitel 4.1.2)

geändert werden. Der Empfänger erkennt die Veränderung gegenüber dem bisher gespeicherten Parametersatz und fordert vom Proxy-FB über das PROXY_REQUEST Bit einen zur neuen Nummer passenden Parametersatz an. Der Proxy-FB reagiert darauf durch Download des angeforderten Parametersatzes.

(i) Hinweis:

Während des Downloads wird das OSSD-Bit auf 0 gesetzt. Die Parameter-Umschaltung ist damit zur Anpassung an verschiedene Werkstücke nach einer kurzen Stopphase (einige Sekunden) geeignet, nicht aber für die Umschaltung des Schutzfeldes während einer gefährlichen Bewegung vorgesehen, die kontinuierlich OSSD_STATE = 1 erfordert.

Achtung:

Es ist Aufgabe des sicheren Programms, dafür zu sorgen dass der korrekte Parametersatz zur richtigen Zeit ausgewählt wird und als numerischer Wert zwischen 1 und 255 bereit steht.

Bevor der Parametersatz des Empfängers zur Laufzeit umgeschaltet werden kann, müssen alle Parametersätze während der Inbetriebnahmephase im Empfänger eingestellt und überprüft werden, um anschließend in die F-CPU übernommen zu werden. Dazu wird für jeden Parametersatz folgendermaßen verfahren.:

- Die F-CPU gibt über das sichere Programm eine Parametersatz-Nummer vor (=DATASET_NUMBER). Die Auswahl erfolgt so wie auch später zur Laufzeit der Applikation.
- Der Empfänger muss nun durch Einlernen über SafetyKey oder mittels SafetyLab ab Version 1.1 in gewohnter Weise parametriert werden.
- Nach Abschluss der Parametrierung wird der Parametersatz durch den Proxy-FB in der F-CPU übernommen.

Zur komfortablen Überprüfung der Auswahl des aktuellen Parametersatzes zur Laufzeit kann dessen Nummer auf dem 7-Segment-Display als Permanent-Anzeige dargestellt werden. Die Auswahl dieser Anzeigeart erfolgt über SafetyLab.

(i) Hinweis:

Die Benutzerdaten (Benutzername und -kennwort) werden wie Parameter des Empfängers ebenfalls durch den Proxy-FB abgeglichen. Beim Erzeugen der Parametersätze ist deshalb darauf zu achten, dass als erstes alle Benutzer definiert werden. Die Definition eines neuen Benutzers, nachdem bereits einige Parametersätze durch den Proxy-FB abgespeichert wurden, erfordert deshalb dass die bereits abgelegten Parametersätze mit dem neuen Benutzer nochmals gespeichert werden. Andernfalls kann der neue Benutzer nur auf die Parametersätze zugreifen, für die er definiert wurde.

8.1.4 Verwaltung mehrerer Proxy-FBs

Jeder Empfänger COMPACT*plus /* PROFIsafe benötigt seinen eigenen Proxy-FB im nicht-sicheren Anwenderprogramm. Insbesondere beim Anfahren einer größeren Anlage mit vielen Proxy-FBs kann es zu einer starken Belastung von PROFIBUS und Anwenderprogramm kommen, da alle Empfänger gleichzeitig versuchen ihren Parametersatz mit ihren Proxy-FBs abzugleichen \rightarrow die Gefahr der Überschreitung der zulässigen Zykluszeit ist groß.

Um die Belastung gering zu halten und evtl. zusätzlich die Reihenfolge des Hochlaufs zu kontrollieren, können die Proxy-FBs so gesteuert werden, dass zu einem Zeitpunkt immer nur ein Proxy-FB arbeitet. Ist der Abgleich mit seinem Empfänger beendet, gibt er den nächsten Proxy-FB frei. Die Steuerung erfolgt über die Eingänge PROXY_START_ENABLE und die Ausgänge BUSY. Die vom Anwender selbst zu erstellende Funktion "PROXY MANAGEMENT" muss alle BUSY-Ausgänge einlesen und prüfen ob eines der Bits = 1 ist. Ist das der Fall, so müssen die Eingänge "PRO-XY_START_ENABLE" aller nicht aktiven Proxy-FBs = 0 gesetzt werden; nur der Steuereingang des gerade aktiven LG_PROXY bleibt = 1. Sind alle BUSY-Ausgänge = 0 werden alle "PRO-XY_START_ENABLE" - Eingänge = 1 gesetzt.

Abb. 8.1-3 Verwaltung der Aktivierung mehrerer LG_PROXY

8.1.5 Auslesen von Einzelstrahldaten

Zusätzlich zur Sicherheitsfunktion, die auf dem sicheren zyklischen Datenaustausch basiert, können die Zustände der einzelnen Strahlen des Empfängers über einen azyklischen RD_REC-Aufruf ausgelesen werden. Da der azyklische Datenverkehr auch vom Proxy-FB benutzt wird und gestört werden kann wenn die vom Empfänger erwarteten Teile des Parametersatzes nicht in der richtigen Reihenfolge ankommen, muss das Auslesen der Einzelstrahldaten mit der Aktivierung des Proxy-FB synchronisiert werden. Dazu wird der BUSY-Ausgang des dem auszulesenden Empfänger zugeordneten Proxy-FB vor dem Aufruf von RD_REC abgefragt, um zu verhindern dass das Auslesen der Einzelstrahldaten zeitgleich mit einem Proxy-Abgleich erfolgt, da dadurch der Parameterabgleich abgebrochen wird. Während des Auslesens von Einzelstrahldaten sollte der Eingang PRO-XY_START_ENABLE des LG_PROXY = 0 gesetzt werden um das Starten der Proxy-Aktivität sicher zu verhindern.

Das Lesen erfolgt in einen DB dessen Adresse und Länge über den Parameter RECORD angegeben wird. Pro Strahl ist ein Bit erforderlich. Da ein Lichtvorhang max. 240 Strahlen haben kann, wird der benötigte Datenblock max. 40 Byte groß sein (10 Byte Header + 30 Byte a 8 Bit Daten). Zur Definition der Größe wird in STEP7 auf den DB (z.B. DB12) doppelgeklickt und der Typ mit AR-RAY[0..40] vom Typ BYTE definieren.:

Adresse	N	lame	Тур	Anfangswert
0.0			STRUCT	
+0.0		DB_VAR	ARRAY[040]	
*1.0			BYTE	
=42.0			END_STRUCT	

Nachdem die Steuer-Ein- und Ausgänge des LG_PROXY bearbeitet wurden, kann der Aufruf der Funktion RD_REC erfolgen,:

CALL "RD REC	2"
--------------	----

REQ	:=M10.1	
IOID	:=B#16#54	//54=input or input/output
LADDR	:=W#16#0	//PAE address of cyclic data = 0
RECNUM	:=B#16#67	//"Register-" index; =103
RET_VAL	:=MW3	
BUSY	:=A16.6	// Display BUSY on output A16.6
RECORD	:=P#DB12.DBX0	.0 BYTE40

Der Eingang REQ (M10.1 im Beispiel) sollte über ein Flankensignal gesteuert werden um sicher zu stellen, dass nur ein einzelner Aufruf generiert wird.

8.2 Szenarien mit Proxy-FB

Ohne Proxy-FB müssen die Parameter bei Erstinbetriebnahme sowie bei jedem Gerätetausch mit Hilfe der am Anfang von Kapitel 7 aufgeführten Methoden eingestellt werden. Eine schnelle Umparametrierung zur Laufzeit ist nicht möglich. Anders sieht es bei Benutzung des Proxy-FB aus. Die Einbindung des Proxy–FB in den nicht sicheren Teil des Anwenderprogramms ist dann sinnvoll, wenn die Parametrierung über Einlernen mit dem SafetyKey oder mittels SafetyLab erfolgt. Dann sind die folgenden Szenarien möglich.:

- Erstmalige Inbetriebnahme einer neuen Anlage
- Ändern der Parametrierung eines dem Master bekannten Empfängers
- Normaler Start mit einem korrekt parametrierten Empfänger
- Umschaltung der Parametrierung im Normalbetrieb
- Erster Start nach einem Gerätetausch

Das Verhalten von Proxy-FB in der SPS und Empfänger wird für diese Fälle nachfolgend erläutert.

8.2.1 Erstinbetriebnahme

Dem Proxy-FB im PROFIBUS - Master steht kein gültiger Parametersatz zur Verfügung. Der Empfänger läuft entweder in Werkseinstellung und wurde bereits durch Einlernen oder mittels SafetyLab parametriert. Die DIP-Schalter müssen in der Position L stehen. Er geht in den normalen Betriebsmodus über <u>ohne</u> die Parameter auf den Proxy-FB zu übertragen. Der Ausgang STATE des LG_PROXY hat den Wert 1.

Falls die Werkeinstellung nicht den Erfordernissen des Einsatzes entspricht, kann der Empfänger am Einsatzort über den optischen PC-Adapter mit SafetyLab parametriert werden. Dann liegt Fall 8.2.2 vor.

Bei Einstellung des Empfängers über die Schalter S1..S6 auf dem Parameter-Modul ist die Einbindung des Proxy-FB nicht sinnvoll, da die Parameter weder auf die F-CPU übertragen werden noch von der F-CPU in das Gerät geladen werden können (Störmeldung E17).

8.2.2 Parameter-Änderung im Empfänger

Der Empfänger wird mit angeschlossenem PROFIBUS durch Einlernen mit dem SafetyKey oder mit SafetyLab umparametriert. Nachdem sämtliche Parameter eingestellt und überprüft wurden, geht der Empfänger in seinen normalen Betriebsmodus mit zyklischem Datenaustausch über.

Mit dem Abschluss des Parametrierens wird der neue Parametersatz an den Proxy-FB im PROFI-BUS-Master geschickt. Dieser Parameterabgleich erfolgt automatisch im Hintergrund; ein evtl. bereits im Proxy-FB gespeicherter Parametersatz wird überschrieben.

8.2.3 Parameter-Umschaltung durch die F-SPS

Durch Vorgabe der Nummer des auszuwählenden Parametersatzes im zyklischen Ausgangsbyte 0 erfolgt die Parameter-Umschaltung. Der Empfänger stellt bei einer Veränderung dieses Wertes eine Abweichung vom aktuelle eingestellten Parametersatz fest und fordert über das PRO-XY_REQUEST Bit im zyklischen Eingangsbit 0.0 einen Download des ausgewählten Parametersatzes durch den Proxy-FB an. Dieser kennt durch seinen Eingang DATASET_NUMBER bereits die Nummer des angeforderten Datensatzes, sofern DATASET_NUMBER mit dem ersten zyklischen Ausgangsbyte verbunden ist.

8.2.4 Gerätetausch

Anhand bestimmter interner Werte kann der Empfänger eindeutig identifiziert werden. Da diese Werte im Proxy-FB Speicherbereich hinterlegt sind, kann ein Gerätetausch erkannt werden. Der durch den Proxy-FB gespeicherte Parametersatz wird automatisch in den Empfänger übertragen. Der Proxy-FB speichert die neuen Identifizierungswerte und geht in den normalen Betriebsmodus über.

Hat ein Proxy-FB einmal einen Parametersatz abgespeichert, so wird ein neuer baugleicher Empfänger immer mit dem Parametersatz des alten Empfängers überschrieben, da er für ein Austauschgerät gehalten wird. Soll auf der bereits vergebenen PROFIBUS – Adresse mit einem neuen Empfänger **und** neuer Parametrierung gearbeitet werden, dann muss

- der Empfänger dem Proxy-FB zunächst bekannt gemacht werden, indem er an den PROFIBUS angeschlossen wird. Automatisch wird der alte Parametersatz in den neuen Empfänger übertragen.
- der Empfänger anschließend mittels SafetyLab oder SafetyKey umparametriert werden. Ist die Parametrierung beendet, werden die neuen Parameter automatisch an den Proxy-FB übertragen.

9 Prüfungen

Es gelten die in den Anschluss- und Betriebsanleitungen zu den einzelne Funktionspaketen geforderten Prüfungen, die abhängig von der Art der Applikation sind.

10 Fehlerdiagnose

Der Empfänger unterscheidet zwischen Störungs- (Ex xx) und Fehler- (Fx xx) Codes. Nur die Störmeldungen E liefern Ihnen Informationen über Ereignisse oder Zustände, die Sie beheben können. Zeigt der Empfänger eine Fehlercode F, so muss er getauscht werden. Nachfolgend werden deshalb nur die Störungscodes E angegeben.:

Code	Ursache / Bedeutung	Maßnahme zur Fehlerbehebung
	LEDs und 7-Segmentanzeigen leuchten nicht	+ 24 V Versorgungsspannung (auch
		auf Verpolung) prüfen, Anschlusska-
		bel prüfen, ggf. Empfänger tauschen
8:8	leuchtet ständig \rightarrow Hardwarefehler	Empfänger tauschen
F x(x)	interner Hardwarefehler	Empfänger tauschen
E 1	Querschluss zwischen OSSD1 und OSSD 2	Schluss beseitigen
E 2	Überlast an OSSD1	korrekte Last anschließen
E 3	Überlast an OSSD2	korrekte Last anschließen
E 4	Überspannung an OSSD1	korrekte Versorgungsspannung
E 5	Überspannung an OSSD2	korrekte Versorgungsspannung
E 6	Schluss gegen GND an OSSD1	Schluss beseitigen
E 7	Schluss gegen 24V an OSSD1	Schluss beseitigen
E 8	Schluss gegen GND an OSSD2	Schluss beseitigen
E 9	Schluss gegen 24V an OSSD2	Schluss beseitigen
E 10	DIP- Schalter nicht korrekt positioniert	Schalter korrekt schalten
E 11	aktuelle und konfigurierte Strahlzahl differie-	mit PC und SafetyLab aktuelle
	ren	Strahlparameter einstellen
E 12	Guest im Betrieb angesteckt, Gerät zu lang	korrekte(n) Guest(s) anschließen
E 13	Guest im Betrieb entfernt, Gerät zu kurz	korrekte(n) Guest(s) anschließen
E 14	Unterspannung an der Versorgungsspannung	Netzteil oder Last prüfen / tauschen
E 15	Reflexionsstörungen an der PC- Schnittstelle	Schnittstelle optisch schützen
E 16	Störung an einem Ein-/Ausgang	Signalleitung korrekt anschalten
E 17	Fehler in der Parametrierung oder falsche	Schalter in Position L bringen oder
	Schalterstellung S1 bis S6	Parametrierung mit SafetyLab korri-
		gieren
E 18	Sender Testsignal länger als 3 Sekunden	Brücke zwischen Klemme 3 und 4 in
	empfangen	der Sender-Anschlusskappe schlie-
—		Ben
E 20	EMV- Storung der Lichtachsen (SA)	Entstorung Versorgungsspannung
E 01		
E 21	EMV- Storung der Lichtachsen (SR)	Enisiorung versorgungsspannung
E 22	Liberspannung, größer 31VDC	Versorgungsspannung auf Werte
	oberspannung, grober 31VDC	kleiner als 31V einstellen
E 30	Bückführkontakt der Schützkontrolle öffnet	Schütz tauschen Leitung prüfen
L 00	nicht	Condiz lausenen, Leilang praien
E 31	Rückführkontakt der Schützkontrolle schließt	Schütz tauschen. Leitung prüfen
_	nicht	
E 32	Rückführkontakt der Schützkontrolle nicht	Schütz tauschen, Leitung prüfen
	geschlossen	
E 39	Starttaste zu lange gedrückt oder kurzge-	Verklemmen oder Schluss gegen
	schlossen	24V beseitigen
E 40	NOT-AUS-Kreis an L3 / L4 hat Schluss zu	Schluss beseitigen
	GND	
E 41	NOT-AUS-Kreis an L3 / L4 hat Schluss zu	Schluss beseitigen

Code	Ursache / Bedeutung	Maßnahme zur Fehlerbehebung
	24V	-
E 42	NOT-AUS-Kreis an L3 / L4: Gleichzeitigkeits- Fehler	Schalter tauschen
E 43	Override-Kreis an L3/L4 hat Schluss zu GND	Schluss beseitigen
E 44	Override-Kreis an L3/L4 hat Schluss zu 24V	Schluss beseitigen
E 45	Override-Kreis an L3/L4 nicht geschlossen	Override-Schlüsseltaster anschlie- ßen
E 46	Override-Kreis an L3/L4; Gleichzeitigkeits- fehler	Taster tauschen
E 50	Muting-Zeitbegrenzung	Mutin-Restart einleiten
E 51	Unterstrom an Muting-Leuchtmelder (L5)	Leuchtmelder tauschen
E 52	Überstrom an Muting-Leuchtmelder (L5)	korrekten Leuchtmelder anschließen oder tauschen
E 53	Kurzschluss oder falsche Sequenz am Steu- ereingang für das Mutingtimer-Steuersignal	Schluss beseitigen oder korrekt an- steuern
E 54	Override Zeitbegrenzung überschritten	Nach AutoReset: Gerät schaltet zu- rück zum Normalbetrieb
E 56	Externer Betriebsarten-Wahlschalter oder Drahtbrücke nicht korrekt angeschlossen	Anschluss überprüfen
E 70	Display Modul inkompatibel mit Hardware des Empfängers	Original-Display stecken und kor- rekten Parametersatz laden
E 71	Display Modul inkompatibel mit Firmware des Empfängers	Original-Display stecken und kor- rekten Parametersatz laden
E 72	SafetyLab inkompatibel mit der Firmware- Version des Empfängers	Aktuelle Version von SafetyLab ver- wenden
E 73	Parameter vom Proxy-FB inkompatibel mit der Firmware-Version des Empfängers	Parametersatz erneut mit SafetyLab einstellen und in Proxy-FB laden
E 95	Ungültige Strahlparameter	Erneut Einlernen oder mit SafetyLab parametrieren
E 177 - E 187	PROFIBUS-Fehler	Kontaktieren Sie den Hersteller

Tabelle 10.0-1: Diagnose Empfänger

11 Technische Daten

11.1 Allgemeine Systemdaten des PROFIsafe-Empfängers

SicherheitskategorieTyp 4 nach EN IEC 61496-1 SIL 3 nach IEC 61508Versorgungsspannung24 V DC, +-20 %, externes Netzteil mit sicherer NetztrennungRestwelligkeit der Versorgungsspannung± 5 % innerhalb der Grenzen von UvStromaufnahme150 mA (Uv = 28,8V; +20%) 160 mA (Uv = 24V) 170 mA (Uv = 24V)SchutzartIP65Umgebungstemperatur, Betrieb0 +50 °C 20 +60 °CBelative Luftfeuchte15 95 %, ohne KondensationDatenrate PBOEIBUS9 6 kBd12 MBd		
SIL 3 nach IEC 61508Versorgungsspannung24 V DC, +-20 %, externes Netzteil mit sicherer NetztrennungRestwelligkeit der Versorgungsspannung± 5 % innerhalb der Grenzen von UvStromaufnahme150 mA (Uv = 28,8V; +20%) 160 mA (Uv = 24V) 170 mA (Uv = 24V) 170 mA (Uv = 19,2V; -20%)SchutzartIP65Umgebungstemperatur, Betrieb0 +50 °C -20 +60 °CMgebungstemperatur, Lagerung-20 +60 °C -20 +60 °CRelative Luftfeuchte15 95 %, ohne Kondensation 9 6 kBdDatenrate PBOEIBUS9 6 kBd	Sicherheitskategorie	Typ 4 nach EN IEC 61496-1
Versorgungsspannung24 V DC, +-20 %, externes Netzteil mit sicherer NetztrennungRestwelligkeit der Versorgungsspannung± 5 % innerhalb der Grenzen von UvStromaufnahme150 mA (Uv = 28,8V; +20%) 160 mA (Uv = 24V) 170 mA (Uv = 24V) 170 mA (Uv = 19,2V; -20%)SchutzartIP65Umgebungstemperatur, Betrieb0 +50 °C -20 +60 °CUmgebungstemperatur, Lagerung-20 +60 °CRelative Luftfeuchte15 95 %, ohne KondensationDatenrate PBOEIBUS9.6 kBd12 MBd		SIL 3 nach IEC 61508
NetztrennungRestwelligkeit der Versorgungsspannung± 5 % innerhalb der Grenzen von UvStromaufnahme150 mA (Uv = 28,8V; +20%)160 mA (Uv = 24V)170 mA (Uv = 24V)170 mA (Uv = 19,2V; -20%)SchutzartIP65Umgebungstemperatur, Betrieb0 +50 °CUmgebungstemperatur, Lagerung-20 +60 °CRelative Luftfeuchte15 95 %, ohne KondensationDatenrate PBOEIBUS9.6 kBd12 MBd	Versorgungsspannung	24 V DC, +-20 %, externes Netzteil mit sicherer
Restwelligkeit der Versorgungsspannung± 5 % innerhalb der Grenzen von UvStromaufnahme150 mA (Uv = 28,8V; +20%)160 mA (Uv = 24V)160 mA (Uv = 24V)170 mA (Uv = 19,2V; -20%)170 mA (Uv = 19,2V; -20%)SchutzartIP65Umgebungstemperatur, Betrieb0 +50 °CUmgebungstemperatur, Lagerung-20 +60 °CRelative Luftfeuchte15 95 %, ohne KondensationDatenrate PBOEIBUS9.6 kBd12 MBd		Netztrennung
nung 150 mA (Uv = 28,8V; +20%) Stromaufnahme 160 mA (Uv = 24V) 160 mA (Uv = 24V) 170 mA (Uv = 19,2V; -20%) Schutzart IP65 Umgebungstemperatur, Betrieb 0 +50 °C Umgebungstemperatur, Lagerung -20 +60 °C Relative Luftfeuchte 15 95 %, ohne Kondensation Datenrate PBOFIBUS 9.6 kBd 12 MBd	Restwelligkeit der Versorgungsspan-	\pm 5 % innerhalb der Grenzen von Uv
Stromaufnahme 150 mA (Uv = 28,8V; +20%) 160 mA (Uv = 24V) 170 mA (Uv = 19,2V; -20%) Schutzart IP65 Umgebungstemperatur, Betrieb 0 +50 °C Umgebungstemperatur, Lagerung -20 +60 °C Relative Luftfeuchte 15 95 %, ohne Kondensation Datenrate PBOFIBUS 9.6 kBd 12 MBd	nung	
160 mA (Uv = 24V)170 mA (Uv= 19,2V; -20%)SchutzartIP65Umgebungstemperatur, Betrieb0 +50 °CUmgebungstemperatur, Lagerung-20 +60 °CRelative Luftfeuchte15 95 %, ohne KondensationDatenrate PBOFIBUS9 6 kBd12 MBd	Stromaufnahme	150 mA (Uv = 28,8V; +20%)
170 mA (Uv= 19,2V; -20%)SchutzartIP65Umgebungstemperatur, Betrieb0 +50 °CUmgebungstemperatur, Lagerung-20 +60 °CRelative Luftfeuchte15 95 %, ohne KondensationDatenrate PBOEIBUS9.6 kBd12 MBd		160 mA (Uv = 24V)
SchutzartIP65Umgebungstemperatur, Betrieb0 +50 °CUmgebungstemperatur, Lagerung-20 +60 °CRelative Luftfeuchte15 95 %, ohne KondensationDatenrate PBOEIBUS9.6 kBd12 MBd		170 mA (Uv= 19,2V; -20%)
Umgebungstemperatur, Betrieb0 +50 °CUmgebungstemperatur, Lagerung-20 +60 °CRelative Luftfeuchte15 95 %, ohne KondensationDatenrate PBOEIBUS9.6 kBd12 MBd	Schutzart	IP65
Umgebungstemperatur, Lagerung-20 +60 °CRelative Luftfeuchte15 95 %, ohne KondensationDatenrate PROFIBUS9.6 kBd12 MBd	Umgebungstemperatur, Betrieb	0 +50 °C
Relative Luftfeuchte 15 95 %, ohne Kondensation Datenrate PROFIBUS 9.6 kBd 12 MBd	Umgebungstemperatur, Lagerung	-20 +60 °C
Dateprate PBOEIBUS 9.6 kBd 12 MBd	Relative Luftfeuchte	15 95 %, ohne Kondensation
Batelinate i Herlibee	Datenrate PROFIBUS	9,6 kBd 12 MBd
Anschluss PROFIBUS M12- Stecker b-codiert	Anschluss PROFIBUS	M12- Stecker b-codiert
Zusätzliche Ansprechzeit des PROFI- 20 ms	Zusätzliche Ansprechzeit des PROFI-	20 ms
safe-Teils im Empfänger	safe-Teils im Empfänger	
Leitungslänge Kabelschwänze PROFIBUS Ausgang: 0,2 m	Leitungslänge Kabelschwänze	PROFIBUS Ausgang: 0,2 m
PROFIBUS Eingang: 0,4 m		PROFIBUS Eingang: 0,4 m
Stromversorgung: 0,6 m		Stromversorgung: 0,6 m
Leitungslänge Versorgungsleitung < 100 m	Leitungslänge Versorgungsleitung	< 100 m

11.2 PROFIsafe - Dienste

Version des PROFIsafe-Treibers	V2, Unterstützt PROFIsafe-Profile V1 und V2
Zyklische Daten	4 Nutzdaten-Bytes Eingangsdaten
	4 Nutzdaten-Bytes Ausgangsdaten
Azyklische Daten	Zum Auslesen des Schaltzustands der einzelnen Strahlen
Sicherung der Parameter in der F-CPU	über Proxy-Funktionsbaustein für: • S7-315F • S7-317F • S7-416F
Anzahl Parametersätze, umschaltbar über sicheres Programm in der F-CPU	max. 255, abhängig vom verfügbaren Speicherplatz auf der F-CPU
Wiedereinschalt- Verzögerung	der größere der beiden Werte aus Watchdog-Zeit in der F-CPU + 20 ms Wiedereinschalt-Verzögerung des Empfängers

11.3 Maße, Gewichte, Ansprechzeiten

Während die Maße und Gewichte denen in der Anschluss- und Betriebsanleitung zum Gerät entsprechen, ist die Werkeinstellung der Ansprechzeit des Empfängers um 20 ms (Ansprechzeit des PROFIsafe-Interfaces) größer als die des korrespondierenden Gerätes mit Transistorausgang. Zur Berechnung der gesamten Ansprechzeit eines Sicherheitskreises siehe Kapitel 7.1.1. Sie ist unabhängig vom Funktionspaket, wird nachfolgend für alle Geräteversionen angegeben und entspricht dem Wert "t xx" auf der 7-Segment-Anzeige des Empfängers in Werkeinstellung beim Hochlauf sowie der Angabe auf dem Typschild. Bei Veränderung der Mehrfach-Abtastung mittels SafetyLab ab Version V1.1 wird dort zusätzlich die Ansprechzeit angezeigt, die "t xx" beim Hochlauf entspricht.

Die für die Berechnung der Ansprechzeit des projektierten Sicherheitskreises notwendige Ansprechzeit des Schutzfeldes ist in den nachfolgenden Tabellen separat in den Spalten t_PFHx dargestellt.

Schutzfeld-	t_H1 = Ansprechzeit der AOPD in ms, MultiScan-Faktor H=1 (WE) t_PFH1 = Ansprechzeit des Schutzfeldes in ms bei H=1 (WE)							
höhe [mm]								
	Auflösung		Auflösung		Auflösung		Auflösung	
	14	mm	30 mm		50 mm		90 mm	
	t_H1	tPF_H1	t_H1	t_PFH1	t_H1	t_PFH1	t_H1	t_PFH1
150	25	5	25	5				
225	27	7	27	7				
300	29	9	25	5				
450	32	12	27	7	27	7		
600	35	15	29	9	25	5		
750	38	18	30	10	26	6	26	6
900	42	22	32	12	27	7	27	7
1050	45	25	33	13	28	8	25	5
1200	48	28	35	15	29	9	25	5
1350	51	31	37	17	29	9	26	6
1500	55	35	38	18	30	10	26	6
1650	58	38	40	20	31	11	27	7
1800	61	41	42	22	32	12	27	7
2100			45	25	33	13	28	8
2400			48	28	35	15	29	9
2700			51	31	37	17	29	9
3000			55	35	38	18	30	10

11.3.1 Sicherheits-Lichtvorhänge

Tabelle 11.3-1 Sicherheits-Lichtvorhänge, Ansprechzeiten

11.3.2 Mehrstrahl-Sicherheits-Lichtschranken

Strahl- abstand	t_H7 = Ansprechzeit der AOPD in ms, MultiScan-Faktor H=7 (WE) t_PFH7 = Ansprechzeit des Schutzfeldes in ms bei H=7 (WE)							
[mm]	Strahla	nzahl = 2	Strahla	nzahl = 3	Strahla	nzahl = 4		
	t_H7	t_PFH7	t_H7	t_PFH7	t_H7	t_PFH7		
500	39	19						
400			39	19				
300					39	19		

Tabelle 11.3-2 Mehrstrahl-Sicherheits-Lichtschranken, Ansprechzeiten

11.3.3 Muting-Transceiver

Strahl-	t_H8 = Ansprechzeit der AOPD in ms, MultiScan-Faktor H=8 (WE)			
abstand [mm]	t_PFH8 = Ansprechzeit des Schutzfeldes in ms bei H=8 (WE)			
	Strahla	nzahl = 2		
	t_H8	t_PFH8		
600	40	20		
500	40	20		

Tabelle 11.3-3 Muting-Transceiver, Ansprechzeiten

12 Anhang

12.1 Lieferumfang

Zusätzlich zum Lieferumfang, der in der Anschluss- und Betriebsanleitung zum Gerät in Abhängigkeit vom Funktionspaket des Empfängers und dessen Auflösung angegeben ist, wird mit PROFIsafe-Empfängern ausgeliefert.:

• eine CD-ROM mit GSD, Proxy-FB, Beispielprojekten und dieser zusätzlichen Anschluss- und Betriebsanleitung

12.2 Bestellhinweise Zubehör

Zusätzlich zum Zubehör, das in der Anschluss- und Betriebsanleitung zum Funktionspaket des Empfängers angegeben ist, kann folgendes Zubehör separat bestellt werden.:

Artikel- nummer	Artikel	Beschreibung
429071	CB-M12-5000S-5GF	Kabel für Stromversorgung mit M12-Kupplung gerade, geschirmt 5-polig, Länge: 5 m
429073	CB-M12-10000S-5GF	Kabel für Stromversorgung mit M12-Kupplung gerade, geschirmt 5-polig, Länge: 10 m
429075	CB-M12-15000S-5GF	Kabel für Stromversorgung mit M12-Kupplung gerade, geschirmt 5-polig, Länge: 15 m
520073	SLAB-SWC	SafetyLab Parametrier- und Diagnosesoftware inkl. PC- Kabel, RS232 -IR
520072	CB-PCO-3000	PC-Kabel, RS232-IR-Adapter

Tabelle 12.2-1 Bestellhinweise Zubehör

12.3 EG-Konformitätserklärung

Leuze electronic GmbH + Co. KG In der Braike 1 D-73277 Owen - Teck

Der Hersteller erklärt, dass die Sicherheitsbauteile der Baureihen **COMPACT***plus* / **PROFIsafe** in der von uns in Verkehr gebrachten Ausführung den einschlägigen grundlegenden Sicherheitsund Gesundheitsanforderungen der aufgeführten EG-Richtlinien* (einschließlich aller Änderungen) entsprechen und dass bei Konzeption und Bauart die aufgeführten Normen* angewandt worden sind.

Owen, 01.02.2009

male

Dr. Harald Grübel Geschäftsführer

* Diese EG-Konformitätserklärung können Sie auch im Internet downloaden unter: http://www.leuze.de/compactplus-profisafe