## A Leuze electronic

## SOLID-2SF-K

Guarding the delivery of sheet fed offset printing machines

## Notes on Connecting and Operating Instructions

This connecting and operating instructions manual contains information on the proper use of SOLID-2SF-K Multiple Light Beam Safety Devices in accordance with its intended purpose. It is included with delivery.

## Warning!

All the information contained herein, in particular the safety notes, must be carefully observed.

This connecting and operating instructions manual must be stored carefully. It must be available for the entire operating time of the optical safety device.

Notes regarding safety and warnings are marked by this symbol $!$
Notes regarding important pieces of information are marked by the symbol
Leuze electronic GmbH + Co. KG is not liable for damage resulting from improper use of its equipment. Familiarity with these instructions is an element of the knowledge required for proper use.
© Reprints and reproduction, in whole or in part, are permitted only with the explicit permission of
Leuze electronic $\mathrm{GmbH}+\mathrm{Co} . \mathrm{KG}$
In der Braike 1
D-73277 Owen - Teck / Germany
Telefon +49 (0) $7021 / 573-0$
Fax $\quad+49$ (0) $7021 / 573-199$
info@leuze.de
www.leuze.com
1 General ..... 48
1.1 Certifications ..... 48
1.2 Symbols and terms ..... 49
2 Safety notes ..... 51
2.1 Dangers if the safety notes are not observed ..... 51
2.2 Operating conditions and proper use ..... 51
3 System design and selectable functions ..... 53
3.1 The opto-electronic protective device ..... 53
3.2 Transmission channel ..... 54
4 Display elements ..... 55
4.1 Transmitter status displays ..... 55
4.2 Receiver status displays ..... 56
4.2.1 7-Segment display ..... 57
4.2.2 LED displays ..... 57
5 Installation ..... 58
5.1 Location of the AOPD ..... 58
5.2 Calculating the safety distance ..... 58
5.3 Minimum distance from reflective surfaces ..... 59
5.4 Mechanical mounting ..... 60
5.5 Mounting types ..... 60
5.5.1 Standard mounting ..... 60
5.5.2 Mounting with straddle bracket ..... 60
5.5.3 Mounting with swiveling brackets ..... 61
5.5.4 Side mounting ..... 62
6 Electrical connection ..... 63
6.1 M12 connection ..... 63
6.1.1 Transmitter ..... 63
6.1.2 Testing ..... 64
6.1.3 Receiver ..... 65
7 Troubleshooting ..... 67
7.1 What should I do if an error occurs? ..... 67
7.2 Diagnostics ..... 67
7.2.1 Transmitter diagnostics ..... 67
7.2.2 Receiver diagnostics ..... 67
7.3 AutoReset ..... 68
8 Technical data ..... 69
8.1 General data ..... 69
8.1.1 Beam data ..... 69
8.1.2 General system data ..... 69
8.1.3 Transmitter, signal input ..... 70
8.1.4 Receiver, transistor outputs ..... 71
8.2 Dimensions, weights ..... 72
8.2.1 Multiple Light Beam Safety Devices ..... 72
8.2.2 Mounting bracket dimensions ..... 75
9 Order data ..... 78
9.1 Scope of delivery ..... 78
9.2 Order numbers ..... 78
9.3 Accessories ..... 79
10 Tests ..... 80
10.1 Testing before startup ..... 80
10.2 Regular tests ..... 80
10.3 Daily testing with the test rod ..... 81
10.4 Checklists ..... 82
10.4.1 Checklist for access guarding ..... 82
10.5 EC Declaration of Conformity ..... 83

## 1 General

The SOLID-2SF Multiple Light Beam Safety Devices are optimized for use on sheet delivery on sheet-fed printing machines. This requires defined interruption of beams without a stop being activated. Temporary bridging in accordance with EN 1010 can, for example, be activated by a suitable control unit.
With a suitable control unit, SOLID-2SF are type 2 Active Optoelectronic Protective Devices (AOPDs) in acc. with EN/IEC 61496-1, EN/IEC 61496-2, PL d in acc. with ISO 13849-1, and comply with SIL 2 in acc. with IEC EN 61508.
All SOLID-2SF Multiple Light Beam Safety Devices are equipped with integrated cyclical testing and display elements (LEDs and 7-Segment). This is especially convenient when starting a unit up or performing diagnostics.
SOLID-2SF has the appropriate number of beams via 2-4 SSDs, enabling the definitive assignment of the interruption of individual beams. Each SOLID-2SF also has a dynamic SSD, which transfers the result of the integrated cyclical testing to the control unit.
The devices of the SOLID-2SF series are available with up to 4 beams and in various lengths (beam distances), so that they provide an optimum solution for specific applications.

### 1.1 Certifications

## Company



Leuze electronic GmbH \& Co. KG in D-73277 Owen - Teck, Germany, has a certified quality assurance system in compliance with ISO 9001.

Products


SOLID-2SF Safety Light Curtains are developed and manufactured in compliance with applicable European directives and international standards.
EC prototype test in accordance with EN/IEC 61496 Part 1 and Part 2 TÜV PRODUCT SERVICE GmbH, IQSE
Ridlerstrasse 65
D-80339 Munich

### 1.2 Symbols and terms

## Symbols used

| 1. | Warning sign - This symbol indicates possible dangers. Please pay especially close attention to these instructions! |
| :---: | :---: |
| $\stackrel{\circ}{\square}$ | Sign indicating important information. |
| 4) | A note, which also refers to a course of action, provides information about special attributes or describes set-up procedures |
|  | Symbols for SOLID-2SF Transmitter, SD2T General transmitter symbol <br> Transmitter not active Transmitter active |
|  | Symbols for SOLID-2SF Receiver, SD2R <br> General Receiver symbol <br> The Receiver's active protective field is not free; outputs in OFF state The Receiver's active protective field is free; outputs in ON state The Receiver's active protective field is free; outputs in OFF state |
| $\stackrel{\underset{\sim}{\rightleftarrows}}{\stackrel{y}{\Leftrightarrow}}$ | Signal output <br> Signal input <br> Signal input and/or output |

Table 1.1: Symbols

## Terms used in this manual

| AOPD | Active Opto-electronic Protective Device |
| :--- | :--- |
| AOPD response time | Time between penetration into the active protective field of the AOPD and <br> the actual switching off of the OSSDs. |
| AutoReset | When an error indication occurs, caused, for example, by faulty external <br> wiring, the AOPD attempts to start again. If the error is no longer present, <br> the AOPD returns to normal operation mode. |
| Contactor Monitoring (EDM) | Also called "External Device Monitoring", monitors the positive-guided <br> normally closed contacts of downstream relays, contactors or valves |
| DoubleScan | Two scans are made: Beams must be interrupted in two consecutive <br> scans, before the Receiver switches OFF. |
| FS | Factory setting |
| S/RS interlock | Start/restart interlock |
| Scan | All beams, beginning with the synchronization beam, are activated and <br> deactivated one after the other, i.e. only one beam is active at a time. |
| SSD1,.. ,SSD4, Dyn SSD | Safety-relevant switching outputs (transistors) |
| Start/restart interlock | Prevents automatic start after the supply voltage has been turned on, or <br> after the protective field has been penetrated |

Table 1.2: Terms

## 2 Safety

Before using the safety sensor, a risk evaluation must be performed according to valid standards (e.g. EN ISO 14121, EN ISO 12100-1, ISO 13849-1, IEC 61508, EN 62061). The result of the risk assessment determines the required safety level of the safety sensor (see table 2.1). For mounting, operating and testing, document "SOLID-2SF-K, Optoelectronic delivery guard of sheet-fed printing machines" as well as all applicable national and international standards, regulations, rules and directives must be observed. Relevant and supplied documents must be observed, printed out and handed to the affected personnel.
Before working with the safety sensor, completely read and understand the documents applicable to your task.
In particular, the following national and international legal regulations apply for the start-up, technical inspections and work with safety sensors:

- Machinery directive 2006/42/EC
- Low voltage directive 2006/95/EC
- Electromagnetic compatibility directive 2004/108/EC
- Use of Work Equipment Directive 89/655/EEC supplemented by Directive 95/63 EC
- OSHA 1910 Subpart 0
- Safety regulations
- Accident-prevention regulations and safety rules
- Ordinance on Industrial Safety and Health and Labor Protection Act
- Device Safety Act


## Notice!

For safety-related information you may also contact the local authorities (e.g., industrial inspectorate, employer's liability insurance association, labor inspectorate, occupational safety and health authority).

### 2.1 Approved purpose and foreseeable improper operation

## Warning!

A running machine can cause severe injuries!
Make certain that, during all conversions, maintenance work and inspections, the system is securely shut down and protected against being restarted again.

### 2.2 Proper use

The safety sensor must only be used after it has been selected in accordance with the respectively applicable instructions and relevant standards, rules and regulations regarding labor protection and occupational safety, and after it has been installed on the machine, connected, commissioned, and checked by a competent person.
When selecting the safety sensor it must be ensured that its safety-related capability meets or exceeds the required performance level $\mathrm{PL}_{\mathrm{r}}$ ascertained in the risk assessment.

Listed in the following table are the safety-related characteristic parameters of the SOLID-2SF-K optoelectronic delivery guard for sheet-fed printing machines.

| Type in accordance with IEC/EN 61496 | Type 2 |
| :---: | :---: |
| SIL in accordance with IEC 61508 | SIL 2 |
| SILCL in accordance with IEC/EN 62061 | SILCL 2 |
| Performance Level (PL) in accordance with ISO 13849-1: 2008 | PL d |
| Category in accordance with ISO 13849 | Cat. 2 |
| Average probability of a failure to danger per hour ( $\mathrm{PFH}_{\mathrm{d}}$ ) For protective field heights up to 900 mm , all resolutions For protective field heights up to 1800 mm , all resolutions For protective field heights up to 2850 mm , all resolutions | $\begin{array}{r} 8.2 \times 10^{-8} 1 / \mathrm{h} \\ 8.9 \times 10^{-8} 1 / \mathrm{h} \\ \text { On request } \end{array}$ |
| Service life ( $\mathrm{T}_{\mathrm{M}}$ ) | 20 years |

Table 2.1: $\quad$ Safety-related characteristic parameters of the SOLID-2SF-K optoelectronic delivery guard of sheet-fed printing machines

- The safety sensor protects persons at access points or at points of operation of machines and plants.
- When mounted vertically at entry points to hazard locations, the safety sensor detects the human body.
- The safety sensor only detects persons upon entry to the danger zone; it does not detect persons who are located within the danger zone. For this reason, a start/restart interlock is mandatory.
- The construction of the safety sensor must not be altered. When manipulating the safety sensor, the protective function is no longer guaranteed. Manipulating the safety sensor also voids all warranty claims against the manufacturer of the safety sensor.
- The safety sensor must be tested regularly by competent personnel.
- The safety sensor must be exchanged after a maximum of 20 years. Repairs or the exchange of parts subject to wear and tear do not extend the service life.


### 2.2.1 Foreseeable misuse

In principle, the safety sensor is not suitable as a protective device in case of:

- danger of objects being expelled or hot or dangerous liquids spurting from the danger zone
- applications in explosive or easily flammable atmospheres


### 2.3 Competent personnel

Prerequisites for competent personnel:

- he has a suitable technical education
- he knows the rules and regulations for occupational safety, safety at work and safety technology and can assess the safety of the machine
- he knows the instructions for the safety sensor and the machine
- he has been instructed by the responsible person on the mounting and operation of the machine and of the safety sensor


### 2.4 Responsibility for safety

Manufacturer and operating company must ensure that the machine and implemented safety sensor function properly and that all affected persons are adequately informed and trained.
The type and content of all imparted information must not lead to unsafe actions by users.

The manufacturer of the machine is responsible for:

- safe machine construction
- safe implementation of the safety sensor
- imparting all relevant information to the operating company
- adhering to all regulations and directives for the safe starting-up of the machine

The company operating the machine is responsible for:

- instructing the operating personnel
- maintaining the safe operation of the machine
- adhering to all regulations and directives for occupational safety and safety at work
- regular testing by competent personnel


### 2.5 Exemption of liability

Leuze electronic $\mathrm{GmbH}+\mathrm{Co}$. KG is not liable in the following cases:

- safety sensor is not used as intended
- safety notices are not adhered to
- reasonably foreseeable misuse is not taken into account
- mounting and electrical connection are not properly performed
- Proper function is not tested (see Chapter 10)
- changes (e.g., constructional) are made to the safety sensor


## 3 System design and selectable functions

### 3.1 The opto-electronic protective device

## Working principle

SOLID-2SF consists of a transmitter and a receiver. Beginning with the first beam (synchronization beam) directly after the display panel, the Transmitter pulses beam for beam in rapid sequence. The synchronization between Transmitter and Receiver is performed optically.


Picture 3.1:Working principle of the opto-electronic protective device
The Receiver recognizes the specially coded pulse packages of the Transmitter beams and opens the corresponding Receiver elements in sequence in the same rhythm. A protective field is consequently formed in the area between Transmitter and Receiver. Its height depends on the geometrical dimensions of the protective device and its width is determined by the distance selected between the Transmitter and Receiver within the permissible range.
The safety output consists of the 1-channel SSDs, which provide the status of the corresponding beams (SSD 1 shows the status of beam 1, SSD 2 the status of beam 2, SSD 3 the status of beam 3 and SSD 4 the status of beam 4), and the Dyn SSD output shared for all beams. When no errors are present on the SOLID-2SF, this delivers a symmetrical square-wave signal with 300 ms pulse width. This dynamic signal must be monitored by the downstream control unit. If the Dyn SSD signal fails to appear, the powerdriven machinery must be switched off. Correct connection must be checked with the machine's first startup!

### 3.2 Transmission channel

The infrared beams are modulated with specially coded pulse packages so that they are distinct from ambient light, thus ensuring undisturbed operation. Welding sparks or warning flash lights from passing forklifts do not having any effect on the protective field.
If two protective fields are located directly next to each other for two adjacent machines, however, measures must be taken to ensure the optical protective devices do not affect each other.
Another possible way to suppress mutual influence is to switch one of the two protective devices from transmission channel 1 to 2 and therefore to differently formed pulse packages. This solution should be considered when more than two optical protective devices must be arranged next to each other.

a AOPD "A" transmission channel 1
b AOPD "B" transmission channel 2, not affected by AOPD "A"
Picture 3.2:Transmission channel selection (AOPD = Active Opto-electronic Protective Device)

The change from transmission channel 1 to 2 must be made both on the Transmitter and the Receiver of the optical protective device in question. You will find more detailed information in Chapter 7.

## 4 Display elements

### 4.1 Transmitter status displays

When the Transmitter's green LED1 is lit, this indicates that the current supply is available.

a LED1 (green/red)
b LED2 (green/red)
Picture 4.1:Transmitter, LED status displays
Display of the current state of the Transmitter:

| Display |  | Meaning |
| :--- | :--- | :--- |
| LED1 green | LED2 off | Operating voltage present, transmission channel 1 selected |
| LED1 green | LED2 green | Operating voltage present, transmission channel 2 selected |
| LED1 green | LED2 red | Operating voltage present, transmission channel 1 or <br> transmission channel 2 selected, external test signal activated |
| LED1 red | LED2 any | Device fault |

Table 4.1: Transmitter, LED status displays

### 4.2 Receiver status displays

LED1 and the 7-Segment display signal the operating states of the Receiver.

a LED1 $=($ green $/$ red $)$
Picture 4.2:Receiver, status displays
4.2.1 7-Segment display

After the supply voltage is switched on, the following data appears on the 7-Segment display of the Receiver:

| 7-Segment display | Meaning |
| :--- | :--- |
|  | Permanent display after startup |
| 1 or 2 | Transmission channel TC1 or TC2 display |

Table 4.2: Receiver, 7-Segment permanent displays

| 7-Segment display | Meaning |
| :--- | :--- |
|  | Temporary event displays, 1 s per display |
| E xx | Display of locking status "Malfunction", which can be released by the user; <br> E xx = Error code (see Chapter 10). The display shows E, 3 (1st position) <br> and 0 (2nd position) alternating, and then repeats this sequence. |
| F xx. | Locking status display "device fault" and an internal fault code. Receiver <br> must be replaced. |
| 1 or 2 flashing | Flashing transmission channel number -> weak signal display, device not <br> adjusted optimally or dirty |

Table 4.3: Receiver, 7-Segment temporary event display

### 4.2.2 LED displays

Receiver, LED status displays

| LED | Color | Meaning |  |
| :--- | :--- | :--- | :--- |
| LED1 | Red/ <br> green | Red | = At least one safety output SSD in OFF state |
|  |  | Green | = All safety outputs SSDs in the ON state |
|  |  | No display | = Device without supply voltage |

Table 4.4: Receiver LED displays

## 5 Installation

### 5.1 Location of the AOPD

EN 1010-2 specifies the position of the beams on the sheet delivery for sheet-fed printing machines in the following table:

| Access height h | Location of the AOPD for the access level(s) |  |  |
| :---: | :---: | :---: | :---: |
|  | Beam $1^{\text {a }}$ | Beam $2^{\text {b }}$ | Beam $3^{\text {c }}$ |
| $\mathrm{h} \leq 1200 \mathrm{~mm}$ | 300 mm | If ${ }^{\text {d }} \mathrm{n} / \mathrm{a}$ | 400 mm below h (h-400) |
| $1200 \mathrm{~mm}<\mathrm{h} \leq 1500 \mathrm{~mm}$ | 300 mm | Centered between beams 1 and 3 | $\begin{gathered} 400 \mathrm{~mm} \text { below } \mathrm{h}) \\ (\mathrm{h}-400) \end{gathered}$ |
| $\mathrm{h}>1500 \mathrm{~mm}$ | 300 mm | 700 mm | 1100 mm |
| a Position measured from access level or from fixed or swiveling platform; because of structural tolerances where installed, the permissible tolerance for the position is $\pm 35$ mm. <br> b Beam between beams 1 and 3, if distance between beams 1 and $3>500 \mathrm{~mm}$ <br> c maximum 1100 mm high <br> d Some blanking functions require 3 beams for guarding the access side. Where these blanking functions are to be used, with access heights over 1200 mm a third beam that is positioned centered between the top and the bottom beam must be provided. |  |  |  |

Select the suitable SOLID-2SF type according to the access heights on the sheet delivery (e.g. 2, 3 or 4-beam, see order data) and mount the SOLID-2SF at the appropriate height.

### 5.2 Calculating the safety distance

With general applications, i.e. in cases where SOLID-2SF is not used for guarding the sheet delivery of a sheet-fed printing machine, the safety distance must be calculated in acc. with EN 999.
The safety distance is calculated here using the following formula:
$S=(K \times T)+C$

S: Safety distance between SOLID-2SF and the danger zone (mm)
K: Approach speed - $1600 \mathrm{~mm} / \mathrm{s}$
T : Total time of the delay in seconds, i.e. the total of the response time of the protective device and the downstream control unit or safety interface and the machine's stopping time
C: Additional amount - 850 mm

### 5.3 Minimum distance from reflective surfaces

Reflective surfaces near opto-electronic protective devices can indirectly deflect beams from the Transmitter into the Receiver. This can cause an object in the protective field not to be detected! All reflective surfaces and objects (material containers, cans, etc.) must therefore be kept at a minimum distance "a" from the protective field. The minimum distance "a" depends on the distance " $b$ " between the Transmitter and the Receiver.

$\mathrm{a}=$ Minimum distance
$b=$ Protective field width
c = Reflective surface
Picture 5.1:Minimum distances from reflective surfaces

$a=$ Required distance from reflective surfaces [mm]
$b=$ Protective field width [m]
Picture 5.2:Minimum distance to reflective surfaces depending on protective field width

### 5.4 Mechanical mounting

What should generally be taken into consideration during installation?

- Make certain that the Transmitter and Receiver are mounted on even surfaces.
- The Transmitter and Receiver must be positioned at the same height and their connection plugs must be pointing in the same direction.
- Use screws for mounting that can only be loosened with a tool.
- Fasten and secure the Transmitter and Receiver so that they cannot be swiveled or moved. Securing the Transmitter and Receiver so they cannot be moved or swiveled is especially important in the close area with a narrow protective field.
- The safety distance between the protective field and the danger zone must be observed.
- Make sure that access to the danger point/danger zone is only possible through the protective field. Additional access routes must be secured separately (for example by hard guards, additional Safety Light Curtains or doors with locking devices).


### 5.5 Mounting types

### 5.5.1 Standard mounting

Four standard mounting brackets (two each for Transmitter and Receiver) are included with delivery.


Picture 5.3:Standard mounting bracket examples

### 5.5.2 Mounting with straddle bracket

Four straddle brackets can be ordered as an option. They are not included with delivery.


Picture 5.4:Clamping bracket for C -slot mounting

### 5.5.3 Mounting with swiveling brackets

Four swivel mounting brackets with shock absorbers can be ordered optionally. They are not included with delivery. The swivel range is $\pm 8^{\circ}$.


Picture 5.5:Swiveling bracket with shock absorber

### 5.5.4 Side mounting

Optionally, mounting is possible with mounting brackets and sliding nuts on the side slot. They are not included with delivery.


Picture 5.6:Mounting examples, L-mounting bracket and Z-mounting bracket

## 6 Electrical connection

- The electrical connection must be performed by experienced personnel. Knowledge of all safety instructions in these connecting and operating instructions is part of this competence.
- The external supply voltage of $24 \mathrm{~V} \mathrm{DC} \pm 15 \%$ must guarantee safe isolation from the mains voltage and be able to bridge a power outage period of at least 20 ms . Leuze electronic offers suitable power supplies.
- The power supply must provide at least 1 A current reserve. Transmitter and Receiver must be fused against overcurrent.
- It is vital during the electrical installation that the power of the machine or system to be protected is switched off and locked, so that the dangerous movements cannot be started unintentionally. The protective device may only be connected to the machine after all of its safety functions have been entirely tested.


### 6.1 M12 connection

Transmitter and Receiver are equipped with M12 plugs. The Transmitter is equipped with a 5 -pin plug; the Receiver has an 8-pin plug.

### 6.1.1 Transmitter



Picture 6.1:SD-2T 5-pin (view of the pins)

| Pin | Color | Assignment |  | Inputs/outputs |
| :--- | :--- | :---: | :--- | :--- |
| 1 | Brown | $\Leftarrow$ | Supply voltage | +24 V DC for TC1 or 0V for TC2 |
| 2 | White |  |  | nc |
| 3 | Blue | $\Leftarrow$ | Supply voltage | OV for TC1 or +24 V DC for TC2 |
| 4 | Black | $\Leftarrow$ | Test in | Test input <br> connected to +24 V DC $\rightarrow$ internal test activated <br> to 0 V or free $\rightarrow$ external test activated |
| 5 | Grey/Plug <br> housing | $\Leftarrow$ | Shield | Functional earth |

Table 6.1: Transmitter, connection assignment
The polarity of the power supply from Pin1 and Pin3 determines the selected optical transmission channel. If +24 V DC is present on Pin1 and 0 V on Pin3, transmission channel 1 is selected. If $0 V$ is present on Pin1 and +24 V DC on Pin3, transmission channel 2 is selected.
Be sure to select the same transmission channel for both, for Transmitter and Receiver.

## Caution!

For optimum shielding, cables where the shield is routed on the knurled nut of the connecting cable socket must be used (suitable cables are listed under accessories in Chapter 10.3).

### 6.1.2 Testing

## Caution!

In fault-free operation the cyclical internal testing delivers an alternating signal on the Dyn SSD between low and high every 300 ms. Faults found are signaled by a static signal.

The downstream control unit must evaluate the safety-relevant aspects of this signal and activate a machine stop if the signal does not change.
There is also the option of an external testing, with which the SSDs of the Receiver switch off consecutively as a response to the creation of a test signal on the Transmitter. If external testing is required, the Transmitter's test input must be wired accordingly (see below).
In most cases, however, internal cyclical testing is sufficient. For this purpose, the Transmitter's test input must be permanently connected with +24 V DC.

## Internal cyclical testing

To activate external testing, connect Pin4 of the Transmitter permanently to +24V DC.
When using the internal cyclical testing, the corresponding SSDs and the shared Dyn SSD must always be evaluated for safety relevance by the downstream control unit.

## External test signal

To use the external testing option, connect the test output of the corresponding test monitoring unit with Pin4 of the Transmitter. When using the external testing procedure in combination with a test monitoring unit, only the SSDs must to be connected to the test monitoring unit.


## Note!

External testing takes precedence over internal testing. If the external test is used, a corresponding frequency of the dangerous movement (typically at least 10 times as frequent) is sufficient to guarantee test frequency.

| Test input Pin4, <br> Transmitter: | +24 V DC | Test = not activated |
| :--- | :--- | :--- |
|  | High impedance or 0V | Test = activated |



Picture 6.2:SOLID-2SF external testing

### 6.1.3 Receiver



1 white
2 brown
3 green
4 yellow
5 grey
6 pink
7 blue
8 black
Picture 6.3:SD-2R 8-pin (view of the pins)

| Pin | Color | Assignment |  | Inputs/outputs |
| :--- | :--- | :--- | :--- | :--- |
| 1 | White | $\rightleftarrows$ | Output | SSD4, transistor switching output |
| 2 | Brown | $\Rightarrow$ | Output | +24 V DC for transmission channel 1 or 0V for <br> transmission channel 2 |
| 3 | Green | $\Rightarrow$ | Output | SSD3, transistor switching output |
| 4 | Yellow | $\Rightarrow$ | Output | Dyn SSD, transistor switching output |
| 5 | Grey | Pink | Sutput | SSD1, transistor switching output |
| 6 | Slue | Shield | OV for TC1 or +24V for TC2 |  |
| 7 | Black/Plug <br> housing | Functional earth |  |  |

Table 6.2: Receiver, connection assignment
With three-beam receivers SSD4 is switched off; with two-beam SSD3 is also switched off.

## Selection of the transmission channel

The polarity of the power supply from Pin2 and Pin7 determines the selected optical transmission channel.
If +24 V DC is present on Pin2 and 0 V on Pin7, transmission channel 1 is selected. If 0 V is present on Pin2 and +24V DC on Pin7, transmission channel 2 is selected.

## Note!

Be sure to select the same transmission channel for both, for Transmitter and Receiver.
For optimum shielding, cables where the shield is routed on the knurled nut of the connecting cable socket must be used.

## SSD and Dyn SSD switching outputs

## Caution!

The safety output consists of the 1-channel SSDs, which provide the status of the corresponding beams, and the Dyn SSD output shared for all beams. When no errors are present, this delivers a symmetrical square-wave signal with 300 ms pulse width. This dynamic signal must be monitored by the downstream control unit. If the Dyn SSD signal remains static, the power-driven machinery must be switched off. Correct connection must be checked with the machine's first startup!

## $7 \quad$ Troubleshooting

The following information is used for rapid troubleshooting in the event of a malfunction.

### 7.1 What should I do if an error occurs?

If the AOPD shows an error on the display, the machine must be stopped immediately and checked by an experienced technician. If it is determined that the error cannot be clearly defined and remedied, your local Leuze office and or the Leuze electronic hotline can assist.

### 7.2 Diagnostics

Operational malfunctions often have simple causes that you can remedy yourself. The following tables will help you do this.

### 7.2.1 Transmitter diagnostics

| LED display | Measure to eliminate error |
| :--- | :--- |
| LED1 is not lit | Check +24 V supply voltage and connecting cable, replace Transmitter if <br> necessary |
| LED1 is lit red <br> continuously | Check the test input, hardware fault, replace Transmitter if necessary |

Table 7.1: $\quad$ Transmitter diagnostics

### 7.2.2 Receiver diagnostics

The Receiver distinguishes between error codes ( $\mathrm{E} x \mathrm{x}$ ) and fault codes ( $F x x$ ). Only error messages ( $E$ ) provide information about events or states that you can eliminate. If the Receiver shows a fault code (F), it must be replaced. Consequently, only error codes (E) are shown in the table below:

| Code | Cause/meaning | Measure to eliminate error |
| :--- | :--- | :--- |
|  | LEDs and 7-Segment displays are not lit | Check the +24 V DC supply voltage and <br> the connecting cable; replace Receiver if <br> necessary |
| 8 | Is constantly lit/hardware fault | Replace Receiver |
| F xx | Internal hardware fault | Replace Receiver |
| E 00 | Source of failure in the ambient area | Eliminate the source of the failure |
| E 01 | Cross connection between two SSDs or between <br> SSD and Dyn SSD | Eliminate cross connection |


| Code | Cause/meaning | Measure to eliminate error |
| :--- | :--- | :--- |
| E 06 | Short circuit of an SSD against GND or cross <br> connection between two SSDs or between SSD and <br> Dyn SSD | Eliminate cross connection |
| E 07 | Short circuit of an SSD against +24 V DC or cross <br> connection between two SSDs or between SSD and <br> Dyn SSD | Eliminate cross connection |
| E 14 | Power supply undervoltage | Check/replace power supply or load |
| E 18 | Test time-limit exceeded | Test time > 150 ms; check external test |
| E 22 | Power supply cable overvoltage | Check power supply/load |

Table 7.2: Receiver diagnostics

### 7.3 AutoReset

After an error or a fault has been detected and displayed, an automatic restart occurs within

- about 2 seconds for the Transmitter
- about 20 seconds for the Receiver
for the device in question. If the error or fault is then no longer present, the machine or system can be started again.


## 8 Technical data

### 8.1 General data

### 8.1.1 Beam data

| Range |  | Number of beams |  | Beam distances |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Min. | Max. | Min. | Max. | Min. | Max. |
| 0.25 m | 6 m | 2 | 4 | 200 | 400 |

Table 8.1: Beam data

### 8.1.2 Safety relevant technical data

| Type in accordance with IEC/EN 61496 | Type 2 |
| :--- | ---: |
| SIL in accordance with IEC 61508 | SIL 2 |
| SILCL in accordance with IEC/EN 62061 | SILCL 2 |
| Performance Level (PL) in accordance with ISO 13849-1: 2008 | PL d |
| Category in accordance with ISO 13849 | Cat. 2 |
| Average probability of a failure to danger per hour (PFH $\left.{ }_{\mathrm{d}}\right)$ |  |
| For protective field heights up to 900 mm , all resolutions |  |
| For protective field heights up to 1800 mm , all resolutions |  |
| For protective field heights up to 2850 mm , all resolutions | $8.2 \times 10^{-8} 1 / \mathrm{h}$ <br> $8.9 \times 10^{-8}$ <br> On request |
| Service life $\left(\mathrm{T}_{\mathrm{M}}\right)$ | 20 years |

### 8.1.3 General system data

| Safety category | Type 2 in acc. with EN IEC 61496; SIL2 in acc. with IEC <br> 61508 |
| :--- | :--- |
| Supply voltage U <br> Transmitter and Receiver | 24 V DC, $\pm 15 \%$, external power supply with secure mains <br> supply isolation and equalization for a 20 ms power outage, <br> minimum 1 A current reserve |
| Residual ripple of supply voltage | $\pm 5 \%$ within Uv limits |
| Transmitter power consumption | 45 mA |
| Receiver power consumption | 80 mA without external load |
| Shared value for external fuse in the <br> supply line for Transmitter and Receiver | 1 A |


| Permissible wire cross-section: <br> Transmitter <br> Receiver | $0.14 \mathrm{~mm}^{2}$ |
| :--- | :--- |
| Transmitter: | $0.14 \mathrm{~mm}^{2}$ |
| Class: <br> Wave length: <br> Pulse duration: <br> Pulse pause: <br> Power: | Light-emitting diodes in acc. with <br> EN $60825-1: 1994+$ A1:2002+A2001: |
| Synchronization | 950 nm <br> $7 \mu \mathrm{~s}$ <br> 3.1 ms <br> $<10 \mu \mathrm{~W}$ |
| Test repetition time for integrated cyclical <br> test | 300 ms |
| Safety class (VDE 106) | Optical between Transmitter and Receiver |
| Type of protection | III $\left.{ }^{*}\right)$ |
| Ambient temperature, operation | $0 \ldots 50^{\circ} \mathrm{C}$ |
| Ambient temperature, storage | $-25 \ldots 70^{\circ} \mathrm{C}$ |
| Relative humidity | $15 \ldots 95 \%$ |

*) The circuits connected to the inputs and outputs must maintain the clearance distances for safe isolation in the relevant standards

Table 8.2: General system data

### 8.1.4 Transmitter, signal input

| Test input | Input: Contact or transistor against +24 V DC current load: 20 <br> mA max. |
| :--- | :--- |

Table 8.3: Transmitter, signal input

### 8.1.5 Receiver, transistor outputs

| Dyn SSD/SSD, transistor outputs | 5 safety pnp transistor outputs, short , circuitproof |  |  |
| :---: | :---: | :---: | :---: |
|  | Minimum | Typical | Maximum |
| Low switching voltage (beam not interrupted) Switching current Load capacity |  |  | + Vcc- <br> 0.5 VDC <br> 35 mA <br> $<30 \mathrm{nF}$ |
| Permissible wire resistance for load | - | - | < $50 \Omega^{*}$ ) |
| Permissible wire cross-section: Receiver |  |  | $0.14 \mathrm{~mm}^{2}$ |
| Permissible cable length between Receiver and load | - | - | 100 m |
| Auxiliary pulse width | - | $<40 \mu \mathrm{~s}$ | - |
| Auxiliary pulse spacing Channel 1 Channel 2 | - | $\begin{aligned} & 6.5 \mathrm{~ms} \\ & 6.2 \mathrm{~ms} \end{aligned}$ | - |
| SSD restart time after beam interruption | - | 100 ms | - |
| SSD response time Beams 1-3 <br> Beam 4 (if available) |  | 70 ms 30 ms | 34 ms |
| Dyn SSD switching frequency | 3.3 Hz (300 ms pulse width) $\pm 10 \%$ |  |  |
| Dyn SSD signal delay after switching on/autoreset | 3 sec |  |  |

*) Note the additional restrictions caused by cable length and load current.
Table 8.4: Receiver, transistor outputs

### 8.2 Dimensions, weights

### 8.2.1 Multiple Light Beam Safety Devices

 2-beam:

3-beam:


4-beam:


Technical data

| Name | Transmitter <br> /Receiver <br> of <br> beams | Rumber <br> distanc <br> e | A | B | C | D | Weight <br> [g] |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SD2T270-3 | Transmitter | 3 | 270 | $270 / 270$ | 640,5 | 680,6 | 589 | 580 |
| SD2R270-3-5P | Receiver | 3 | 270 | $270 / 270$ | 640,5 | 680,6 | 589 | 600 |
| SD2T375-3 | Transmitter | 3 | 375 | $375 / 375$ | 850,5 | 890,6 | 799 | 760 |
| SD2R375-3-5P | Receiver | 3 | 375 | $375 / 375$ | 850,5 | 890,6 | 799 | 780 |
| SD2T400-3 | Transmitter | 3 | 400 | $400 / 400$ | 900,5 | 940,6 | 849 | 803 |
| SD2R400-3-5P | Receiver | 3 | 400 | $400 / 400$ | 900,5 | 940,6 | 849 | 823 |
| SD2T330-3 | Transmitter | 3 | 330 | $330 / 330$ | 760,5 | 800,6 | 709 | 683 |
| SD2R330-3-5P | Receiver | 3 | 330 | $330 / 330$ | 760,5 | 800,6 | 709 | 703 |
| SD2T330-2 | Transmitter | 2 | 330 | 330 | 430,5 | 470,6 | 379 | 400 |
| SD2R330-2-5P | Receiver | 2 | 330 | 330 | 430,5 | 470,6 | 379 | 420 |
| SD2T200-4-400 | Transmitter | 4 | $200 / 400$ | $200 /$ | 900,5 | 940,6 | 849 | 803 |
| SD2R200-4-400-5P | Receiver | 4 | $200 / 400$ | $200 / 400$ | 900,5 | 940,6 | 849 | 823 |
| SD2T400-2 | Transmitter | 2 | 400 | 400 | 500,5 | 540,6 | 449 | 460 |
| SD2R400-2-5P | Receiver | 2 | 400 | 400 | 500,5 | 540,6 | 449 | 480 |
| SD2T200-2 | Transmitter | 2 | 200 | 200 | 300,5 | 340,6 | 249 | 289 |
| SD2R200-2-5P | Receiver | 2 | 200 | 200 | 300,5 | 340,6 | 249 | 309 |

### 8.2.2 Mounting bracket dimensions



Picture 8.1:360 ${ }^{\circ}$ mounting bracket


Picture 8.2:Clamping bracket for C-slot mounting


Picture 8.3:Option: Swiveling mounting bracket with shock absorber


Picture 8.4:Option: L-mounting bracket


Picture 8.5:Option: Z-mounting bracket

## $9 \quad$ Order data

### 9.1 Scope of delivery

SOLID2-SF-K Multiple Light Beam Safety Devices are delivered with:

- 1SD2Txy Transmitter Unit
- 1 SD2Rxy Receiver Unit
- 4 BT 360 Mounting Brackets
- 1 connecting and operating instructions manual


### 9.2 Order numbers

| Article no . | Name | Transmitter/ Receiver | Number of beams | Beam distance |
| :---: | :---: | :---: | :---: | :---: |
| 67822253 | SD2T270-3 | Transmitter | 3 | 270 |
| 67822254 | SD2R270-3-5P | Receiver | 3 | 270 |
| 67822255 | SD2T375-3 | Transmitter | 3 | 375 |
| 67822256 | SD2R375-3-5P | Receiver | 3 | 375 |
| 67822257 | SD2T400-3 | Transmitter | 3 | 400 |
| 67822258 | SD2R400-3-5P | Receiver | 3 | 400 |
| 67822259 | SD2T330-3 | Transmitter | 3 | 330 |
| 67822260 | SD2R330-3-5P | Receiver | 3 | 330 |
| 67822261 | SD2T330-2 | Transmitter | 2 | 330 |
| 67822262 | SD2R330-2-5P | Receiver | 2 | 330 |
| 67822263 | SD2T200-3-400 | Transmitter | 3 | 200/400 |
| 67822264 | SD2R200-3-400-5P | Receiver | 3 | 200/400 |
| 67822265 | SD2T400-2 | Transmitter | 2 | 400 |
| 67822266 | SD2R400-2-5P | Receiver | 2 | 400 |
| 67822267 | SD2T200-3 | Transmitter | 3 | 200 |
| 67822268 | SD2R200-3-5P | Receiver | 3 | 200 |

### 9.3 Accessories

| Article no. | Article | Name |
| :---: | :---: | :---: |
| 424416 | BT-P40 | Clamping bracket for C-slot |
| 429050 | BT-360 ${ }^{\circ}$ | $360^{\circ}$ mounting bracket for SOLID-2 |
| 429055 | BT-360 ${ }^{\circ}$-SET | $360^{\circ}$ mounting set, consisting of $2 \mathrm{BT}-360^{\circ}$ mounting brackets |
| 429051 | BT-L | L-mounting bracket |
| 429052 | BT-Z | Z-mounting bracket |
| 429056 | BT-L bracket set | Mounting set |
| 429057 | BT-Z mounting set | Mounting set |
| 560300 | BT-SSD | Mounting bracket, swiveling with shock absorber |
| 429058 | BT-SSD/2er-SET | BT-SSD mounting set, consisting of 2 BT-SSD |
| 429059 | BT-SSD/4er-SET | BT-SSD mounting set, consisting of 4 BT-SSD |
| 429049 | BT-SSD-270/2er-SET | BT-SSD-270 mounting set, consisting of 2 BT-SSD-270 mounting brackets |
| Connecting cable, 5-pin for Transmitter |  |  |
| 429070 | CB-M12-500S-5WF | Connecting cable shield. with M12 connection, angled, length 0.5 m |
| 429071 | CB-M12-5000S-5GF | Connecting cable shielded with M12 connection, straight, length 5 m |
| 429072 | CB-M12-5000S-5WF | Connecting cable shielded with M12 connection, angled, length 5 m |
| 429073 | CB-M12-10000S-5GF | Connecting cable shield. with M12 connection, straight, length 10 m |
| 429074 | CB-M12-10000S-5WF | Connecting cable shielded with M12 connection, angled, length 10 m |
| 429075 | CB-M12-15000S-5GF | Connecting cable shield. with M12 connection, straight, length 15 m |
| 429076 | CB-M12-15000S-5WF | Connecting cable shielded with M12 connection, angled, length 15 m |
| Connecting cable, 8-pin for Receiver |  |  |
| 429080 | CB-M12-500S-8WF | Connecting cable shield. with M12 connection, angled, length 0.5 m |
| 429081 | CB-M12-5000S-8GF | Connecting cable shielded with M12 connection, straight, length 5 m |
| 429082 | CB-M12-5000S-8WF | Connecting cable shielded with M12 connection, angled, length 5 m |
| 429083 | CB-M12-10000S-8GF | Connecting cable shield. with M12 connection, straight, length 10 m |
| 429084 | CB-M12-10000S-8WF | Connecting cable shielded with M12 connection, angled, length 10 m |
| 429085 | CB-M12-15000S-8GF | Connecting cable shield. with M12 connection, straight, length 15 m |
| 429086 | CB-M12-15000S-8WF | Connecting cable shielded with M12 connection, angled, length 15 m |

## Table 9.1: SOLID-2SF accessories

## 10 Tests

### 10.1 Testing before startup

Testing by an experienced technician before startup must ensure that the optical protective device and any other safety components that might be present have been selected in accordance with the required specifications, especially the European Machine and Machine Utilization Directives, and that they provide the necessary protection when properly operated.
${ }^{4}$ Use the applicable local regulations, with the help of the checklists provided in the Appendix where required, to check that the protective devices are properly installed, that they are properly wired into the control unit and that they work in all machine operating modes.
4) The same testing requirements apply if the machine in question has not been operated for some time and after major modifications or repairs if this could affect the safety of the machine.
${ }^{4}$ Observe the specifications regarding the instructing of operating personnel by experienced technicians before work is started. The machine owner is responsible for instructing personnel.

Leuze electronic offers a specialist service which performs the required testing and instruction tasks (www.leuze.de). This service must be ordered separately. The results of these tests are documented for the machine owner in accordance with ISO 9000 ff .

### 10.2 Regular tests

Regular tests must also be carried out in accordance with local regulations. These are designed to discover changes (e.g. in machine stopping times) or manipulations to the machine controls or protective device.
$\Leftrightarrow$ You must have the effectiveness of the protective device checked by an experienced technician at suitable intervals, but at least once a year.
${ }^{4}$ The applicable checklist in the Appendix may also be used during regular testing.
Leuze electronic also provides a specialist service for regular tests.

### 10.3 Daily testing with the test rod

SOLID-2SF Multiple Light Beam Safety Devices are subjected to cyclical testing. Nevertheless it is very important to check the protective field for its effectiveness every day, so as to ensure that the protection stays effective at every point of the protective field after a parameter or tool change.
Only use an appropriate test rod with $\varnothing 30 \mathrm{~mm}$ (accessory), and NEVER use your fingers, hand or arm for checking the system!

a $=$ Test start
Picture 10.1:Testing the protective field with the test rod
4) The LED1 of the Receiver must be observed during the testing procedure. If a beam is interrupted by the test rod, this LED1 must change from "green" to "red".

### 10.4 Checklists

The test before startup ensures the safety-related fault-free integration of the active optoelectronic protective device (AOPD) into the machine and its control unit. The results of the test must be written down and kept with the machine documents. They can then be used as a reference during the subsequent regular tests.

### 10.4.1 Checklist for access guarding

## Note!

This checklist is intended as a help tool. It supports but does not replace for the test before startup or the regular tests by an expert.

Only with general applications, i.e. in cases in which SOLID-2SF is not used Yes No for guarding the sheet delivery of a sheet-fed printing machine:
Has the safety distance been calculated according to the applicable formula and specifications and is this minimum distance observed between the protective field and the point of operation?
Are the required beam heights of the lowest and the highest beam complied with?
If access to the point of operation is possible through routes other than the protective field of the AOPD, are the other access options suitably secured by other means?
Is the external condition of the protective device and the control devices faultfree?
Are Transmitter and Receiver fixed against displacement/turning after the alignment?
Are all connectors and connecting cables in fault-free conditions?
Is the start/restart button for resetting the AOPD positioned outside the danger zone in line with specifications so that it cannot be reached from the danger zone? Is there a complete overview of the danger area from the start/restart button position?
Are the safety-related switching outputs (OSSDs) linked into the downstream machine control unit in accordance with the required safetycategory?
Does the actual integration of the AOPD into the machine control unit comply with the circuit diagrams?
Does the AOPD respond correctly when any beam* is interrupted and does the system lock (inevitable with activated start/restart interlock as only the access not the presence of a person in the danger zone is detected)?
Does the dangerous movement stop immediately if the supply voltage of the

Yes No

Yes No

Yes No

Yes No Yes No Yes No

Yes No

Yes No

Yes No

Yes No

AOPD is interrupted and is the start/restart button needed to start the machine again after the supply voltage returns?

## 11 EC Declaration of Conformity

# Leuze electronic 

the sensor people

| EG-KONFORMITÄTSERKLÄRUNG | EC DECLARATION OF CONFORMITY | DECLARATION CE DE CONFORMITE |
| :---: | :---: | :---: |
| Der Hersteller | The Manufacturer | Le constructeur |
|  | Leuze electronic $\mathbf{G m b H}+\mathbf{C o}$. KG In der Braike 1, PO Box 1111 73277 Owen, Germany |  |
| erklärt, dass die nachfolgend aufgeführten Produkte den einschlägigen Anforderungen der genannten EG-Richtlinien und Normen entsprechen. | declares that the following listed products fulfil the relevant provisions of the mentioned EC Directives and standards. | déclare que les produits identifiés suivants sont conformes aux directives CE et normes mentionnées. |
| Produktbeschreibung: | Description of product: | Description de produit: |
| Sicherheits- Lichtvorhang Mehrstrahl-SicherheitsLichtschranke, <br> Berührungslos wirkende Schutzeinrichtung, <br> Sicherheitsbauteil nach 2006/42/EG SOLID-2SF Seriennummer siehe Typschild | Safety Light Curtain <br> Multiple Light Beam Safety Device, <br> Active opto-electronic protective device, safety component in acc. with 2006/42/EC annex IV SOLID-2SF <br> Part No. see name plates | Barrière immatérielle de sécurité <br> Barrage immatériel multifaisceau de sécurité, <br> Èquipement de protection électrosensible, <br> Èlément de sécurité selon <br> 2006/42/CE annexe IV SOLID-2SF <br> Art. $\mathbf{n}^{\circ}$ voir plaques signalétiques |
| Angewandte EG-Richtlinie(n): | Applied EC Directive(s): | Directive(s) CE appliquées: |
| $\begin{gathered} \text { 2006/42/EG } \\ \text { 2004/108/EG } \end{gathered}$ | $\begin{aligned} & \text { 2006/42/EC } \\ & \text { 2004/108/EC } \end{aligned}$ | $\begin{aligned} & \text { 2006/42/CE } \\ & \text { 2004/108/CE } \end{aligned}$ |
| Angewandte Normen: | Applied standards: | Normes appliquées: |
| EN 61496-1:2009; IEC 61496-2:2006; IEC 61508:1998 Part 1,3,4 (SIL 2); IEC 61508-2:2000 (SIL2) EN 50178:1997; EN ISO 13849-1:2008 (Kat.2, PLd) |  |  |
| Benannte Stelle / Baumusterprüfbescheinigung: | Notified Body / Certificate of Type Examination: | Organisme notifié / Attestation d'examen CE de type: |
| TÜV-SÜD PRODUCT SERVICE GmbH$\begin{gathered}\text { Zertifizierungsstelle } \\ \text { Ridlerstraße 65 } \\ \text { D-80339 München }\end{gathered}$ |  |  |
| Bevollmächtigter für die Zusammenstellung der technischen Unterlagen: | Authorized person to compile the technical file: | Personne autorisée à constituer le dossier technique: |

Robert Sammer; Leuze electronic GmbH + Co. KG, business unit safety systems Liebigstr. 4; 82256 Fuerstenfeldbruck; Germany


You can also download this EC Declaration of Conformity from the Internet under: http://www.leuze.com/solid

